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Abstract: Toppling failure is one of the most common failure types in the field. It always
occurs in rock masses containing a group of dominant discontinuities dipping into the slope.
Post-earthquake investigation has shown that many toppling rock slope failures have occurred
during earthquakes. In this study, an analytical solution is presented on the basis of limit equilibrium
analysis. The acceleration of seismic load as well as joint persistence within the block base, were
considered in the analysis. The method was then applied into a shake table test of an anti-dip layered
slope model. As predicted from the analytical method, blocks topple or slide from slope crest to toe
progressively and the factor of safety decreases as the inputting acceleration increases. The results
perfectly duplicate the deformation features and stability condition of the physical model under the
shake table test. It is shown that the presented method is more universal than the original one and can
be adopted to evaluate the stability of the slope with potential toppling failure under seismic loads.
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1. Introduction

Toppling failures always occur in rock masses with a dominant discontinuity set (usually bedding
or foliation) which strike parallel to the slope and dip inwards. This failure mode is one of the most
common seen in natural or excavated rock slopes, e.g., rock slopes induced by construction including of
hydropower stations [1–3], open-pit mines [4,5], railway [5] and other engineering works [6]. In recent
years, quite a number of toppling failures occurred during earthquakes and caused huge losses to
lives as well as infrastructures. For example, Xiaojianping landslide and Guantan landslide [7] were
both triggered by the Wenchuan earthquake and characterized by an anti-dipping structure (Figure 1).
This type of event always occurs abruptly and results in catastrophic loss, e.g., a dammed lake with
deposits of about 6,000,000 m3 caused by Xiaojianping landslide.
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Figure 1. XiaoJianping landslide induced by Wenchuan earthquake on 12 May 2008. 

Toppling failure of rock slopes can be roughly differentiated into three modes: block toppling, 
flexural toppling and combined block and flexural toppling [8]. Numerical approaches, physical 
models and theoretical analysis are three main tools to study the toppling rock slopes. This study 
concentrates on the theoretical analysis on the basis of limit equilibrium method. The quantitative 
limit equilibrium method to evaluate the stability of block toppling rock slopes was originally 
proposed by [8], after which this method has been largely further developed. Zanbank (1983) [9] gave 
a design chart for rock slopes susceptible to toppling based on the original analytical solution. Bobet 
(1999) [10] presented an analytical method for the toppling failure considering the toppling mass as 
continuous medium rather than a discrete assemblage of blocks. Sagaseta et al. (2001) [11] derived an 
analytical solution also considering the infinitesimal thickness of blocks and concluded that this 
method is suitable for slopes higher than 20–30 times the average block thickness. Chen et al. (2005) 
[1] made an extension of the original solution considering the connectivity of block base. Liu et al. 
(2008, 2010) [12,13] extended the continuum solution developed by [10,11] and presented an 
analytical approach for analyzing block toppling of those slopes that can be considered as continua. 
Considering rock layers as cantilever beams, Aydan and Kawamoto (1992) [14] proposed a limit 
equilibrium stability analysis method for slopes and underground openings under various loading 
conditions against the flexural toppling. Adihikary et al. (1997) [15] adopted this limit equilibrium 
approach to analyze a centrifuge test data and found this method can accurately predict the failure 
load for the tests. Majdi and Amini (2011) [16] conducted studies on flexural toppling considering the 
length of cracks. They presented an equation for length of critical crack, and stated that if the length 
of natural crack is smaller than that of critical crack, the solid mechanics should be adopted, while 
otherwise, the fracture mechanics are more suitable. There are few reports about limit equilibrium 
on the combined block and flexural toppling mode. 

It is worth mentioning that seismic loads were taken into account in some new developed 
analytical solutions in recent years. For example, Yagoda-Biran and Hatzor (2013) [17] presented a 
3D failure mode chart for toppling and sliding failure of slope, in which the seismic load is considered 
as a pseudo-static horizontal force acting at the centroid. However, just one block is considered in 
this analysis. Zheng et al. (2014) [18] proposed a solution for toppling failure of rock slopes subjected 
to earthquake, with the slenderness ratio of the block over 20. However, the joint persistence of the 
block base is not considered in their solution. Maiorano et al. (2015) [19] investigated the rocking and 
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Toppling failure of rock slopes can be roughly differentiated into three modes: block toppling,
flexural toppling and combined block and flexural toppling [8]. Numerical approaches, physical
models and theoretical analysis are three main tools to study the toppling rock slopes. This study
concentrates on the theoretical analysis on the basis of limit equilibrium method. The quantitative limit
equilibrium method to evaluate the stability of block toppling rock slopes was originally proposed
by [8], after which this method has been largely further developed. Zanbank (1983) [9] gave a design
chart for rock slopes susceptible to toppling based on the original analytical solution. Bobet (1999) [10]
presented an analytical method for the toppling failure considering the toppling mass as continuous
medium rather than a discrete assemblage of blocks. Sagaseta et al. (2001) [11] derived an analytical
solution also considering the infinitesimal thickness of blocks and concluded that this method is
suitable for slopes higher than 20–30 times the average block thickness. Chen et al. (2005) [1] made
an extension of the original solution considering the connectivity of block base. Liu et al. (2008,
2010) [12,13] extended the continuum solution developed by [10,11] and presented an analytical
approach for analyzing block toppling of those slopes that can be considered as continua. Considering
rock layers as cantilever beams, Aydan and Kawamoto (1992) [14] proposed a limit equilibrium stability
analysis method for slopes and underground openings under various loading conditions against the
flexural toppling. Adihikary et al. (1997) [15] adopted this limit equilibrium approach to analyze
a centrifuge test data and found this method can accurately predict the failure load for the tests.
Majdi and Amini (2011) [16] conducted studies on flexural toppling considering the length of cracks.
They presented an equation for length of critical crack, and stated that if the length of natural crack is
smaller than that of critical crack, the solid mechanics should be adopted, while otherwise, the fracture
mechanics are more suitable. There are few reports about limit equilibrium on the combined block and
flexural toppling mode.

It is worth mentioning that seismic loads were taken into account in some new developed
analytical solutions in recent years. For example, Yagoda-Biran and Hatzor (2013) [17] presented a 3D
failure mode chart for toppling and sliding failure of slope, in which the seismic load is considered
as a pseudo-static horizontal force acting at the centroid. However, just one block is considered in
this analysis. Zheng et al. (2014) [18] proposed a solution for toppling failure of rock slopes subjected
to earthquake, with the slenderness ratio of the block over 20. However, the joint persistence of the



Appl. Sci. 2017, 7, 1008 3 of 17

block base is not considered in their solution. Maiorano et al. (2015) [19] investigated the rocking
and overturning response of slender rock blocks on a stiff base submitted to simple cyclic excitations
and to natural earthquakes. Their study neglects interaction forces within blocks and each block
is assumed to be completely detached from the cliff and located on a horizontal plane, meanwhile
the sliding failure is excluded by setting a very large friction coefficient at the base of the block.
Zhang et al. (2016) [20] conducted research on the rock toppling failure mode subjected to earthquake
based on numerical modelling. ROCSCIENCE INC. (2014) [21] presented a 2D limit equilibrium
program named RocTopple to perform toppling analysis based on the block toppling method of [8].
RocTopple can display the potential failure mode of individual blocks as well as the overall safety
factor with the inputting slope parameters, discontinuity spacing dip angle and strength. The external
loads can be applied including seismic load, water pressure, etc. The program provides a convenient
way to assess the stability and failure modes of block toppling rock slope subjected to an earthquake.
Nevertheless, the amplification effects of seismic acceleration during seismic wave transmitting in the
slope and connectivity condition of the joint are excluded in the program.

In this paper, a limit equilibrium solution for block toppling failure during an earthquake is
proposed, in which the connectivity of the joint in block base and the interaction force transfer
between adjacent blocks are considered. Finally, the solution is adopted to predict the failure modes of
individual blocks and the stability of an anti-dip rock slope model under the shake table test.

2. Mechanical Model and Analytical Solution to Toppling Slope Failure

Similar to [1,8,12], the geometry of a toppling slope was simplified as shown in Figure 2.
The variables and the corresponding description are addressed in the Abbreviations section at the end
of this paper. The mechanical parameters including cohesions, friction angles of joints or bedding
planes and tensile strength of blocks can be obtained based on lab or field experiments. Some of the
basic geometric parameters can be obtained through field work, such as ψb, ψp, ψs, ψd, ψf and ∆x can
be obtained based on field work. The equations to reach other geometric parameters including a1, a2, b
and yn can be addressed in Appendix A.
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Figure 2. The geometric model of a toppling slope (modified based on [22] after [8]).

It is shown that the interface between deformation blocks and the base is stepped, and its overall
dip ψb can be valued in the range shown in Equation (1) [8,14,23].
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ψb ≈
(
ψp + 10◦

)
to
(
ψp + 30◦

)
(1)

The model includes stable and unstable blocks, the latter of which can be divided into toppling
blocks and sliding blocks according to the deformation mechanism. The mechanical conditions of the
nth toppling block are interpreted in Figure 3. It can be seen that there are normal and shear forces
(Pn, Qn) from the upper block on the right side, (Pn−1, Qn−1) from the lower block on the left side, and
(Rn, Sn) from the matrix on the base. The approach to reach the geometric parameters Mn, Ln above, at
and below the crest is addressed in Appendix A.
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The seismic load acting on the block can be broken down into two components, i.e., k1 and k2.
The equilibrium equation for sliding of the nth block can be given as (Figure 3b)

Rn = Wn cos ψp + (Pn − Pn−1) tan φjs − k2Wn/g (2)

Sn = JcRn tan φjb + (1 − Jc)(Rn tan φb + cb∆x)
= Wn sin ψp + (Pn − Pn−1) + k1Wn/g

(3)

So the solution of the force needed from the lower block to keep the nth block from sliding can be
obtained as follows:

Pn−1,s = Pn −

[
sin ψp + k1/g −

(
Jc tan φjb + ξ tan φb

)(
cos ψp − k2/g

)]
Wn − ξcb∆x(

Jc tan φjb + ξ tan φb

)
tan φjs − 1

(4)

The equilibrium equation for toppling of the nth block can be given as (Figure 3c):
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Pn−1Ln + Wn
(
cos ψp − k2/g

)
∆x/2 + Pn tan φjs∆x + Mb

= Pn Mn + Wn
(
sin ψp + k1/g

)
yn/2 + Rnε∆x/2

(5)

The bases of toppling blocks are acted on with normal forces Rn, shear forces Sn and moment
Mb (Figure 3b). It should be noted that the effects of other forces have been incorporated in the three
values. The block base can be seen as an eccentric compression bar (Figure 4), so the stress in the base
section induced by Mb as

σM =
Mbx

Iy
(6)

in which x denotes distance to a neutral point, and Iy denotes the product of inertia of the cross-section
to the y axis, Iy = 1

12 (ξ∆x)3, ξ = 1 − Jc.
The maximum tensile stress induced by moment Mb occurs at the left edge of the rock bridge on

the base (point O in Figure 4):

σtM =
Mb × 1

2 ξ∆x
1

12 (ξ∆x)3 =
Mb

1
6 (ξ∆x)2 (7)

The compressive stress induced by Rn is uniform on the base:

σtR =
Rn

ξ∆x
(8)

Therefore, the maximum tensile stress occurs at the left edge of the rock bridge on the base:

σt =
Mb

1
6 ξ2∆x2

− Rn

ξ∆x
(9)

So
Mb =

ξ∆x
6

(σtξ∆x + Rn) (10)

So the solution of the force needed from the lower block to keep the nth block from toppling can
be obtained as follows:

Pn−1,t =
(Mn+

1
3 ξ∆x tan φjs−∆x tan φjs)Pn+

∆xWn
2

(
1− ξ

6

)(
k2
g −cos ψp

)
− ξ2∆x2

6 σt+
ynWn

2

(
sin ψp+

k1
g

)
Ln+

ξ∆x
3 tan φjs

(11)
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The dynamic loads as well as joint connectivity rate are taken into account in the limit equilibrium
method compared with the original form proposed by [8]. For the special state of static conditions
and a persistent block base, the limit equilibrium Equation (4) of sliding and Equation (11) of toppling
would be simplified as Equations (12) and (13) respectively. Equations (12) and (13) are the same as
the original form proposed by [8]. It can be seen that the proposed solutions are a universal form that
can estimate the deformation status and factor of safety (FOS) for toppling slope with various Jc of the
block base under different seismic loads.

Pn−1,s = Pn −
Wn

(
cos ψp tan φjb − sin ψp

)
1 − tan φjs tan φjb

(12)

Pn−1,t =

[(
Mn − ∆x tan φjs

)
Pn +

Wn

2
(
yn sin ψp − ∆x cos ψp

)]/
Ln (13)

The solution can be applied by following these steps:

(1) Reach the basic geometric parameters ψb, ψp, ψs, ψd, ψf and ∆x from in- situ measurement
work and calculating other geometric parameters a1, a2, b, yn, Mn and Ln according to
Equations (A1)–(A11).

(2) Determining all the physical parameters of the joints and blocks, e.g., ρ, ϕjb, ϕjs, ϕb, cb, σbt, and
the joint connectivity rate (Jc) of the block base on the basis of lab tests, in-situ measurement
or experience.

(3) Calculating Pn−1,S and Pn−1,t from the top block downwards on the basis of Equations (4) and (11).
(4) Determining Pn−1 and the deformation status of the nth block.

If Pn−1,s < 0 and Pn−1,t < 0, Pn−1 = 0. It means that the nth block is stable and does not need the
support of the (n − 1)th block.
If Pn−1,s < 0 and Pn−1,t > 0, Pn−1 = Pn−1,t. It means that the nth block needs the support of the
(n − 1)th block to inhibit toppling deformation.
If Pn−1,t > Pn−1,s > 0, Pn−1 = Pn−1,t. It means that the nth block needs more support from the
(n − 1)th block to inhibit toppling failure rather than sliding failure.
If Pn−1,s > 0 and Pn−1,t < 0, Pn−1 = Pn−1,s. It means that the nth block needs the support of the
(n − 1)th block to inhibit sliding deformation.
If Pn−1,s > Pn−1,t > 0, Pn−1 = Pn−1,s. It means that the nth block needs more support from the
(n − 1)th block to inhibit sliding failure rather than toppling failure.

In summary, Pn−1 can also be simply obtained according to Equation (14):

Pn−1 = max(Pn−1,s, Pn−1,t, 0) (14)

If Pn−1 = 0, the nth block is stable;
If Pn−1 = Pn−1,t, the nth block is toppling;
If Pn−1 = Pn−1,s, the nth block is sliding.
Pn−1 and the deformation status can also be determined according to Table 1.

(5) Estimating the stability of the slope. If the deformation status of the lowest block (n = 1) is stable
(or P0 = 0), the slope is stable. If the deformation status of the lowest block (n = 1) is unstable (or
P0 > 0), the slope is unstable.

(6) Determining the FOS. The FOS of the slope can be determined using the methods as follows:

A ratio Ra is adopted to obtain the parameters in calculation based on the actual parameters,
which are shown as Equations (15)–(19).
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tan φcalculation
jb = tan φactural

jb /Ra (15)

tan φcalculation
js = tan φactural

js /Ra (16)

tan φcalculation
b = tan φactural

b /Ra (17)

ccalculation
b = cactual

b /Ra (18)

σcalculation
bt = σactual

bt /Ra (19)

Table 1. Determination of the Pn−1 and deformation status of the nth block.

Calculating Results Pn−1 Deformation Status

Pn−1,t < 0 Pn−1,s < 0 - 0 stable
Pn−1,t > 0 Pn−1,s < 0 - Pn−1,t toppling
Pn−1,t > 0 Pn−1,s > 0 Pn−1,t > Pn−1,s Pn−1,t toppling
Pn−1,t < 0 Pn−1,s > 0 - Pn−1,s sliding
Pn−1,t > 0 Pn−1,s > 0 Pn−1,s > Pn−1,t Pn−1,s sliding

If the lowest block with the actual mechanical parameters is stable, calculate the slope stability
with these various Ra < 1, and FOS is the Ra that makes P0 ≈ 0. Similarly, if the lowest block with the
actual mechanical parameters is unstable, the FOS is Ra (Ra > 1) which makes P0 ≈ 0.

The method can be easily carried out in spreadsheets such as Excel. The flow chart is shown in
Figure 5, in which the number in front of the colon is the corresponding column in the calculation
sheet, e.g., the column number in Table 3. The procedure will be described in more detail with a case
study in the next section.Appl. Sci. 2017, 7, 1008 8 of 18 
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3. An Application Research on an Anti-Dip Rock Slope Model under Shake Table Test

A lot of research has been conducted on the dynamic response of rock slopes since the Wenchuan
earthquake on 12 May 2008, e.g., the centrifuge test [24,25] and shake table test [26]. The latter one will
be adopted to put forward a comparative study with the presented analytical solution.
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The experiment was conducted using the shake table in the Institute of Engineering Mechanics
China Earthquake Administration, which is 5 m × 5 m; maximum horizontal and vertical accelerations
are 1.0 g and 0.8 g respectively. The size of the model box is 3.6 m (length) × 1.6 m (width) × 1.8 m
(height). The height of the physical slope model is 1.6 m, the slope angle is 40◦, and the anti-dip angle
of the layer is 60◦. The model is built from lots of small blocks of 20 cm (length) × 5 cm (width) × 4 cm
(height) (Figure 6a). The density of the blocks is 2.51 g/cm3, the tensile strength σbt is 0.094 MPa, elastic
modulus is 138.74 MPa, cohesion cb is 0.711 MPa and internal friction angle θb is 36.2◦. The friction
angle of block side joints is 30◦. The friction angle and cohesion of the block base joints are 30◦

and 0.35 MPa respectively [26]. All these parameters have an influence on the analytical results
in the presented limit equilibrium method, so they are strictly following the real case to verify the
practicability of the analytical method.Appl. Sci. 2017, 7, 1008 9 of 18 
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Figure 6. The large scale shake table test on anti-dip layered slope model: (a) the layout of acceleration
sensors on the surface and the failure status of the slope model (modified based on [26]); (b) the
acceleration amplification coefficients increase with slope height on the slope surface (data from [26]).

Sine waves with various frequency (5, 10, 15, 20 Hz), acceleration amplitude (0.1 g, 0.2 g, . . . ,
0.8 g) and duration (10, 20, 30, 40 s) were input to study the dynamic response of the anti-dip slope.
Rubber materials are used to eliminate the boundary effects. Acceleration sensors were laid out in
horizontal and vertical lines to record the acceleration during the experiment in different positions,
some of which are on the surface as shown in Figure 6a. A high speed camera was also used to record
the progressive failure process.

The results of acceleration data show that the acceleration enlarges with elevation in the vertical
direction and also enlarges near slope surface in the horizontal direction. This phenomenon has been
observed by extensive researches (e.g., [27–29]) and known as amplification effects. In the shake table
tests, it indicates that under low acceleration (<0.2 g), that the horizontal acceleration on the slope
surface increased over 1.5 times above 3/4 slope height compared with that in the slope toe, while the
vertical acceleration did not increase obviously in the same zone except at the top position (Figure 6b).

The progressive failure process with the increasing incident wave was recorded and described as
follows [26]:

(1) As the inputting acceleration (horizontal direction) increased to 0.3 g, some flexible toppling
deformation initiated around the slope crest.

(2) As the inputting accelerations (both horizontal and vertical direction) increased to 0.3 g, the
number of toppling blocks increased a little and several blocks fell down.
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(3) As the inputting acceleration (horizontal direction) increased to 0.4 g, the toppling deformation
was observed obviously and continued to develop noticeably around the slope crest.

(4) As the inputting acceleration (horizontal direction) increased to 0.7 g, shear sliding deformation
initiated in the slope, i.e., a curved-linear sliding surface was observed.

(5) As the inputting acceleration (horizontal direction) increased to 0.8 g, the sliding surface
propagated to nearly go through the crest area and some cracks parallel to the sliding surface
were observed in the slope (Figure 6a).

An equilibrium slope model was built based on the shake table test as shown in Figure 7.
The adjacent area around the slope crest is determined for the equilibrium model according to the
observed deformation blocks in the physical experiment (the dashed white line in Figure 6a as the
overall block base). There are 26 blocks in total and the geometric parameters are shown in Table 2.
It should be mentioned that the Jc of the base interface is estimated approximately as 0.51 to be
equivalent to the joint cohesion (about 0.51 times of block cohesion).
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Figure 7. The limit equilibrium model for physical model on the shake table test

Table 2. The geometric parameters in the equilibrium slope model of shake table test (data based
on [26]).

Parameter Value Parameter Value

∆x (m) 0.04 ψ f (◦) 40
a1 (m) 0.007 ψp (◦) 30
a2 (m) 0.0135 ψb (◦) 28
b (m) −0.0015 ψs (◦) 11

Jc 0.51 - -

The original model before the experiment would be analyzed firstly following the method
described in the previous section (Figure 5) and also by the following steps:

Step 1. Calculating all the sizes needed using Equations (A1)–(A11); the results are shown in the
2nd to 4th columns in Table 3.

Step 2. Determining the physical parameters of blocks and joints, which were described above,
and the block weight Wn which can be obtained from the 5th column in Table 3.

Step 3. Calculating Pn−1,s and Pn−1,t from the top block downwards on the basis of Equations (4)
and (11) with k1 = 0 and k2 = 0 for the static state. The results are shown in the 6th and 7th columns in
Table 3.
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Step 4. Determining Pn−1 of all the blocks according to Pn−1 = max(Pn−1,s, Pn−1,t, 0), which are
shown in the 8th column in Table 3.

Step 5. Determining the deformation status of all the blocks which is shown in the 9th column in
Table 3.

Step 6. Estimating the stability of the slope according to the deformation status of the lowest
block. It can be seen that the slope is stable under the static conditions.

Step 7. Determining the FOS of the slope. The results showed that the FOS of the slope is 4.6
under static conditions (Figure 8).

Table 3. The sheet from limit equilibrium analysis of slopes under static state.

1 2 3 4 5 6 7 8 9
n yn (cm) Mn (cm) Ln (cm) Wn (N) Pn,t (N) Pn,s (N) Pn (N) MODE

26 1.5 0.2 1.5 15.1 0.0 0.0 0.0

stable

25 2.7 1.4 2.7 27.1 −390.2 −225.3 0.0
24 3.9 2.6 3.9 39.2 −233.0 −226.6 0.0
23 5.1 3.8 5.1 51.2 −165.9 −227.8 0.0
22 6.3 5.0 6.3 63.3 −127.9 −229.1 0.0
21 7.5 6.2 7.5 75.3 −102.7 −230.4 0.0
20 8.7 7.4 8.7 87.3 −84.5 −231.6 0.0
19 9.9 8.6 9.9 99.4 −70.3 −232.9 0.0
18 11.1 9.8 11.1 111.4 −58.8 −234.2 0.0
17 12.3 11.0 12.3 123.5 −49.1 −235.4 0.0
16 13.5 12.2 12.8 135.5 −40.7 −236.7 0.0
15 12.7 12.7 12.0 127.0 −35.1 −238.0 0.0
14 11.8 11.8 11.1 118.5 −40.7 −237.1 0.0
13 11.0 11.0 10.3 109.9 −46.8 −236.2 0.0
12 10.1 10.1 9.4 101.4 −53.6 −235.3 0.0
11 9.3 9.3 8.6 92.9 −61.3 −234.4 0.0
10 8.4 8.4 7.7 84.3 −70.0 −233.5 0.0
9 7.6 7.6 6.9 75.8 −80.1 −232.6 0.0
8 6.7 6.7 6.0 67.3 −92.1 −231.7 0.0
7 5.9 5.9 5.2 58.7 −106.9 −230.8 0.0
6 5.0 5.0 4.3 50.2 −125.6 −229.9 0.0
5 4.2 4.2 3.5 41.7 −150.7 −229.0 0.0
4 3.3 3.3 2.6 33.1 −186.4 −228.1 0.0
3 2.5 2.5 1.8 24.6 −242.4 −227.2 0.0
2 1.6 1.6 0.9 16.1 −345.3 −226.3 0.0
1 0.8 0.8 0.1 7.5 −603.4 −225.4 0.0
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Similarly, the limit equilibrium analysis for the slope under various dynamic loads is also carried
out according to the steps described above. It should be noted that the acceleration amplification
coefficient is also considered, i.e., 1.5 for the horizontal direction and 1 for the vertical direction.
Furthermore, k1 and k2 are converted from kx and ky according to slope angle. Some critical sheets
with horizontal accelerations of 0.3 g, 0.4 g, 0.7 g and 0.8 g are shown in Table 4. The corresponding
FOS and the number of shearing and tensile blocks under varied accelerations are shown in Figure 8.
The progressive deformation process derived by the presented method is detailed as follows.

(1) The toppling deformation initiates at the dynamic loads of kx = 0.3 g and ky = 0, i.e., there is one
toppling block near the slope crest (Table 4a and Figure 8).

(2) As the accelerations (both horizontal and vertical direction) increased to 0.3 g, two toppling
blocks were estimated (Table 4b).

(3) As the acceleration (horizontal direction) increased to 0.4 g, four toppling blocks was estimated
around the slope crest (Table 4c and Figure 8).

(4) As the inputting acceleration (horizontal direction) increased to 0.7 g, shear sliding deformation
initiated, i.e., 1 sliding block, and 9 toppling blocks were estimated in the slope (Table 4d and
Figure 8).

(5) As the inputting acceleration (horizontal direction) increased to 0.8g, the slope is nearly sheared
through at kx = 0.8 g and ky = 0, which has 10 sliding blocks and 2 toppling blocks (Table 4e and
Figure 8).

It seems that the proposed analytical solution can encompass nearly all of the deformation
processes of the toppling slope model with five inputting accelerations during the shake table test
depicted above. Besides, the FOS can be also reached as shown in Figure 8. It is indicated that the FOS
decreases with the increase of dynamic loads, and reaches nearly 1 at kx = 0.8 g and ky = 0 (Figure 8),
which indicates that the slope is close to the limit equilibrium state at this stage.

Table 4. The sheets from limit equilibrium analysis of slopes under seismic loads.

(a) kx = 0.3 g, ky = 0

n yn (cm) Mn (cm) Ln (cm) Wn (N) Pn,t(N) Pn,s (N) Pn (N) MODE

26 1.5 0.2 1.5 15.1 0.0 0.0 0.0

Stable

25 2.7 1.4 2.7 27.1 −362.9 −212.3 0.0
24 3.9 2.6 3.9 39.2 −210.8 −203.2 0.0
23 5.1 3.8 5.1 51.2 −144.7 −194.1 0.0
22 6.3 5.0 6.3 63.3 −106.2 −185.0 0.0
21 7.5 6.2 7.5 75.3 −79.9 −175.8 0.0
20 8.7 7.4 8.7 87.3 −60.2 −166.7 0.0
19 9.9 8.6 9.9 99.4 −44.3 −157.6 0.0
18 11.1 9.8 11.1 111.4 −30.9 −148.5 0.0
17 12.3 11.0 12.3 123.5 −19.3 −139.4 0.0
16 13.5 12.2 12.8 135.5 −8.8 −130.3 0.0
15 12.7 12.7 12.0 127.0 0.8 −121.1 0.8 Toppling
14 11.8 11.8 11.1 118.5 −5.6 −126.8 0.0

Stable

13 11.0 11.0 10.3 109.9 −13.9 −134.1 0.0
12 10.1 10.1 9.4 101.4 −22.0 −140.5 0.0
11 9.3 9.3 8.6 92.9 −31.0 −147.0 0.0
10 8.4 8.4 7.7 84.3 −41.0 −153.4 0.0
9 7.6 7.6 6.9 75.8 −52.3 −159.9 0.0
8 6.7 6.7 6.0 67.3 −65.4 −166.3 0.0
7 5.9 5.9 5.2 58.7 −81.0 −172.8 0.0
6 5.0 5.0 4.3 50.2 −100.4 −179.3 0.0
5 4.2 4.2 3.5 41.7 −125.8 −185.7 0.0
4 3.3 3.3 2.6 33.1 −161.2 −192.2 0.0
3 2.5 2.5 1.8 24.6 −215.8 −198.6 0.0
2 1.6 1.6 0.9 16.1 −314.9 −205.1 0.0
1 0.8 0.8 0.1 7.5 −562.4 −211.5 0.0
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Table 4. Cont.

(b) kx = 0.3 g, ky = 0.3 g

n yn (cm) Mn (cm) Ln (cm) Wn (N) Pn,t(N) Pn,s (N) Pn (N) MODE

26 1.5 0.2 1.5 15.1 0.0 0.0 0.0

Stable

25 2.7 1.4 2.7 27.1 −367.3 −212.8 0.0
24 3.9 2.6 3.9 39.2 −214.6 −204.1 0.0
23 5.1 3.8 5.1 51.2 −147.7 −195.3 0.0
22 6.3 5.0 6.3 63.3 −108.3 −186.6 0.0
21 7.5 6.2 7.5 75.3 −81.2 −177.9 0.0
20 8.7 7.4 8.7 87.3 −60.6 −169.1 0.0
19 9.9 8.6 9.9 99.4 −43.8 −160.4 0.0
18 11.1 9.8 11.1 111.4 −29.6 −151.7 0.0
17 12.3 11.0 12.3 123.5 −17.0 −142.9 0.0
16 13.5 12.2 12.8 135.5 −5.7 −134.2 0.0
15 12.7 12.7 12.0 127.0 5.0 −125.5 5.0 Toppling
14 11.8 11.8 11.1 118.5 1.5 −126.6 1.5
13 11.0 11.0 10.3 109.9 −9.7 −136.3 0.0

Stable

12 10.1 10.1 9.4 101.4 −19.8 −144.0 0.0
11 9.3 9.3 8.6 92.9 −29.4 −150.2 0.0
10 8.4 8.4 7.7 84.3 −40.0 −156.4 0.0
9 7.6 7.6 6.9 75.8 −52.0 −162.6 0.0
8 6.7 6.7 6.0 67.3 −65.8 −168.8 0.0
7 5.9 5.9 5.2 58.7 −82.1 −174.9 0.0
6 5.0 5.0 4.3 50.2 −102.3 −181.1 0.0
5 4.2 4.2 3.5 41.7 −128.3 −187.3 0.0
4 3.3 3.3 2.6 33.1 −164.5 −193.5 0.0
3 2.5 2.5 1.8 24.6 −220.0 −199.7 0.0
2 1.6 1.6 0.9 16.1 −320.3 −205.9 0.0
1 0.8 0.8 0.1 7.5 −569.5 −212.1 0.0

(c) kx = 0.4 g, ky = 0

n yn (cm) Mn (cm) Ln (cm) Wn (N) Pn,t(N) Pn,s (N) Pn (N) MODE

26 1.5 0.2 1.5 15.1 0.0 0.0 0.0

Stable

25 2.7 1.4 2.7 27.1 −360.5 −208.0 0.0
24 3.9 2.6 3.9 39.2 −207.5 −195.4 0.0
23 5.1 3.8 5.1 51.2 −140.6 −182.8 0.0
22 6.3 5.0 6.3 63.3 −101.3 −170.2 0.0
21 7.5 6.2 7.5 75.3 −74.2 −157.7 0.0
20 8.7 7.4 8.7 87.3 −53.7 −145.1 0.0
19 9.9 8.6 9.9 99.4 −37.0 −132.5 0.0
18 11.1 9.8 11.1 111.4 −22.9 −119.9 0.0
17 12.3 11.0 12.3 123.5 −10.4 −107.4 0.0
16 13.5 12.2 12.8 135.5 0.8 −94.8 0.8

Toppling15 12.7 12.7 12.0 127.0 12.4 −81.4 12.4
14 11.8 11.8 11.1 118.5 14.5 −78.7 14.5
13 11.0 11.0 10.3 109.9 8.0 −85.5 8.0
12 10.1 10.1 9.4 101.4 −6.3 −101.0 0.0

Stable

11 9.3 9.3 8.6 92.9 −22.2 −117.8 0.0
10 8.4 8.4 7.7 84.3 −32.7 −126.8 0.0
9 7.6 7.6 6.9 75.8 −44.6 −135.7 0.0
8 6.7 6.7 6.0 67.3 −58.2 −144.6 0.0
7 5.9 5.9 5.2 58.7 −74.4 −153.5 0.0
6 5.0 5.0 4.3 50.2 −94.3 −162.4 0.0
5 4.2 4.2 3.5 41.7 −120.2 −171.3 0.0
4 3.3 3.3 2.6 33.1 −156.1 −180.2 0.0
3 2.5 2.5 1.8 24.6 −211.2 −189.1 0.0
2 1.6 1.6 0.9 16.1 −310.7 −198.0 0.0
1 0.8 0.8 0.1 7.5 −558.3 −206.9 0.0
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Table 4. Cont.

(d) kx = 0.7 g, ky = 0

n yn (cm) Mn (cm) Ln (cm) Wn (N) Pn,t(N) Pn,s (N) Pn (N) MODE

26 1.5 0.2 1.5 15.1 0.0 0.0 0.0

Stable

25 2.7 1.4 2.7 27.1 −353.3 −195.0 0.0
24 3.9 2.6 3.9 39.2 −197.7 −172.1 0.0
23 5.1 3.8 5.1 51.2 −128.4 −149.1 0.0
22 6.3 5.0 6.3 63.3 −86.6 −126.2 0.0
21 7.5 6.2 7.5 75.3 −57.2 −103.3 0.0
20 8.7 7.4 8.7 87.3 −34.3 −80.3 0.0
19 9.9 8.6 9.9 99.4 −15.3 −57.4 0.0
18 11.1 9.8 11.1 111.4 1.2 −34.4 1.2

Toppling17 12.3 11.0 12.3 123.5 16.8 −10.2 16.8
16 13.5 12.2 12.8 135.5 41.0 28.3 41.0
15 12.7 12.7 12.0 127.0 75.1 75.4 75.4 Sliding
14 11.8 11.8 11.1 118.5 98.4 93.6 98.4

Toppling

13 11.0 11.0 10.3 109.9 106.7 100.3 106.7
12 10.1 10.1 9.4 101.4 101.6 92.3 101.6
11 9.3 9.3 8.6 92.9 84.6 71.0 84.6
10 8.4 8.4 7.7 84.3 57.3 37.7 57.3
9 7.6 7.6 6.9 75.8 21.3 −5.8 21.3
8 6.7 6.7 6.0 67.3 −21.4 −58.0 0.0

Stable

7 5.9 5.9 5.2 58.7 −54.5 −95.6 0.0
6 5.0 5.0 4.3 50.2 −76.1 −111.9 0.0
5 4.2 4.2 3.5 41.7 −103.5 −128.1 0.0
4 3.3 3.3 2.6 33.1 −140.9 −144.4 0.0
3 2.5 2.5 1.8 24.6 −197.4 −160.6 0.0
2 1.6 1.6 0.9 16.1 −298.0 −176.9 0.0
1 0.8 0.8 0.1 7.5 −546.0 −193.1 0.0

(e) kx = 0.8 g, ky = 0

n yn (cm) Mn (cm) Ln (cm) Wn (N) Pn,t(N) Pn,s (N) Pn (N) MODE

26 1.5 0.2 1.5 15.1 0.0 0.0 0.0

Stable

25 2.7 1.4 2.7 27.1 −350.8 −190.7 0.0
24 3.9 2.6 3.9 39.2 −194.4 −164.3 0.0
23 5.1 3.8 5.1 51.2 −124.3 −137.8 0.0
22 6.3 5.0 6.3 63.3 −81.7 −111.4 0.0
21 7.5 6.2 7.5 75.3 −51.5 −85.0 0.0
20 8.7 7.4 8.7 87.3 −27.8 −58.6 0.0
19 9.9 8.6 9.9 99.4 −8.0 −32.1 0.0
18 11.1 9.8 11.1 111.4 9.3 −5.7 9.3 Toppling
17 12.3 11.0 12.3 123.5 30.9 30.1 30.9
16 13.5 12.2 12.8 135.5 60.3 78.1 78.1

Sliding

15 12.7 12.7 12.0 127.0 113.7 151.7 151.7
14 11.8 11.8 11.1 118.5 172.6 206.5 206.5
13 11.0 11.0 10.3 109.9 205.6 242.6 242.6
12 10.1 10.1 9.4 101.4 221.0 260.0 260.0
11 9.3 9.3 8.6 92.9 219.0 258.7 258.7
10 8.4 8.4 7.7 84.3 200.1 238.7 238.7
9 7.6 7.6 6.9 75.8 164.8 200.0 200.0
8 6.7 6.7 6.0 67.3 113.9 142.5 142.5
7 5.9 5.9 5.2 58.7 48.8 66.4 66.4
6 5.0 5.0 4.3 50.2 −28.3 −28.5 0.0

Stable

5 4.2 4.2 3.5 41.7 −97.9 −113.6 0.0
4 3.3 3.3 2.6 33.1 −135.8 −132.3 0.0
3 2.5 2.5 1.8 24.6 −192.7 −151.0 0.0
2 1.6 1.6 0.9 16.1 −293.8 −169.8 0.0
1 0.8 0.8 0.1 7.5 −541.9 −188.5 0.0

4. Discussion

A limit equilibrium analytical solution for the block toppling failure is presented and applied to an
anti- dip rock slope model under shake table test. The theoretical results can capture the experimental
observation well including the block deformation features and overall slope stability condition. In
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the presented analytical analysis, some conditions are simplified, for example, the width of blocks is
identical, the strength parameters are also identical for every block, and the failure base is a linear
form. It is known that the real slopes in the field are sometimes much more complicated than the
idealized slope mode. If so, the engineering geological generalization approach should be adopted to
abstract the control factors and reach the simplified but representative engineering geological model.
For the very complicated slopes such as those have unequal-sized layers and different variable strength
parameters, numerical tools are more suitable [30].

The cohesion of layers or block base joints is not incorporated in the presented solution, because
the cohesions of these discontinuities are effectively lost in most toppling slopes. If not, the presented
solution should be modified a little to involve the cohesion of discontinuities, or an equivalent
substitution can be used as we did in the case study. Besides, the discontinuity connectivity between
adjacent blocks is considered as 1 to represent the bedding plane.

The acceleration amplification is another problem that should be discussed further. In the case
study, the horizontal acceleration amplification coefficient increased with the slope height, over 1.5
near the crest. The vertical acceleration amplification coefficient does not increase as obviously as
the horizontal one, i.e., around 1.0 except at the top of the slope where it is 1.35. The coefficient is
assigned as 1.5 and 1.0 for the horizontal and vertical amplification respectively in the limit equilibrium
analysis for simplicity. In the real slope, the coefficient may be much larger than 1.5 above the crest,
so the tensile failure in these positions could always be observed at earliest stage during the failure
process [31].

The presented solution is a form of deterministic analysis. If the inputting variables are not
deterministic but probabilistic following certain distribution, the probability of failure can be calculated.
This process is beyond the capacity of a sheet program but needs further study.

5. Conclusions

In this study, a limit equilibrium solution for block toppling failure is proposed. The seismic loads
and connectivity of the block base joint are considered in the analytical solution. It is then applied into
an anti-dip rock slope model under the shake table test. It confirms that the theoretical results can
address most of the deformation features with the increasing incident wave during the shake table
test, i.e., the modes, position of deformation blocks, and also the overall FOS. It can be concluded that
the presented analytical solution is a universal method to estimate the block toppling deformation
features and stability of anti-layered rock slopes with a non-persistent or persistent block base joint
under static or seismic states.
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Abbreviations

The following abbreviations are used in this manuscript:

H Slope height
n The number of the blocks (the block at the slope toe is numbered as 1 and n = 1, 2 . . . )
yn The height of nth block
∆x The width of block
ψp The dip of block base
ψd The dip of the orthogonal planes forming the faces of the blocks
ψb The overall dip of base plane
ψ f The slope angle under the crest
ψs The slope angle above the crest
a1 The height difference at the top of adjacent blocks under the slope crest
a2 The height difference at the top of adjacent blocks above the slope crest
b The height difference at the base of adjacent blocks
Wn The weight of nth block
Pn The normal force of (n + 1)th block to nth block
Qn The shear force of (n + 1)th block to nth block
Pn−1 The normal force of (n − 1)th block to nth block
Qn−1 The shear force of (n − 1)th block to nth block
σtM The maximum tensile stress induced by moment Mb
σtR The compressive stress induced byRn

Rn The normal force of base to nth block
Sn The shear force of base to nth block
Mn The length from the point Pn to the base for the toppling block
Ln The length from the point Pn−1 to the base for the toppling block
Mb The moment acting at the base of the toppling blocks
Jc The joint connectivity rate of the block base
ξ 1 − Jc

k1 Seismic acceleration component parallel to the block base
k2 Seismic acceleration component orthogonal to the block base
kx Seismic acceleration component in horizontal direction
ky Seismic acceleration component in vertical direction
g Gravitational acceleration
ϕjs Friction angle of block side
ϕjb Friction angle of block base
ϕb Internal friction angle of block
cb Cohesion of block
σbt Tensile strength of block
ρ Density of block

Appendix A

The approach to reach the geometric parameters (Goodman and Bray (1976)).
The constants a1, a2 and b in the slope geometry shown in Figure 2 can be given by:

a1 = ∆x tan
(

ψ f − ψp

)
(A1)

a2 = ∆x tan
(
ψp − ψs

)
(A2)

b = ∆x tan
(
ψb − ψp

)
(A3)

The slope model is divided into two parts, i.e., zone I that is the cut slope below the crest, zone II that has the
natural topography above the crest. The blocks are numbered from the toe of the slope upwards, with the lowest
block being 1. In this model, the height yn of the nth block in zone I is:

yn = n(a1 − b) (A4)
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The height yn of the nth block in zone II is:

yn = yn−1 − a2 − b (A5)

Mn and Ln are the distance from point of Pn and Pn−1 to the block base respectively and can be reached by
the following equations:

For the blocks in zone I,
Mn = yn (A6)

Ln = yn − a1 (A7)

For the blocks in zone II,
Mn = yn − a2 (A8)

Ln = yn (A9)

For the block in the crest,
Mn = yn − a2 (A10)

Ln = yn − a1 (A11)
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