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Abstract: Rolling bearings are key components of rotary machines. To ensure early effective fault
diagnosis for bearings, a new rolling bearing fault diagnosis method based on variational mode
decomposition (VMD) and an improved kernel extreme learning machine (KELM) is proposed in this
paper. A fault signal is decomposed via VMD to obtain the intrinsic mode function (IMF) components,
and the approximate entropy (ApEn) of the IMF component containing the main fault information is
calculated. An eigenvector is created from the approximate entropy of each component. A bearing
diagnosis model is created via a KELM; the KELM parameters are optimized using the particle swarm
optimization (PSO) algorithm to obtain a KELM diagnosis model with optimal parameters. Finally,
the effectiveness of the diagnosis method proposed in this paper is verified via a fan bearing fault
diagnosis test. Under identical conditions, the result is compared with the results obtained using
a back propagation (BP) neural network, a conventional extreme learning machine (ELM), and a
support vector machine (SVM). The test result shows that the method proposed in this paper is
superior to the other three methods in terms of diagnostic accuracy.

Keywords: fault diagnosis; rolling bearing; variational mode decomposition; approximate entropy;
kernel extreme learning machine

1. Introduction

Rolling bearings are critical components that are widely deployed in rotary machines, and their
operational state directly affects a device’s performance, operational efficiency, and lifetime. If the
root cause of a fault could be traced in the early stage of the fault’s development to eliminate hidden
risk and prevent serious accidents, it would have significant economic and practical value [1,2].
In actual engineering projects, the features of bearing faults in the early stages of fault development
are inconspicuous. Additionally, vibration transmission path attenuation and background noise
interference severely hinder the extraction of fault features. Therefore, the question of how to
effectively eliminate noise and extract valid fault features is the key to rolling bearing monitoring and
state identification.

As a powerful non-linear, non-stationary signal processing tool, empirical mode decomposition
(EMD) [3] immediately caught the attention of researchers in the area of machine fault diagnosis once
it was proposed. Based on a gray association model, Wang et al. [4] created a mapping between the
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intrinsic mode function (IMF) energy distribution and bearing state for bearing state identification.
In reference [5], a support vector machine (SVM) and EMD were combined for diagnosis of a rolling
bearing’s fault envelop spectrum. Ali et al. [6] combined EMD and a neural network for bearing
fault diagnosis. Inspired by EMD, Smith proposed another adaptive signal decomposition method,
local mean decomposition (LMD), in 2005 [7]; this method also attracted significant attention from
researchers, and numerous LMD-based diagnosis methods were proposed in succession. Chen et al. [8]
employed LMD for rolling bearing and gear fault diagnosis. Liu et al. [9] obtained a wind power
generator’s vibration signal instantaneous frequency via LMD to monitor the wind power generator’s
state. EMD and LMD have been widely deployed to extract fault features. However, the two methods
belong to recursive mode decomposition, which is affected by mode aliasing, end effects, and sampling
frequency. When the frequency ratio is the reciprocal of an odd number, the decomposition has
significant error [10].

Variational mode decomposition (VMD) is a new adaptive signal processing method proposed by
Dragomiretskiy and Zosso [11]. VMD assumes that each intrinsic mode function has limited bandwidth
and a different central frequency. To ensure the sum of the estimated bandwidths for the intrinsic mode
functions is minimal, a variation problem is solved via a transformation. Each intrinsic mode function
is demodulated to the corresponding base frequency band. Finally, each intrinsic mode function and
its corresponding central frequency are extracted. Once VMD was proposed, it immediately became
the focus of fault diagnosis research. Aneesh et al. [12] analyzed and compared the feature extraction
performance of VMD and the empirical wavelet transform, and suggested that VMD was superior
for feature extraction. Mohanty et al. [13] applied VMD to bearing fault diagnosis. Lv, et al. [14]
decomposed a vibration signal via VMD and employed an immunogenic algorithm-optimized support
vector machine for fault identification.

Artificial neural networks (ANN) have been widely deployed in fault diagnosis. However,
conventional neural networks employ learning algorithms based on gradient descent and have
problems such as slow convergence and being trapped in local minima. Extreme learning machine
(ELM) is a recently proposed single-hidden-layer forward neural network learning algorithm [15].
In ELM, the input weight of the input layer and threshold of the hidden layer node are selected
randomly, and the output weight is calculated via the Moore–Penrose generalized inverse of the
hidden layer’s output matrix. Compared with conventional neural networks, ELM has advantages
such as a fast learning speed and excellent generalization performance. However, the randomly
generated hidden layer weight and hidden layer threshold have significant impacts on the ELM
algorithm’s performance. SVM is a powerful tool for problems with a small sample, and has high
computational efficiency and good generalization ability. SVM has been applied in the fault diagnosis
of rolling bearings [16], wind turbines [17], motor rotors [18], and air compressors [19]. However, SVM
is a binary classifier algorithm, which has the disadvantage of classification model building difficulty
and low classification efficiency in multi-classification problems. In addition, the optimal classification
surface of SVM is determined by the support vector at the edge of the class, and the traditional SVM
is particularly sensitive to noise and outliers in the training samples. These problems reduce the
diagnostic performance of SVM. Kernel extreme learning machine (KELM) is an improved algorithm
proposed by Huang [20] based on the ELM algorithm and a kernel function. KELM not only possesses
numerous advantages of the ELM algorithm, but also integrates a kernel function and maps linearly
inseparable modes into a high-dimensional feature space to make them linearly separable; therefore,
the identification accuracy is improved. KELM does not require its user to determine the number of
hidden layer nodes in advance. Compared with ELM, in the network training and learning stages,
KELM only requires its user to select the proper kernel parameters and the normalization coefficient to
obtain the network output weight via matrix calculations. In reference [21], a multi-kernel extreme
learning machine method was proposed and applied to multi-element chaotic time series forecasts
to obtain accurate forecasts. In reference [22], a fast single-winner cross validation online KELM
method was proposed and successfully applied in chaotic time series forecasts and process recognition
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for continuously stirred tank reactors. However, the kernel function makes the KELM algorithm
sensitive to parameter setting. Therefore, optimal parameter selection is the key to improving the
KELM method’s state forecast accuracy.

For the above problems, a bearing fault diagnosis method based on VMD and an improved KELM
algorithm is proposed in this paper. First, the fault signal is decomposed via VMD to obtain the IMF
components. Next, the approximate entropy of the IMF component containing major fault information
is calculated, and an eigenvector is created from the approximate entropy of each component. Then,
the KELM parameters are optimized via the particle swarm optimization (PSO) algorithm to obtain a
KELM with optimal parameters. Finally, the method proposed in this paper is applied to bearing fault
diagnosis to verify its effectiveness.

2. Variational Mode Decomposition

VMD is a solution process for variation problems based on classical Weiner filtering, Hilbert
transformation, and frequency mixture. Adaptive signal decomposition is implemented by identifying
the optimal solution of the constrained variation model. The input signal is decomposed into multiple
sparse mode components.

Assume that each mode has limited bandwidth with a central frequency; the central frequency
and bandwidth are updated continuously during the decomposition. VMD is to identify the mode
function uk(t) with the minimum sum of the K estimated bandwidths; the sum of the modes is the
input signal f .

(1) Each mode function uk(t) undergoes a Hilbert transformation to obtain the analytical signal of
each intrinsic mode function and the unilateral frequency spectrum:[

δ(t) +
j

πt

]
∗ ut(t). (1)

(2) The estimated central frequencies e−jwkt of all the analytical mode signals are merged, and the
corresponding mode frequency spectrum is modulated in the respective base frequency band:[(

δ(t) +
j

πt

)
∗ ut(t)

]
e−jwkt. (2)

(3) The square norm L2 of the gradient of the demodulated signal is calculated, and the bandwidth of
each mode component is estimated. The expression for the corresponding constrained variation
model is as follows: 

min
{uk},{ωk}

{
∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ ut(t)

]
e−jwkt‖

2
}

s.t ∑
k

uk = f
(3)

where {uk} represents the K IMF components after decomposition, {uk} = {u1, · · · uk}, and {ωk}
represents central frequency of each component, {ωk} = {ω1, · · ·ωk}.

The second-order penalty factor ∂ and Lagrange multiplying operator λ(t) are introduced. The
second-order penalty factor guarantees signal reconfiguration accuracy in environments with Gaussian
noise. The Lagrange operator ensures the strictness of the constrained condition. The extended
Lagrange expression is as follows:

L({uk}, {ωk}, λ) : = α∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ ut(t)

]
e−jwkt‖

2

2

+‖ f (t)−∑
k

uk(t)‖2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉 (4)
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where, α is the penalty factor and λ(t) is the Lagrange operator.
The “saddle point” of extended Lagrange expression is calculated via the alternating direction

method of multiplier (ADMM) algorithm. The detailed procedure is as follows:

(1) Initialize
{
_
u

1
k

}
,
{

ω1
k
}

,
_
λ

1
, n;

(2) Execution cycle: n = n + 1;

(3) For all ω ≥ 0, update
_
u k :

_
u

n+1
k (ω)←

_
f (ω)−∑i<k

_
u

n+1
i (ω)−∑i>k

_
u

n
i (ω) +

_
λ

n
(ω)
2

1 + 2α(ω−ωn
k )

2 , k ∈ {1, K} (5)

(4) Update ωk:

ωn+1
k ←

∫ ∞
0 ω

∣∣∣∣_u n+1
k (ω)

∣∣∣∣2dω

∫ ∞
0

∣∣∣∣_u n+1
k (ω)

∣∣∣∣2dω

, k ∈ {1, K} (6)

(5) Update λ:
_
λ

n+1
(ω)←

_
λ

n
(ω) + τ

(
_
f (ω)−∑

k

_
u

n+1
k (ω)

)
(7)

(6) Repeat steps (2) through (5) until the iteration stop condition is satisfied:

∑
k
‖_u

n+1
k −_

u
n
k ‖

2

2

/‖_u
n
k ‖

2
2 < ε (8)

(7) Stop iteration and obtain the K IMF components.

Before VMD, the number of modes K should be determined. If K is too small, multiple components
of the signal may be contained in one mode simultaneously, or one component may not be able to be
estimated. If K is too large, one component in the signal could be included in multiple modes, and
the mode central frequencies obtained by iteration will eventually overlap. To address this problem,
a mode number fluctuation method is proposed in this paper to determine the mode number K. The
detailed procedure is as follows, and the flowchart is shown in Figure 1.

(1) The initial value of the mode number is K = K0;
(2) When the mode number is K0, determine whether the mode central frequencies overlap;
(3) If the central frequencies overlap, decrease the mode number and perform VMD until the central

frequencies do not overlap. Return K;
(4) If the central frequencies do not overlap, increase the mode number and perform VMD until the

central frequencies overlap. Return K − 1.
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Figure 1. Method for determining the number of variational mode decomposition (VMD) modes.

A simulation test is designed to verify the effectiveness of VMD. Simulation signal y(t) consists of
interval signal x1(t), linear frequency modulation signal x2(t), and cosine signal x3(t); the time domain
waveform is shown in Figure 2. The simulation signal is decomposed via the VMD, EMD, and LMD
methods, as shown in Figures 3–5. The decomposition result shows that the VMD method decomposes
various signal components effectively and the decomposed signal and original signal have a high
degree of coincidence. In comparison, the EMD- and LMD-processed intrinsic modes have various
degrees of mode aliasing and signal distortion. The main reasons are considered as follows: both
the EMD and LMD algorithms define local mean functions and local envelope functions based on
extreme points (maxima and minima), and their envelope estimation errors will be amplified after
repeated recursive decomposition. Therefore, the EMD and LMD algorithms are very sensitive to noise.
When the decomposed signal contains interval or adjacent frequency components, modal aliasing
often occurs in the EMD and LMD algorithms, and the adjacent frequency components are hard to
decompose. In addition, due to the effect of end effects, the signal contains some false components,
resulting in demodulation errors. In the simulation signal y(t), the frequencies of x1(t) and x2(t) are
5 Hz and 10 Hz, respectively, with adjacent frequency components. In addition, y(t) also contains
interval signal components. Therefore, the simulation signal y(t) cannot be effectively decomposed by
using the EMD and LMD algorithms. VMD assumes that each intrinsic mode function has limited
bandwidth and a different central frequency. To ensure that the sum of the estimated bandwidths
for the intrinsic mode functions is minimal, a variation problem is solved via a transformation. Each
intrinsic mode function is demodulated to the corresponding base frequency band. Finally, each
intrinsic mode function and its corresponding central frequency are extracted. VMD is an adaptive
Wiener filter group, which shows better noise robustness. Therefore, VMD effectively solves the mode
aliasing problem and has significantly superior anti-noise performance compared with EMD and
LMD. Additionally, because the VMD algorithm is applied in the frequency domain and belongs to a
complete non-recursive algorithm, it has higher computational efficiency than EMD and LMD.

x1(t) =

{
cos(20πt), 0.2 < t < 0.25, 0.4 < t < 0.45, 0.6 < t < 0.65, 0.8 < t < 0.85
0, other

(9)

x2(t) = 0.6 cos(10πt + 10πt2) (10)

x3(t) = cos(100πt) (11)

y(t) = x1(t) + x2(t) + x3(t) (12)
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Figure 2. Simulation signals: (a) composite signal y(t); (b) interval signal x1(t); (c) linear frequency 
modulation signal x2(t), and (d) cosine signal x3(t). 
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Figure 2. Simulation signals: (a) composite signal y(t); (b) interval signal x1(t); (c) linear frequency
modulation signal x2(t), and (d) cosine signal x3(t).
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Figure 3. Simulation signal y(t) VMD results. (a) IMF1; (b) IMF2; (c) IMF3.
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3. Approximate Entropy

In the field of fault diagnosis, many symptom parameters (SPs) have been defined to reflect
the features of vibration signals measured for condition diagnosis, such as root mean square (RMS),
skewness, and kurtosis,. In this study, the approximate entropy (ApEn) calculated from four IMF
components is used to extract the vibration signal feature of each bearing state. ApEn is a physical
quantity that measures the probability of generating a new mode in a signal to reflect the complexity of
a time series. It only requires a short series of data, has superior anti-noise capability, and is applicable
to both random and deterministic signals [23].

Assume that the original data are {u(i), i = 0, 1 . . . N}, and denote the mode dimension
and similarity tolerance as m and r, respectively. Normally, the ApEn is calculated via the
following procedure:

1. Based on the series {u(i)}, the dimension is expanded in sequence to an m-dimensional
vector X(i):

X(i) = [u(i), u(i + 1) . . . u(i + m− 1)], i = 1 ∼ N −m + 1 (13)

2. The distance between each X(i) and other vectors X(j) is calculated:

d[X(i), X(j)] = max
k=0∼m−1

|u(i + k)− u(j + k)| (14)

3. Assume that the threshold is r(r > 0). For each , the number of d[X(i), X(j)] < r is counted, and
the ratio of this number to the total number of vectors N −m + 1 is calculated as follows:

Ci
m(r) = {d[X(i), X(j)] < r}/(N −m + 1) (15)

4. The logarithm of Ci
m(r) is calculated, and the average of all i is denoted as Φm(r):

Φm(r) =
1

N −m + 1

N−m+1

∑
i=1

ln Cm
i (r) (16)

5. The above procedure is repeated to obtain Φm+1(r). Then, theoretically, the ApEn is computed
as follows:

ApEn(m, r) = lim
N→∞

[
Φm(r)−Φm+1(r)

]
(17)

The above final value is normally represented as having probability 1. However, N cannot
approach ∞. Therefore, the result calculated via the above procedure is actually an estimate of the
ApEn for a series with length N, denoted as

ApEn(m, r, N) = Φm(r)−Φm+1(r) (18)

The above expression shows that ApEn is related to m and r. Normally, when m = 2, r = 0.1 ∼
0.25SD (SD is the standard deviation of the series {u(i), i = 0, 1 . . . N}), the statistical characteristics
of ApEn are more reasonable.

4. Improved Kernel Extreme Learning Machine

4.1. Brief Outline of KELM

Assume that xp ∈ Rn are the original data, tp ∈ Rm is the corresponding target output, T is the
target output set, the number of hidden layer neurons is l, βi is the weight of the connection between
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the i-th hidden layer neuron and the output layer, and h(xp) is the activation function that maps data
from the input layer to the i-th hidden layer neuron. Then, the ELM output is as follows:

f (xp) =
l

∑
i=1

βihi(xp) = h(xp)β (19)

The ELM training goal is defined as follows:

Minimize : LPELM =
1
2

β2 + C
1
2

N

∑
p=1

ξ2
p (20)

Subject to : f (xp) = h(xp)β = tT
p − ξT

p , p = 1, · · · , N (21)

where the first part of LPELM is the structural risk, and the second part is the empirical risk; C is a
penalty coefficient; tp is the theoretical output; and ξp is the error of tp versus f (xp).

To solve the above optimization problem, a Lagrange function is defined as follows, where α is a
Lagrange factor:

LPELM =
1
2

β2 + C
1
2

N

∑
p=1

ξ2
p −

N

∑
p=1

αp(h(xp)β− tp − ξp) (22)

Based on Karush–Kuhn–Tucker (KKT) theory, the solution for the above equation is as follows:
∂LDELM

∂β = 0→ β =
N
∑

p=1
αph(xp)

T → β = HTα

∂LDELM
∂ξp

= 0→ αp = Cξp, p = 1, · · · , N
∂LDELM

∂αp
= 0→ h(xp)β− tT

p + ξT
p = 0, p = 1, · · · , N

(23)

It follows that

β = HT(
I
C
+ HHT)

−1
T (24)

where T = [t1, t2 ····· tN]T is the target vector of the input sample.
The hidden layer output matrix H consists of randomly generated weights of connections between

the input layer and hidden layer and thresholds of hidden layer neurons. In essence, it is a random
mapping. Owing to such randomness, a different H is generated each time. Therefore, the calculated β

is different, which leads to fluctuations in the ELM output and inferior stability and generalization
capability [24]. Huang et al. replaced HHT with a kernel function K(xi, xj) to obtain the KELM
algorithm, which prevents random assignment-induced fluctuations in the results of KLM:

HHT = ΩELM =

 K(x1, x1) · · · K(x1, xN)
...

. . . · · ·
K(xN , x1) · · · K(xN , xN)

 (25)

Equations (24) and (25) are substituted into Equation (18) to obtain the KELM output:

f (xp) =

 K(x, x1)
...

K(x, xN)


T

(
I
C
+ ΩELM)

−1
T (26)
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A radial basis function (RBF) is used as the kernel function:

K(x, y) = exp(−‖x− y‖2

2σ2 ) (27)

4.2. KELM Optimized Using PSO

When implementing the KELM learning algorithm, the parameters C and σ have significant
impacts on the algorithm’s performance. The PSO algorithm [25] is a random search and parallel
optimization algorithm that has advantages such as simplicity, ease of implementation, and quick
convergence. Therefore, in this paper, C and σ are optimized using the PSO algorithm to create a
PSO-optimized KELM forecast model. When implementing the PSO-KELM method, the method for
optimal parameter selection for KELM is an optimization of the penalty coefficients C and kernel
function parameter σ. The KELM classification accuracy is defined as acc (C, σ). In the KELM parameter
optimization model, the maximum classification accuracy for the PSO fitness function is given by
Equation (27). That is, a set of C and σ are identified within a given range to ensure the maximum
classification accuracy for the KELM classifier.

F = maxacc(C, σ) (28)

The detailed modeling procedure of the PSO-KELM diagnosis model is as follows:

(1) A particle swarm is generated based on the number of groups. The position
P(i).location = [Ci(t), σi(t)]

T and velocity P(i).velocity = [∆Ci(t), ∆σi(t)] of each particle are
randomly initialized.

(2) F is calculated via Equation (28) as the individual fitness to determine the optimal position

of individual particle P(i).best = [Ci
best(t), si

best(t)]
T

; the optimal position for each group is

g(i).best = [Ci
best(t), σi

best(t)]
T

.
(3) The particle velocity and position are updated using following equations:

P(i).velocity(t + 1) = ωl P(i).velocity(t) + η1r1[P(i).best(t)− P(i).location(t)]
+η2r2[g(i)best(t)− P(i).location(t)]

(29)

P(i).location (t + 1) = P(i).location (t) + P(i).velocity (t + 1) (30)

ωl = ωmax − iteration× ωmax −ωmin

iterationmax
(31)

(4) Steps (2) and (3) are repeated until the termination condition is satisfied. The optimal parameters
C and σ are returned.

5. Test and Verification

5.1. Test Platform

To verify the effectiveness of the method presented in this paper for the analysis of vibration
signals from actual measurements, a rolling bearing fault signal of a centrifugal fan is analyzed.
Figure 6 shows the centrifugal fan test platform used in this test. Based on a rolling bearing fault
in an actual engineering project, a wire-cutting machine is employed to produce tiny dents in the
rolling bearing’s outer ring, inner ring, and roller in the fan test bed to simulate early stage faults
and defects in the outer ring, inner ring, and roller. Details are shown in Figure 7. A PCB MA352A60
accelerometer (PCB MA352A60, PCB Piezotronics Inc., New York, NY, USA) is fixed at the top of the
bearing pedestal via a screw to collect vibration signal data in the vertical direction, including the
rolling bearing’s normal vibration signal and fault signals of the outer ring, inner ring, and roller. The
signals are amplified via a sensor signal regulator (PCB ICP Model 480C02, PCB Piezotronics Inc.,
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New York, NY, USA) and transmitted to a signal recorder (Scope Coder DL750,Yokogawa Co. Ltd.,
Tokyo, Japan). In the test, the rotation speed is set to 1000 rpm, the sampling frequency fs is 50 kHz,
and the sampling duration is 10 s. The size of the data collected is 2,000,000, and the data length of
each state is 500,000. Figure 8 shows the original vibration signal in each state. The bearings that are
utilized, the specifications of the test bearing, the size of the faults, and other necessary information
are listed in Table 1.
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Figure 6. Centrifugal fan for condition diagnosis: (a) illustration of a centrifugal fan; and (b) photograph
of a centrifugal fan.
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Figure 7. Bearing for condition diagnosis: (a) inner ring defect; (b) outer ring defect; and (c) roller
element defect.
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Figure 8. Vibration signal in each state: (a) normal; (b) outer ring defect; (c) inner ring defect; and
(d) rolling element defect.
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Table 1. Bearing parameters for verification.

Contents Parameters

Bearing outer diameter 52 mm
Bearing inner diameter 25 mm

Bearing width 15 mm
Bearing roller diameter 7 mm

The number of the rollers 11
Contact angle 0 rad
Outer defect 0.3 × 0.05 mm (width × depth)
Inner defect 0.3 × 0.05 mm (width × depth)

Roller element defect 0.3 × 0.05 mm (width × depth)

5.2. Condition Detection via the Proposed Method

Figure 9 shows the procedure of the fault diagnosis method proposed in this paper. First, the
vibration signal is decomposed via the VMD method introduced in Section 2. Figures 10–13 show the
decomposition results of the collected vibration signals of the bearing in each state. Each state has
four corresponding decomposed IMF components, and 300 ApEn values are calculated for each IMF.
An eigenvector is created from the ApEn of each component.Appl. Sci. 2017, 7, 1004  13 of 19 
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Figure 9. Fault diagnosis process. ApEn: approximate entropy; PSO: particle swarm optimization;
CV: cross validation; KELM: kernel extreme learning machine.

To explain the efficiency of ApEn, we compare the sensitivity of ApEn with RMS, skewness, and
kurtosis by the detection index method (DI) [26].

Suppose that x1 and x2 are the SP values calculated from the signals measured in state 1 and
state 2, respectively, and their average and standard deviation are µ and σ. The DI is calculated by
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DI =
|µ1 − µ2|√

σ1 + σ2
(32)

The Distinction Rate (DR) is defined as

DR = 1− 1√
2π

∫ −DI

−∞
exp(−µ2

2
)dµ (33)

It is obvious that the larger the value of the DI, the larger the value of the DR will be, and therefore,
the better the SP will be. Thus, the DI can be used as the index of quality to evaluate the distinguishing
sensitivity of the SP.

Table 2 lists the DI values of each SP. The distribution information of the ApEn is shown in Table 3.
From Table 2, the DI values of ApEn are higher than RMS, skewness, and kurtosis; that is to say, the
sensitivity of ApEn for bearing diagnosis is higher than that of other SPs.
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Table 2. Detection index (DI) values of each symptom parameter (SP).

DI Values

Symptom Parameters

RMS (Root
Mean Square) Skewness Kurtosis ApEn1 ApEn2 ApEn3 ApEn4

DIN-O 1.26 1.536 1.284 1.662 2.119 5.376 6.931
DIN-I 0.828 1.344 2.868 1.332 8.675 2.098 9.341
DIN-R 1.232 0.864 1.356 11.813 8.103 6.769 6.280
DIO-I 2.108 1.176 2.412 0.918 5.572 8.268 2.779
DIO-R 1.136 0.696 1.656 3.079 24.526 3.918 2.468
DII-R 2.352 0.348 1.92 1.256 17.051 8.059 0.527

Here, N, O, I, R indicate normal, outer ring defect, inner ring defect and roller element defect states, respectively.
RMS: root mean square.

The KELM parameters are optimized via the PSO algorithm to obtain the KELM training model
with optimal parameters. The process of KELM model training and optimization of the parameters
C and σ is shown in Figure 14. Assume that a particle swarm contains 50 particles, the acceleration
factors η1 and η2 are 2, and the maximum number of iterations is 1000. In order to minimize possible
effects of data outliers, a fivefold cross validation method (5-CV) is adopted for parameter optimization
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and condition identification. The calculated ApEn sample is randomly partitioned into five subsamples.
Of the five subsamples, three subsamples are retained as the training data, one subsample is used as
test data for parameter optimization, and the remaining one subsample is used as verification data for
condition identification of the bearing. As an example, some PSO-KELM training data are listed in
Table 4.

Table 3. Distribution information of the ApEn.

Apen

Normal State Outer Ring Defect Inner Ring Defect Roller Element Defect

Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation

ApEn1 0.731 0.010 0.145 0.021 0.405 0.083 0.434 0.012
ApEn2 0.712 0.012 0.221 0.030 0.841 0.013 0.790 0.051
ApEn3 0.691 0.031 0.458 0.031 0.578 0.029 1.005 0.061
ApEn4 0.670 0.005 0.997 0.012 1.044 0.050 1.066 0.104
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After parameter optimization, the bearing condition identification is performed by the optimal
KELM and 5-CV method. The verification result shown in Table 5 demonstrates that the normal state
average diagnosis accuracy reaches 100%, the outer ring defect state average fault diagnosis accuracy
reaches 90.3%, the outer ring defect state average fault diagnosis accuracy reaches 85.7%, the roller
element defect state average fault diagnosis accuracy reaches 96.3%, and the overall accuracy reaches
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93.08%. These diagnosis results demonstrate the effectiveness of the fault diagnosis method proposed
in this paper.

Table 4. Training data for each state.

Approximate Entropy State

IMF1 IMF2 IMF3 IMF4 Normal Outer Defect Inner Defect Element Defect

0.72001 0.14866 0.40609 0.42288 1 0 0 0
0.72055 0.14759 0.40633 0.42241 1 0 0 0
0.72071 0.14726 0.40579 0.42055 1 0 0 0

0.71503 0.224 0.84966 0.78457 0 1 0 0
0.71519 0.22413 0.84976 0.78629 0 1 0 0
0.69023 0.45486 0.60378 0.99773 0 1 0 0

0.68705 0.46803 0.5576 1.0275 0 0 1 0
0.68699 0.46578 0.55627 1.0291 0 0 1 0
0.69023 0.45486 0.60378 0.99773 0 0 1 0

0.68039 0.99442 1.0432 1.0662 0 0 0 1
0.68052 0.995 1.043 1.0649 0 0 0 1
0.68109 0.9989 1.0441 1.0666 0 0 0 1

Table 5. Comparison results of different algorithm.

Classifier
Average Diagnostic Accuracy % Overall

Accuracy %N O I R

BPNN 90.0 68.7 51.7 88.6 74.75
ELM 97.3 79.0 66 95.6 84.48
SVM 100 88.7 77.4 96.8 90.73

PSO-KELM 100 90.3 85.7 96.3 93.08

BPNN: Back Propagation Neural Network; ELM: extreme learning machine; SVM: support vector machine;
PSO-KELM: particle swarm optimization-kernel extreme learning machine.

To further verify the effectiveness of the PSO-KELM algorithm proposed in this paper, the
backpropagation (BP) neural network, conventional ELM and SVM algorithms, and the PSO-KELM
algorithm proposed in this paper are compared. When the BP neural network and conventional ELM
and KELM algorithms are used for bearing state identification and diagnosis, the vibration data are
identical to those for the PSO-KELM algorithm. Additionally, vibration signal features are extracted via
VMD and the ApEn method introduced in Sections 2 and 3. In the SVM, a one-against-one method [27]
is used to establish a multiclass SVM system. The RBF kernel function is also employed, and the
penalty coefficients C and kernel function parameter σ of the SVM are optimized by using grid search.
The grid search range of C and σ are 2−8~28, and 2−14~214, respectively, and the search step is 0.1.

As shown in Table 5, when the diagnosis is based on a BP neural network, the normal state
diagnosis accuracy reaches 90%, the outer ring defect state fault diagnosis accuracy is 68.8%, some
outer ring defect vibration data are classified incorrectly as in the normal state, the inner ring defect state
fault diagnosis accuracy is only 51.7%, nearly half of inner ring defect vibration data are incorrectly
classified into outer ring defect and normal states, the roller element defect state fault diagnosis
accuracy reaches 88.6%, and the overall accuracy is 74.75%. When the diagnosis is performed using
the ELM method, the normal state diagnosis accuracy reaches 97.2%, the outer ring defect state fault
diagnosis accuracy is 79%, the outer ring defect state fault diagnosis accuracy is 66%, the roller element
defect state fault diagnosis accuracy reaches 95.6%, and the overall accuracy is 85.5%. When the
diagnosis is based on the multiclass SVM method, the normal state diagnosis accuracy reaches 100%,
the outer ring defect state fault diagnosis accuracy reaches 88.7%, the outer ring defect state fault
diagnosis accuracy reaches 77.4%, the roller element defect state fault diagnosis accuracy reaches
96.8%, and the overall accuracy is 90.73%. A comparison of the results of the above four diagnosis
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methods reveals that the PSO-KELM algorithm has the highest identification accuracy for the normal
bearing, outer ring defect, and inner defect states, in addition to the highest overall diagnosis accuracy.

In this study, a receiver operating characteristic (ROC) curve and area under the ROC curve
(AUC) are also employed to evaluate the performance of the different classifiers. Figure 15 shows the
ROC curve of each classifier for condition diagnosis, and the corresponding AUC values are listed
in Table 6. As shown in Figure 15 and Table 6, the AUC values of PSO-KELM are higher than that
of the BP neural network, ELM, and SVM algorithms, which shows that PSO-KELM has the best
classification performance.
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Figure 15. Receiver operating characteristic (ROC) curve of each classifier.

Table 6. Area under the ROC curve (AUC) values of each classifier.

Classifier
Bearing State

Normal Outer Defect Inner Defect Roller Element Defect

BPNN 0.871 0.805 0.720 0.911
ELM 0.953 0.883 0.815 0.948
SVM 0.956 0.935 0.883 0.974

PSO-KELM 0.981 0.939 0.925 0.965

To further verify the diagnostic capability of the method proposed in this paper in various
operating conditions, the bearing vibration signal in two kinds of failure dimensions are measured for
condition diagnosis, and the measuring speed is set to 600 rpm, 800 rpm, 1000 rpm, and 1200 rpm,
respectively. The diagnostic results are listed in Table 7. From Table 7, with the increase in rotating
speed and fault dimension, the diagnostic accuracy of the PSO-KELM algorithm is improved. The
overall accuracy of PSO-KELM in various operating conditions is greater than 80%, and the highest
accuracy can reach 95.02%.

The above diagnosis results demonstrate the effectiveness of the fault diagnosis method proposed
in this paper for rolling bearing state monitoring and identification.
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Table 7. Diagnostic results in different operating conditions.

Fault Dimension
(Width × Depth) mm

Speed rpm Diagnostic Accuracy (%) Overall Accuracy
(%)N O I R

0.3 × 0.05

600 98.2 84.6 78.4 62.3 80.87
800 100 86.3 78.9 86.2 87.85

1000 100 90.3 85.7 96.3 93.08
1200 100 93.7 84.6 96.8 93.77

0.3 × 0.15

600 100 88.7 84.2 75.3 87.05
800 100 91.5 84.6 90.6 91.67

1000 100 93.2 87.9 96.9 94.5
1200 100 93.8 88.1 98.2 95.02

6. Conclusions

In this paper, a VMD and improved KELM-based rolling bearing state identification method is
proposed. To address inconspicuous fault feature signals of rolling bearings in early fault stages and
the challenge of feature extraction, the VMD method and ApEn are combined to extract fault features,
and a mode number fluctuation method is proposed to determine the mode decomposition number for
signal feature extraction. A simulation test shows that this method is superior to conventional EMD
and LMD in terms of mode anti-aliasing and anti-noise performance. When fault diagnosis is based on
the KELM method, the penalty coefficient C and kernel function parameter σ have significant impacts
on the KELM performance; employing optimal parameters is the key to improving the KELM method’s
state forecast accuracy. Therefore, a PSO optimization-based KELM bearing state identification method
is proposed in this paper; this method optimizes the KELM parameters using a PSO optimization
algorithm to obtain a KELM forecast model with optimal parameters. An analysis of rotor test bed
data reveals that the proposed rolling bearing fault diagnosis method based on combination of VMD,
ApEn, and PSO-KELM is effective for bearing state mode identification in various states. Compared
with the BP neural network and conventional ELM and SVM algorithms, the fault diagnosis method
proposed in this paper has higher diagnosis accuracy and can achieve a more accurate identification of
bearing fault states. In addition, state identification of the bearing in various operating conditions is
also performed by using the methods proposed in this paper. The diagnostic results show that the
diagnostic accuracy of the PSO-KELM algorithm is improved with an increase in rotating speed and
fault dimension, the overall accuracy of PSO-KELM is greater than 80%, and the highest accuracy can
reach 95.02%. The results further demonstrate the effectiveness of the methods proposed in this paper.
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