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Abstract: Matrix factorization based methods have widely been used in data representation. Among them,
Non-negative Matrix Factorization (NMF) is a promising technique owing to its psychological and
physiological interpretation of spontaneously occurring data. On one hand, although traditional
Laplacian regularization can enhance the performance of NMF, it still suffers from the problem
of its weak extrapolating ability. On the other hand, standard NMF disregards the discriminative
information hidden in the data and cannot guarantee the sparsity of the factor matrices. In this paper,
a novel algorithm called `2,1 norm and Hessian Regularized Non-negative Matrix Factorization
with Discriminability (`2,1HNMFD), is developed to overcome the aforementioned problems.
In `2,1HNMFD, Hessian regularization is introduced in the framework of NMF to capture the intrinsic
manifold structure of the data. `2,1 norm constraints and approximation orthogonal constraints are
added to assure the group sparsity of encoding matrix and characterize the discriminative information
of the data simultaneously. To solve the objective function, an efficient optimization scheme is
developed to settle it. Our experimental results on five benchmark data sets have demonstrated that
`2,1HNMFD can learn better data representation and provide better clustering results.
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1. Introduction

In many real-world applications, the input data is usually high-dimensional. On one hand, this is
a serious challenge for storage and computation. On the other hand, it makes a lot of machine learning
algorithms unworkable due to the curse of dimensionality [1]. Means of obtaining a concise and
informative data representation for high-dimensional data has become a highly significant focus.
Matrix factorization is one kind of popular and effective model of data representation, and finds
two or more low-rank matrix factors and their product can well approximate the data matrix.
Various matrix factorization methods have been proposed, adopting different constraints on matrix
factors. The classical matrix factorization models include Principal Component Analysis (PCA) [2],
Singular Value Decomposition (SVD), QR decomposition, vector quantization.

Among the various matrix factorization approaches, Non-negative Matrix Factorization (NMF) [3]
is a promising one. In NMF, data matrix X is decomposed into a non-negative basic matrix U which
reveals the latent semantic structure, and a non-negative encoding matrix V, which denotes a new
representation with respect to the basis matrix. Because of the non-negative constraints, NMF only
allows pure additive combinations, and leads to a parts-based representation. Due to its psychological
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and physiological interpretation, NMF and its variants have been widely used in computer vision [3],
pattern recognition [4], image processing [5], document analysis [6].

Standard NMF performs factorization in Euclidean space. It is unable to discover geometrical
structures in data space, which is critical in real-world applications. Therefore, lots of recent work has
focused on preserving the intrinsic geometry of the data space by adding different constraints to the
objective function of NMF. Cai et al. [7] proposed graph regularized NMF (GNMF) by constructing
a nearest neighbor graph while preserving the local geometrical information of the data space.
Lu et al. [8] proposed Manifold Regularized Sparse NMF for hyperspectral unmixing, in which
manifold regularization was introduced into sparsity-constrained NMF for unmixing. Gu et al. [9]
proposed Neighborhood-Preserving Non-negative Matrix Factorization, which imposed an additional
constraint on NMF that each item be able to be represented as a linear combination of its neighbors.
All the mentioned graph regularized NMF methods construct a graph to encode the geometrical
information and use graph Laplacian as a smooth operator. Despite the successful application of graph
Laplacian in semi-supervised and unsupervised learning, it still suffers from the problems that the
solution is biased towards a constant, as well as its lack of extrapolating power [10].

Sparsity regularization methods that focus on selecting the input variables that best describe the
output have been widely investigated. Hoyer [11] proposed a sparse constraint NMF and added the `1

norm constraint on the basis and encoding matrices, which were able to discover sparse representations
better than those given by standard NMF. Cai et al. [12] proposed Unified Sparse Subspace Learning
(USSL) for learning sparse projections by using a `1 norm regularizer. The limitation of the `1 norm
penalty is that it is unable to guarantee successful models in cases of categorical predictors, for the
reason that each dummy variable is selected independently [13]. So `1 norm is not feasible for
conducting feature selection. To settle this issue, Nie et al. [14] proposed a robust feature selection
approach by imposing `2,1 norm on loss functions. Yang et al. [15] proposed `2,1 norm regularized
discriminative feature selection for unsupervised learning. Gu et al. [16] combined feature selection
and subspace learning simultaneously in a joint framework, which is based on using `2,1 norm on the
projection matrix and achieves the goal of feature selection. The `2,1 norm penalty term encourages
row sparsity as well as the correlations of all the features. Recently, some researchers proposed `1/2
norm [17] regularized NMF [18,19], and low-rank regularized NMF [20,21] with improved performance
for special purposes. The `1/2 norm can usually induce sparser solutions than its `1 counterpart, but it
is usually unstable. The limitation of the low rank constraint is that it is not suited to feature selection
in general.

What’s more, discriminative information is very important for learning a better representation.
For example, by exploiting the partial label information as hard constraints of NMF, Liu [22] developed
a semi-supervised Constrained NMF (CNMF), which obtained better discriminating power. Li et al. [23]
proposed robust structured NMF a semi-supervised NMF learning algorithm, which learns a robust
discriminative data representation by pursuing the block-diagonal structure and the `2,p norm loss
function. But under unsupervised scenario, we cannot have the label information. In fact, we could add
approximate orthogonal constraints to obtain some discriminative information under unsupervised
conditions. Unfortunately, standard NMF ignores this important information.

To address these flaws, a novel NMF algorithm, called `2,1 norm and Hessian Regularized
Non-negative Matrix Factorization with Discriminability (`2,1HNMFD), is developed in this paper,
which is designed to include local geometrical structure preservation, row sparsity and to exploit
discriminative information at the same time. Firstly, Hessian regularization is introduced in the
framework of NMF to preserve the intrinsic manifold of the data. Then, `2,1 norm constraints are
added on the coefficient matrix to ensure that the representation vectors are row sparse. Furthermore,
approximate orthogonal constraints are added to capture some discriminative informational in the
data. An optimization scheme is developed to solve the objective function.
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The rest of the paper is organized as follows: In Section 2, we give a brief review of related works.
In Section 3, we introduce our `2,1HNMFD algorithm and the optimization scheme. Experimental
results are presented in Section 4. Finally, we draw a conclusion and point out future work in Section 5.

2. Related Works

This section presents a brief review of related works. At first, we describe the notations used
throughout the paper.

2.1. Common Notations

In this paper, we use lowercase boldface letters and uppercase boldface letters denote vectors and
matrices, respectively. For matrix M, we denote its (i, j)-th element by Mij. The i-th element of a vector
b is denoted by bi. Given a set of N items, we use matrix X ∈ RM×N

+ to represent the non-negative
original data matrix where the i-th column vector is according to the feature vector for the i-th item.
Throughout this paper, ||M||F denotes the Frobenius norm of matrix M.

2.2. NMF

NMF is an effective decomposition for multivariate non-negative data. Given a non-negative
matrix X = {x1, . . . , xN} ∈ RM×N , each column of X is a data vector. The goal of NMF is to find two
low-rank matrices U and V that minimize the following objective function [3]:

JNMF = ||X−UV||2F,
s.t.Uik ≥ 0, Vkj ≥ 0, ∀i, j, k.

(1)

It is easy to see that when both U and V are taken as variables simultaneously, the objective
function JNMF is not convex. But when V is fixed, JNMF is convex in U and vice versa. So Lee and
Seung [24] developed an iterative multiplicative updating rule as follows:

Ut+1
ik = Ut

ik
(X(Vt)

T
)ik

(UtVt(Vt)T)ik

Vt+1
kj = Vt

kj
((Ut+1)

TX)kj

((Ut+1)
TUt+1Vt)kj

.
(2)

By constructing auxiliary functions, JNMF is proved to be non-increasing under the above update
rules [24].

2.3. GNMF

In [7], Cai et al. developed a graph regularized non-negative matrix factorization (GNMF) method
to obtain a compact data representation that discovers hidden concept, and respects the intrinsic
geometric structure simultaneously. GNMF minimizes the objective function as follows:

JGNMF = ||X−UV||2F + λTr(VLVT)

s.t. Uik ≥ 0, Vkj ≥ 0, ∀i, j, k.
, (3)

where L = D−W is called graph Laplacian, W denotes the weight matrix constructed by finding the k
nearest neighbors for each data point, and D is a diagonal matrix whose entries are column sums of W,
i.e., Dii = ∑j Wij.
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The objective function JGNMF is also not convex when both U and V are taken as variables
simultaneously. Therefore it is unlikely to find the global minima. The Using the following update
rules [7], local minima of the objective function JGNMF can be obtained:

Ut+1
ik = Ut

ik
(X(Vt)

T
)ik

(UtVt(Vt)T)ik

Vt+1
kj = Vt

kj
((Ut+1)

TX+λVtW)kj

((Ut+1)
TUt+1Vt+λVtD)kj

, (4)

Cai et al. [7] has proved that the objective function JGNMF is non-increasing under the above
updating rules.

3. `2,1 Norm and Hessian Regularized Non-Negative Matrix Factorization with Discriminability

In this section, a novel `2,1 norm and Hessian Regularized Non-negative Matrix Factorization with
Discriminability (`2,1HNMFD) model is developed, which performs Hessian regularized Non-negative
Matrix Factorization (HNMF) and preserves discriminative information, as well as maintaining row
sparsity for encoding matrices simultaneously. Then, an alternating optimization scheme is developed
to solve its objective function.

3.1. Hessian Regularized Non-Negative Matrix Factorization

Hessian energy is motivated by Eells-energy for mapping between manifolds [25]. Given a smooth
manifold M ⊂ Rn and a map function f : M→ Rr , the Eells-energy of f can be written as [10]:

SEells( f ) =
∫

M
|| 5a5b f ||2Tx M⊗Tx MdV(x) (5)

where 5a 5b f is the second covariant derivation of f , Tx M is the tangent space at point x ∈ M
and dV(x) is the natural volume element. Using normal coordinate,

∫
M || 5a5b f ||2Tx M⊗Tx M can be

written as: ∫
M
|| 5a5b f ||2Tx M⊗Tx M =

d

∑
r,s=1

(
∂2 f

∂Cr∂Cs
)2 (6)

where Cr and Cs are normal coordinates. So given point xi, the norm of the second covariant derivative
is just the Frobenius norm of the Hessian of f in standard coordinate. Thus the resulting functional is
called Hessian regularizer SHess( f ):

SHess( f ) =
n

∑
i=1

d

∑
r,s=1

‖ ∂2 f
∂Cr∂Cs

|xi‖
2

(7)

Let Nk(Xi) represent the set of k nearest neighbors of Xi, the Hessian of f (Xi) on Nk(Xi) can be
approximated as follows:

∂2 f
∂Cr∂Cs

|Xi ≈
k

∑
j=1

H(i)
rsj f (Xj) (8)

The operator H can be computed by fitting a second-order polynomial p(X) in normal coordinates
to
{

f (Xj)
}k

j=1. Let Vki = fk(Xi) and Xk = (Xk1, . . . , Xkp), the estimate of the Frobenius norm of the
Hessian of f at xi is thus given by

|| 5a5b f ||2 ≈
m

∑
r,s=1

(
k

∑
α=1

H(i)
rsα f (α))2 =

k

∑
α,β=1

f (α) f (β)B(i)
αβ (9)
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where B(i)
αβ = ∑m

r,s=1 H(i)
rsα H(i)

rsβ and the total estimated Hessian energy ŜHess( f ) is the sum over all data
points as follows:

ŜHess( f ) =
n
∑

i=1

m
∑

r,s=1
( ∂2 f

∂Cr∂Cs
|xi)

2

= ∑n
i=1 ∑α∈Nk(Xi) ∑β∈Nk(Xj)

fα fβB(i)
αβ = < f , B f >

(10)

where B is denoted as the Hessian regularization matrix, and is the accumulated matrix summing up
all the matrices B(i).

Applying Hessian energy as the regularization term in NMF to estimate the local manifold
structure, the Hessian regularized NMF (HNMF) can be formulated as:

min
U,V

1
2 ||X−UV||2F + λtr(VBVT)

Uik ≥ 0, Vkj ≥ 0, ∀i, j, k.
, (11)

where λ is the regularization parameter.

3.2. Sparseness Constraints

To distinguish the importance of different features, we try to encourage the significant features to
be non-zero values, and the insignificant features to be zero, after the iterative update. Since each row
of encoding matrix V corresponds to a feature in the original space, we add `2,1 norm regularization
to the encoding matrix V, which can enforce some rows in V to tend to zero. For new representation
matrix V, a row sparseness regularizer is introduced into the objective function to shrink some row
vectors in V to be zero. In this way, we are able to preserve the important features and remove the
irrelevant features. The `2,1 norm of matrix V is defined as:

||V||2,1 =
K

∑
j=1
|vj.|, (12)

where vj. represents the j-th row of V.

3.3. Discriminative Constraints

To characterize some discriminative information in the learned representation matrix V, we follow
the works done in [26,27], in which a scaled indicator matrices were developed. Given an indicated
matrix Y = {0, 1}N×K, where Yij = 1 if the i-th data point belongs to the j-th category. The scaled

indicated matrix is defined as F = Y(YTY)−
1
2 , where each column of F is:

F.j = [0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
nj

, 0, . . . , 0]T/
√

nj

where nj is the number of samples in the j-th group. We encourage the new representation V to capture
the discriminative information in F. Intuitively, we only need V to approximate FT , i.e., ||V− FT ||2F ≤ ε,
where ε is any small constant. Unfortunately, in unsupervised scenarios, we cannot obtain any label
information in advance. However, we find that the scaled indicator matrix is strictly orthogonal

FTF = (YTY)
− 1

2 YTY(YTY)
− 1

2 = Ik, (13)

where Ik is a k× k identity matrix. Since F is orthogonal, V should be orthogonal too. However, this constraint
is too strict. So we relax the orthogonal constraint and let V be approximately orthogonal, i.e.,

||VTV− Ik||2F ≤ ε (14)
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3.4. Objective Function

By integrating (12) and (14) into Hessian regularized NMF, the objective function of `2,1HNMFD
is defined as:

min
U,V

1
2 ||X−UV||2F + λtr(VBVT) + µ||VTV− Ik||2F + γ||V||2,1,

s.t. Uik ≥ 0, Vkj ≥ 0, ∀i, j, k.
(15)

where λ, µ and γ are regularization parameters.

3.5. Optimization

In this section, we will introduce an iterative algorithm which can give the solution to Equation (15).
As far as we can see, the objective function of `2,1HNMFD is not convex in both U and V, so we cannot
result in a closed-form solution. In the following, we will present an alternative scheme which can
obtain local minima. Firstly, the optimization problem of Equation (15) can be rewritten as follows:

O = 1
2 Tr((XXT − 2XVTUT +UVVTUT)2

F) + λtr(VBVT)

+µ||VTV− Ik||2F + γ||V||2,1
, (16)

let ψik and Φkj be the Lagrange multiplier for constraint Uik ≥ 0 and Vkj ≥ 0, respectively, then the
Lagrange function L can be written as follows:

L = 1
2 Tr(XXT − 2XVTUT +UVVTUT) + λtr(VBVT)

+µTr(VTVVTV− 2VTV+ Ik) + γ||V||2,1 + Tr(ψUT) + Tr(ΦVT).
, (17)

3.5.1. Updating U

The partial derivation of L with respect to U is:

∂L
∂U

= UVVT −XVT + ψ (18)

Using the Karush–Kuhn–Tucker (KKT) conditions, ψikUik = 0, we get

(UVVT −XVT)ikUik = 0. (19)

The above equation leads to the following updating formula:

Uik = Uik
(XVT)ik
(UVVT)ik

(20)

3.5.2. Updating V

The partial derivation of L with respect to V is:

∂L
∂V

= UTUV−UTX+ 2λVB+ 4µVVTV− 4µV+ γRV+ Φ. (21)

where R is a diagonal matrix with the i-th diagonal element as Rii =
1

2||vi.||2
.

Using the KKT condition ΦkjVkj = 0, we get

(UTUV−UTX+ 2λVB+ − 2λVB− + 4µVVTV− 4µV+ γRV)kj = 0. (22)
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where B = B+ −B−, B+ = |B|+B
2 , B− = |B|−B

2 . Equation (22) leads to the following updating formula:

Vkj = Vkj
(UTX+ 2λVB− + 4µV)kj

(UTUV+ 2λVB+ + 4µVVTV+ γRV)kj
. (23)

The algorithm is shown in Algorithm 1.

Algorithm 1: Optimization of `2,1HNMFD

Input: X, λ, µ, γ

Output: U, V
1 Randomly initialize U ≥ 0, V ≥ 0;
2 Repeat
3 Fixing V, updating U by Equation (20);
4 Fixing U, updating V by Equation (23);
5 Until Equation (15) converged or max no. iterations reached.

3.6. Computational Complexity Analysis

In this section, we discuss the extra computational cost of our proposed algorithm. `2,1HNMFD
needs (N2M) to construct the neatest neighbor graph. Suppose the multiplicative updates stops after
t iterations, the complexity for updating `2,1HNMFD is (tNMK). Thus the overall complexity of
`2,1HNMFD is (tNMK + N2M), which is similar to that of GNMF.

3.7. Proof of Convergence

Theorem 1. The function value in Equation (15) is non-increasing under the rules in Equations (20) and (23).

The updating rule for U is the same as in the classical NMF. Thus O in Equation (15) is non-increasing
under Equation (20). In the next, we will prove that O is non-creasing under Equation (23). The proof
uses the auxiliary function [18] defined as follows.

Definition 1. G(v, v′) is an auxiliary function for F(v) if

G(v, v′) ≥ F(v), G(v, v) = F(v)

is satisfied.

Lemma 1. If G is an auxiliary function for F, then F is non-increasing under the updating rule

v(t+1) = argmin
v

G(v, v(t)) (24)

Proof for Lemma 1.

F(v(t+1)) ≤ G(v(t+1), v(t)) ≤ G(v(t), v(t)) = F(v(t))

In this next section, we will show that the updating rule for V in Equation (23) is exactly the
rule in Equation (24) with a proper auxiliary function. We use Fab to denote the part of O that is only
relevant to vab.
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Lemma 2. Function

G(v, v(t)ab ) = Fab(v
(t)
ab ) + F′ab(v

(t)
ab )(v− v(t)ab )

+
(UTUV+2λVB++4µVVTV+γRV)ab

v(t)ab

(v− v(t)ab )
2 (25)

is an auxiliary function for Fab.

Proof for Lemma 2. Since G(v, v) = Fab(v
(t)
ab ) is evident, we only need show that G(v, v(t)ab ) ≥ Fab(v).

By comparing G(v, v(t)ab ) to Taylor series expansion of Fab(v), we get G(v, v(t)ab ) ≥ Fab(v). Similar proof
can be see in [7].

Proof for Theorem 1. By substituting G(v, v(t)ab ) in Equation (24) with Equation (25), we obtain the
updating rule as below,

v(t+1)
ab = v(t+1)

ab − v(t)ab
F′ab(v

(t)
ab )

2(UTUV+2λVB++4µVVTV+γRV)ab
(v− v(t)ab )

2

= v(t)ab
(UTX+2λVB−+4µV)ab

(UTUV+2λVB++4µVVTV+γRV)ab
(v− v(t)ab )

2
(26)

which is identical to Equation (23). Since G(v, v(t)ab ) is the auxiliary function of Fab(v), Fab(v) is
non-increasing under this updating rule. So O in Equation (15) is non-increasing under Equation (23).

4. Experiment

In this section, we evaluate the performance of `2,1HNMFD. To demonstrate the advantages of the
proposed method, we have compared the results of the proposed method with related state-of-the-art
methods. All statistical significance tests were performed using a significance level of 0.05. We used
Student’s t-tests in the experiments.

To perform data clustering for NMF-based method, the original data were firstly transformed by
different NMF algorithms to generate new representations. Then, new representations were fed to
Kmeans clustering algorithm to obtain the final clustering result.

4.1. Data Sets

We use five real-world data sets to evaluate the proposed method. These datasets are described below:
The Yale face dataset consists of 165 gray-scale face images of 15 persons. There are 11 images per

subject, each with a different facial expression or configuration: center-light, with/without glasses,
normal, right-light, sad, sleepy, surprised and wink.

The ORL face dataset contains 10 different face images for 40 different persons; each of the
400 images has been collected against a dark, homogeneous background, with the subjects in an upright,
frontal position, with some tolerance for side movement.

The UMIST face dataset contains 575 images of 20 people, each covering a range of poses from
profile to frontal views. Subjects cover a range in terms of race, sex and appearance.

The COIL20 data set contains 32 × 32 gray scale images of 20 objects, viewed from varying angles.
The CMU PIE face dataset contains 32 × 32 gray scale face images of 68 people. Each person has

42 facial images under various light and illumination conditions.
The important statistics of these datasets are summarized in Table 1.
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Table 1. Statistics of the datasets.

Dataset Size Categories Dimensionality

YALE 165 15 1024
ORL 400 40 1024

UMIST 575 20 644
COIL20 1440 20 1024

PIE 2856 68 1024

4.2. Evaluation Metrics

In our experiments, we set the number of clusters equal to the number of classes for all algorithms.
To evaluate the performance of clustering, we use Accuracy and Normalized Mutual Information
(NMI) to measure the clustering results.

Accuracy is defined as follows:

Accuracy =
∑n

i=1 δ(si, map(ri))

n
, (27)

where ri and si are cluster labels of item i in the clustering results and ground truth, respectively.
If x = y, δ(x, y) equals 1 and otherwise equals 0, and map(ri) is the permutation mapping function
which maps ri to the equivalent cluster label in ground truth.

The NMI is defined as follows:

NMI(C, C†) =
MI(C, C†)

max(H(C), H(C†))
, (28)

where MI(C, C†) is the mutual information between C and C†. If C is identical with C†, NMI(C, C†) = 1.
If the two cluster sets are completely independent, NMI(C, C†) = 0.

4.3. Baseline

To demonstrate how the clustering performance can be enhanced by `2,1HNMFD, we compare
the following state-of-the-art clustering algorithms:

(1) Traditional Kmeans clustering algorithm (Kmeans).
(2) Non-negative Matrix Factorization (NMF) [3].
(3) Normalized Cut, one of the popular spectral clustering algorithms (NCut) [28].
(4) Graph-regularized Non-negative Matrix Factorization (GNMF) [7].

4.4. Clustering Results

Table 2 presents the clustering accuracy of all of the algorithms on each of the three data sets,
while Table 3 presents the normalized mutual information. The observations are as follows.

Table 2. Clustering Accuracy on the 5 datasets (%).

Dataset Kmeans NMF NCut GNMF Ours

YALE 37.85 ± 2.36 40.15 ± 2.89 40.73 ± 2.39 41.42 ± 3.10 42.94 ± 2.65
ORL 52.15 ± 2.86 54.17 ± 2.00 57.60 ± 3.00 57.95 ± 3.41 59.22 ± 1.54

UMIST 40.71 ± 1.92 41.12 ± 2.71 41.37 ± 1.74 44.50 ± 2.59 50.16 ± 1.16
COIL20 63.19 ± 4.85 63.25 ± 3.17 70.19 ± 2.80 75.92 ± 2.79 78.03 ± 1.70

PIE 24.22 ± 0.85 51.08 ± 2.27 66.60 ± 2.14 75.61 ± 3.32 77.81 ± 2.33
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Table 3. Normalized Mutual Information on the 5 datasets (%).

Dataset Kmeans NMF NCut GNMF Ours

YALE 43.58 ± 2.42 45.00 ± 2.71 45.91 ± 2.15 46.08 ± 2.12 46.88 ± 2.11
ORL 70.93 ± 1.69 73.36 ± 1.46 75.13 ± 1.50 75.52 ± 1.93 76.09 ± 0.95

UMIST 60.08 ± 1.65 60.32 ± 0.85 62.11 ± 1.76 63.53 ± 1.27 66.13 ± 1.26
COIL20 74.32 ± 2.00 72.65 ± 1.21 78. 40 ± 1.57 86.92 ± 2.79 89.90 ± 1.79

PIE 53.55 ± 1.02 78.68 ± 109 81.87 ± 1.63 89.07 ± 0.82 91.27 ± 2.57

Firstly, NMF-based methods, including NMF, GNMF and `2,1HNMFD, outperform the Kmeans
method. This suggests the superiority of parts-based data representation for perceiving the hidden
matrix factors.

Secondly, Ncut and GNMF exploit geometrical information, and achieve more superior
performance than Kmeans and NMF methods. This suggests that geometrical information is very
important in learning the hidden factors.

Finally, on all the data sets, `2,1HNMFD always outperforms the other clustering methods.
This demonstrates that by exploiting the power of Hessian regularization, group sparse regularization
and discriminative information, new method can learn a more meaningful representation.

4.5. Parameter Sensitivity

`2,1HNMFD has three parameters, λ, µ and γ. We investigated their influence on `2,1HNMFD’s
performance by varying one parameter at a time while fixing the other two. For each specific setting,
we run `2,1HNMFD 10 times and record the average performance.

We plot the performance of `2,1HNMFD with respect to λ in Figure 1a. Parameter λ measures the
importance of the graph embedding regularization terms of `2,1HNMFD. A too small λ may cause
graph regularization so weak that the local geometrical information of data cannot be effectively
characterize, while too big λ may cause a trivial solution. `2,1HNMFD shows superior performance
when λ equals 0.01, 0.001 and 0.1 for YALE, ORL and UMIST, respectively.

We plot the performance of `2,1HNMFD with respect to µ in Figure 1b. Parameter µ controls the
orthogonality of the learned representation. When µ is too small, the orthogonal constraint will be
too weak, and `2,1HNMFD may be ill-defined. When µ is too large, the constraint may dominate the
objective function of `2,1HNMFD, and the learned representation will be too sparse, which is also
unfaithful to the real-world situation. We can observe that `2,1HNMFD is able to achieve encouraging
performance when µ equals 0.001, 0.001 and 0.1 for YALE, ORL and UMIST respectively.

We plot the performance of `2,1HNMFD with respect to γ in Figure 1c. Parameter γ controls the
degree of sparsity of the encoding matrix. Sparsity constraints that are too weak or too heavy will
be bad for the learned representation. We find that `2,1HNMFD consistently outperforms the best
baseline methods on the three datasets when γ = 1.
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Figure 1. Influence of different parameter settings on the performance of `2,1HNMFD in 3 datasets:
(a) varying λ while fixing µ and γ; (b) varying µ while fixing λ and γ; and (c) varying γ while fixing
λ and µ.
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4.6. Convergence Analysis

The updating rules for minimizing the objective function of `2,1HNMFD are essentially iterative.
We have provided its convergence proof. Next, we analyze how fast the rules can converge.

We investigate the empirical convergence properties of both GNMF and `2,1HNMFD on three
datasets. For each figure, the x-axis denotes the iterative number and the y-axis is the value of objective
function with log scale. Figure 2a–c show the objective function value against the number of iterations
performed for data set YALE, ORL and UMIST, respectively. We observed that, at the beginning,
the objective function values for both GNMF and `2,1HNMFD dropped drastically, and were able to
converge very fast, usually within 100 iterations.
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Figure 2. Convergence curve of GNMF and `2,1HNMFD. (a) YALE, (b) ORL and (c) UMIST.
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5. Conclusions and Future Work

In this paper, we have discussed a novel matrix factorization method, called `2,1 norm and
Hessian Regularized Non-negative Matrix Factorization with Discriminability (`2,1HNMFD), for data
representation. On one hand, `2,1HNMFD uses Hessian regularization to preserve the local manifold
structures of data. On the other hand, `2,1HNMFD exploits the `2,1 norm constraint to obtain sparse
representation, and uses an approximation orthogonal constraint to characterize the discriminative
information of the data. Experimental results on 5 real-world datasets suggest that `2,1HNMFD is able
to learn a better part-based representation. This paper only considers single-view cases. In the future,
we will consider multi-view cases, and learn a meaningful representation for multi-view data.
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