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Abstract: Driver’s intention classification and identification is identified as the key technology for
intelligent vehicles and is widely used in a variety of advanced driver assistant systems (ADAS).
To study driver’s steering intention under different typical operating conditions, five driving school
coaches of different ages and genders are selected as the test drivers for a real vehicle test. Four kinds
of typical car steering condition test data with four different vehicles are collected. Test data are filtered
by the Butterworth filter and are used for extracting the driver steering characteristic parameters.
Based on Principal Component Analysis (PCA), the three kinds of clustering analysis methods,
including the Fuzzy C-Means algorithm (FCM), the Gustafson–Kessel algorithm (GK) and the
Gath–Geva algorithm (GG), considered are proposed to classify and identify driver’s intention
under different typical operating conditions. Results show that the three approaches can successfully
classify and identify drivers’ intention respectively despite some accuracy error by FCM. Meanwhile,
compared with FCM and GK, GG was the best performing in classification and identification of the
driver’s intention. In order to verify the validity of the identification method designed by this article,
five different drivers were selected. Five tests were carried out on the driving simulator. The results
show that the results of each identification are exactly the same as the actual driver’s intention.

Keywords: driver’s steering intention; real vehicle test; Principal Component Analysis (PCA);
cluster analysis

1. Introduction

In recent years, with the rapid integration of high-tech and advanced automotive technologies
such as computers, the Internet, communications and navigation, automatic control, artificial
intelligence, machine vision, precision sensors, high-precision maps and smart cars (or unmanned
vehicles), smart driving has become one of the world’s automotive engineering research hotspots
and a new impetus of the automotive industry’s growth. According to authoritative media at home
and abroad, in the future of the automotive industry, more than 90% of scientific and technological
innovation will focus on the field of automotive intelligence. Therefore, smart vehicles are safe, efficient,
energy-efficient next-generation vehicles [1,2], and the study of smart cars has a very important
significance, which has become the focus of the global automotive industry.

The driver intention is reflected by his/her own inner state in the driving process. It cannot
be obtained directly during driving and is only predicted by the driver’s movements, vehicle
status and traffic environment information. Driver’s intention classification and identification
are identified as comprising the key technology for intelligent vehicles and are widely used in a
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variety of Advanced Driver Assistant Systems (ADAS) [3,4], such as the Adaptive Cruise Control
System (ACC) [5,6], the Active Front Steering System (AFS) [7–10], the Parking Assistance Systems
(PAS) [11,12], the steer-by-wire systems [13] and Man-machine Co-driving Electric Power Steering
(MCEPS) system [14,15]. The classification and identification of driver’s intention are based on the
real-time acquisition of the driver’s operating signal and car state, or at the same time, by monitoring
the driver’s head movement range and facial expressions, the driver’s behavior is distinguished and
identified to obtain the driver’s driving intention [16].

Many scholars are committed to study the classification and identification of driver’s intention.
Liang Li et al. [17] proposed a novel method based on an artificial error back-propagation neural
network to identify the driver’s starting intention. Takano et al. [18] proposed an intelligent cognitive
method for driver’s intention identification based on the Hidden Markov Model (HMM). The method
mainly includes data segmentation, time series data labeling and the identification and generation
of the driving mode. Raksin et al. [19] proposed an algorithm based on the driver’s intention to
identify the direct yaw moment control, in which the driver steering intention identification is through
the Hidden Markov Model (HMM). The use of the dynamic Bayesian network was combined with
the past driving state and the current driving state to predict the driver’s intention of parking at
the crossroads. Tesheng Hsiao [20] used the maximum posterior probability assessment method to
obtain the driver’s steering model parameters. He established a steering model that can effectively
improve the recognition accuracy and that has the function of predicting the driver’s driving strategy.
The previous research works mainly concentrated on a single traffic environment, such as the straight
road or the crossroads intentions, and not on variety of typical steering conditions under the driving
intention identification study.

The driving intention under each condition requires multiple drivers’ characteristic steering
parameters, such as driving parameters (steering angle, angular velocity and torque) and vehicle
status parameters (roll angle, lateral acceleration and yaw rate). However, if all the characteristic
parameters are used for classification and identification, the computational complexity is increased
due to the large number of characteristic parameters. Additionally, analysis of the situation becomes
much more difficult. Although each feature parameter provides some information, some of the
characteristic parameters are correlated, and the characteristic parameters are not independent of
each other. Therefore, the information provided by these characteristic parameters overlaps to some
extent. Therefore, we need to use a kind of theoretical algorithm to reduce the dimension of the
data and to decorrelate the input variables. Principal Component Analysis (PCA) is used to reduce
the data dimension, which is used in various applications such as error recognition [21], pedestrian
identification [22] and image tracking [23]. However, PCA is not used in the driving intention
identification study under typical steering conditions.

In essence, the driver’s intention is a pattern recognition process. The cluster analysis is a typical
method of pattern recognition. Compared with the traditional classification and identification of
driver’s intention using the neural network and fuzzy mathematics, the clustering algorithm only needs
a small amount of data, which eliminates the need to construct the nonlinear recognizer and ensures
that the accuracy is stable. In order to classify and identify driver’s intention, three clustering analysis
methods are studied: the Fuzzy C-Means algorithm (FCM), the Gustafson–Kessel algorithm (GK) and
the Gath–Geva algorithm (GG). Due to its flexibility and robustness for ambiguity, the FCM algorithm
is currently an active topic [24] and has been widely applied in the areas of pattern recognition [25],
function approximation [26], image processing [27], machine learning [28], and so on. The GK
algorithm can generate a fuzzy partition that provides the degree of membership of each data point
to a given cluster [29]. The GG algorithm can make the parameters of the univariate membership
functions be directly derived from the parameters of the clusters [30].

Therefore, this paper selected five driving school coaches of different driving experiences and
genders as real vehicle test driver, and four typical car steering conditions’ test data with four different
vehicles were collected. Additionally, this paper used principal component analysis and clustering
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analysis to classify and identify the driver’s intention. The paper analyzed the advantages and
disadvantages of the three different clustering methods (FCM, GK and GG) in the direction of driver’s
steering intention.

The paper is organized as follows. In the second section, five driving school coaches of different
ages and genders are selected as the test drivers for the real vehicle test. In the third section, driver’s
characteristic steering parameters under different conditions are proposed. The fourth section uses
principal component analysis and clustering analysis to classify and identify the driver’s intention.
In the fifth section, the clustering results and analysis are presented. Finally, the conclusions are drawn
in the last section.

2. Experiment

2.1. Experimental Devices

The real vehicle experiment of driver’s steering in different conditions consists of the following
components: S-Motion biaxial optical speed sensor (Kistler, Winterthur, Switzerland) (signal delay
only 6 ms), biaxial optical speed sensor mounting bracket, KiMSW Force steering wheel sensor 250 Nm
(Kistler, Winterthur, Switzerland) (steering angle accuracy: 0.015◦), universal mounting bracket (Kistler,
Winterthur, Switzerland), power distribution box (Kistler, Winterthur, Switzerland) and SDI-600GI
Model GPS/INS (SDI, Beijing, China) (accuracy: 10 cm error). The experimental devices are shown in
Figure 1.
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Figure 1. Experimental devices and the actual installation.

2.2. Experimental Design and Experimental Vehicles

This experiment selected 5 driving school coaches of different driving ages and genders as the
test drivers, which are shown in Table 1. The turn right/left steering condition, U-turn condition,
lane keeping condition and lane changing condition are proposed in the real vehicle test. Additionally,
the speed of the vehicle is certain during the test. The test vehicles were four passenger cars: GM GL8,
Skoda Octavia, Honda Accord and SAIC MG. The experimental vehicles are shown in Figure 2.

Table 1. Driver information.

No. Ages (Years) Driving Experience (Years) Gender

Driver 1 55 33 female
Driver 2 28 10 male
Driver 3 53 31 male
Driver 4 46 22 male
Driver 5 53 21 male
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Figure 2. Experimental vehicles (1) GM GL8, (2) Skoda Octavia, (3) Honda Accord, (4) SAIC MG.

3. The Method of the Driver’s Intention Identification

Driver’s Characteristic Steering Parameter under Different Conditions

In order to accurately describe the steering characteristics of the driver under each steering
condition, it is ensured that there will be no loss or distortion of the driver’s intention information.
According to GB/T 6323-1994 “Vehicle Handling Stability Test Method”, this paper selects the typical
steering conditions of the driver’s characteristic parameters, as shown in Table 2. In order to identify the
driver’s steering intention under different steering conditions, this paper chooses the driver steering
parameters and vehicle dynamics parameters for the first two seconds under different operating
conditions. The purpose of this is to use the initial operation of the driver to identify the driver’s
steering intention in the next period. It is helpful to lay the foundation for dynamic control for further
advanced driver assistant systems. Furthermore, this can improve the accuracy of the intelligent
vehicle active safety control system. However, various uncertainties exist due to the large amount of
interference signal in the test data, as shown in Figure 3. Especially, torque, angular velocity, yaw rate
and lateral acceleration need to be filtered.

Table 2. Driver’s characteristic steering parameters.

Symbol Meaning Units

δm Average steering angle deg
δmax Maximum steering angle deg

.
δm Average angular velocity deg/s

.
δmax Maximum angular velocity deg/s
Tm Average torque Nm

Tmax Maximum torque Nm
γmax Maximum yaw rate deg/s
φmax Maximum roll angle deg
aymax Maximum lateral acceleration m/s2
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Figure 3. Filter results with the Butterworth filter: (a) torque; (b) angular velocity; (c) yaw rate; and
(d) lateral acceleration.

The Butterworth filter is a kind of electronic filter whose frequency response curve is the smoothest.
The filter was first proposed by a British engineer, Stephen Butterworth, in a paper published in the
British journal Radio Engineering in 1930. The attenuation rate of the first-order Butterworth filter
is 6 dB per octave. The second-order Butterworth filter has a decay rate of 12 dB per octave, and the
third-order Butterworth filter has an attenuation rate of 18 dB per octave, and so on. The amplitude of
the Butterworth filter is monotonically decreasing, and it is also the only filter that maintains the same
shape regardless of the order of the amplitude of the diagonal frequency curve. The higher the order
of the filter is, the faster the amplitude attenuation in the resistive band is. The difference with the
Chebyshev, Bessel and elliptical filters is that the attenuation of the Butterworth filter is slower than
the other filters, but is very flat and does not vary.

The Butterworth low-pass filter can be expressed by the square of the amplitude:

|H(ω)|2 =
1

1 +
(

ω
ωc

)2n (1)

where n is the order of the filter and ωc is the cut-off frequency.
Therefore, we choose the Butterworth filter with different orders to process the test data.

Filter results can be seen in Figure 3. In Figure 3a, the first-order Butterworth filter obtains the
closest data to the raw data; simultaneously, the value of torque is also very smooth. Therefore,
the first-order Butterworth filter is the most suitable to handle the torque signal. In Figure 3b, we can
reach the same conclusion about the angular velocity signal. In Figure 3c,d, although the first-order
Butterworth filter obtains the closest data to the raw data, the first-order Butterworth filter is less
smooth than the second-order Butterworth filter. Therefore, the second-order Butterworth filter is the
most suitable to handle the yaw rate and the lateral acceleration signal.

Since the number of experimental data is very large, which is shown in Table 3, only about 20%
(133) of the experimental data are selected (after removing the wrong data). This is because, compared
with the traditional classification and identification of the driver’s intention using the neural network
and fuzzy mathematics, the clustering algorithm only needs a small amount of data, which eliminates
the need to construct the nonlinear recognizer and ensures that the accuracy is stable. Additionally,
the characteristic parameters of these sets of test data are extracted and analyzed, which lays the
foundation for the driver’s steering intention identification.
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Table 3. Actual experimental data and speed conditions.

The Number of
Experiment and the

Speed Limit

Typical Steering Conditions

Turning
Right/Left
Condition

U-Turn
Condition

Lane Keeping
Condition

Lane
Changing
Condition

The Sum of
All the

Conditions

Number of
Experimental Data 320 82 160 162 724

Speed Conditions (km/h) 20–50 20–30 30–60 30–40 20–60

The representative samples of the experimental data of the real vehicle tests are shown in
Figures 4–9, which contain four conditions of the data, respectively, turning right condition, U-turn
condition, lane keeping condition and lane changing condition.
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Figure 4. Steering angle under different steering conditions: (a) turning right; (b) U-turn; (c) lane
keeping; (d) lane changing.
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Figure 5. Angular velocity under different steering conditions: (a) turning right; (b) U-turn; (c) lane
keeping; (d) lane changing.
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Figure 6. Torque under different steering conditions: (a) turning right; (b) U-turn; (c) lane keeping;
(d) lane changing.
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Figure 7. Roll angle under different steering conditions: (a) turning right; (b) U-turn; (c) lane keeping;
(d) lane changing.
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Figure 8. Lateral acceleration under different steering conditions: (a) turning right; (b) U-turn; (c) lane
keeping; (d) lane changing.
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Figure 9. Cont.
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Figure 9. Yaw rate under different steering conditions: (a) turning right; (b) U-turn; (c) lane keeping;
(d) lane changing.

4. Principal Component Analysis of Steering Parameters

In solving practical problems and research, it is often possible to collect more information about
the research object in order to have a comprehensive understanding of the problem. However, due to
the theoretical development and application of technical constraints, having too many variables to be
processed and too much information have become analysis obstacles. To solve this problem, Principal
Component Analysis (PCA) should be used to analyze data. PCA is a statistical analysis method that
simplifies multiple indicators into a small number of comprehensive indicators, with as few as possible
to reflect the original variable information [31], to ensure that the original loss of information and the
number of variables is as small as possible. Let X =

(
X1, X2, · · · , Xp

)′ be a p-dimensional random
vector, and its linear variation is as follows:

PC1 = a1
′X = a11X1 + a21X2 + . . . + ap1Xp

PC2 = a2
′X = a12X1 + a22X2 + . . . + ap2Xp

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
PCp = ap

′X = a1pX1 + a2pX2 + . . . + appXp

(2)

Using the new variable PC1 to replace the original p variables X1, X2, ..., Xp, PC1 should reflect
as much as possible the original variable information. If the first principal component is not enough
to represent the vast majority of the original variables’ information, two main components PC2, and
so on, will be used. The main purpose of principal component analysis is to simplify the data, so in
practical applications, we will not take p principal components and usually use m (m < p) principal
components. The number of principal components m should be based on the cumulative contribution
of the variance of each principal component to the final decision.

pr = λk/∑ λi (3)

where λ is the eigenvalue corresponding to each principal component, k is the number of selected
main components and I is the total number of components.

The principal component analysis of 133 sets of experimental data is carried out by MATLAB
software, and nine principal components (Y1, Y2, ..., Y9) were obtained. The eigenvalue, contribution
rate and cumulative contribution rate of each principal component are shown in Table 4. According
to the principal component analysis principle, the first four principal components are selected, and
the correlation between the characteristic parameters and the principal components is analyzed.
The representative average angular velocity, average steering angle, maximum yaw rate and maximum
lateral acceleration, the four parameters of acceleration, are used for cluster analysis. The method of
principal component analysis is shown in Figure 10.
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Table 4. The principal component eigenvalue, contribution rate and cumulative contribution rate.

Main Ingredient Eigenvalues Contribution Rate (%) Cumulative Contribution Rate (%)

Y1 4.279 41.33 41.33
Y2 1.439 17.42 58.75
Y3 1.235 14.53 73.28
Y4 1.005 11.95 85.23
Y5 0.699 5.12 90.35
Y6 0.325 4.91 95.26
Y7 0.032 3.61 98.87
Y8 0.006 1.09 99.96
Y9 0.005 0.04 100

5. Comparison of Clustering Analysis Methods

5.1. Fuzzy C-Means Algorithm

The fuzzy C-means clustering is defined as:

J(X; U, V, λ) =
c

∑
i=1

N

∑
k=1

(µik)
mD2

ikA +
N

∑
k=1

λk

(
c

∑
i=1

µik − 1

)
(4)

and by setting the gradients of (J) with respect to U, V and λ to zero. If D2
ikA > 0, ∀i, k and m > 1, then

(U, V) ∈ M f c × Rn×c may minimize only if:

µik =
1

∑ c
j=1

(
DikA/DjkA

)2/(m−1)
, 1 ≤ i ≤ c, 1 ≤ k ≤ N (5)
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Additionally:

vi =

N
∑

k=1
µm

ik xk

N
∑

k=1
µm

ik

, 1 ≤ i ≤ c (6)

5.2. Gustafson–Kessel Algorithm

The Gustafson–Kessel algorithm obtains the objective function by introducing the covariance
matrix, which is suitable for the clustering analysis of the correlation between the variables and is
suitable for the distribution of irregular data [32]. The clustering algorithm uses the adaptive distance
of the clustering covariance matrix to measure. By obtaining the objective function to achieve the
membership matrix of the fuzzy clustering, , and the clustering center V = (v1, v2, v3, · · · , vc)

T , where:
c is the number of samples; uij is the clustering center membership relative to the data point; and

they meet uij ∈ [0, 1],
c
∑

i=1
uij = 1, 1 ≤ j ≤ N. The data sequence X = (x1, x2, · · · , xN) is given, and its

minimized objective function is:

J(X, V, U) =
c

∑
i=1

N

∑
j=1

(
uij
)mD2

ij (7)

D2
ij = ‖xj − vi‖2

Ai
=
(
xj − vi

)T Ai
(
xj − vi

)
(8)

Ai = det(Fi)
1
n F−1

i (9)

where: m is the fuzzy index, representing the degree of fuzzy clustering, and the greater the value of m,
the greater the degree of overlap between the major clusters; usually, m takes one or two; D2

ij is the
distance from any data point xj to the cluster center vi, and it is a square inner product norm; Ai is a
positive definite symmetric matrix, and it is determined by the clustering matrix covariance matrix Fi.

However, Formula (9) cannot be minimized directly considering its linear features. In order
to obtain a viable solution, Ai must be constrained in some way. The usual way is to constrain the
determinant of Ai. The allowable matrix Ai varies with its determinant, corresponding to the shape of
the optimized cluster, while its volume remains unchanged:

‖Ai‖ = ρi, ρ > 0 (10)

where ρi is certain for each cluster. Using the Lagrange multiplier method, Ai is obtained:

Ai = [ρidet(Fi)]
1/nF−1

i (11)

where Fi is defined by:

Fi =

N
∑

k=1
(µik)

m(xk − vi)(xk − vi)
T

N
∑

k=1
(µik)

m
(12)

5.3. Gath–Geva Algorithm

The Gath–Geva algorithm was proposed by Bezdek and Dunn [33]:

Dik(xk, vi) =

√
det(Fωi)

αi
exp

(
1
2

(
xk − vi

(l)
)T

F−1
ωi

(
xk − vi

(l)
))

(13)
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The difference between the GG algorithm and the GK algorithm is that the distance norm involves
an exponential term. Fωi is the fuzzy covariance matrix of the i-th cluster, given by:

Fωi =

N
∑

k=1
(µik)

ω(xk − vi)(xk − vi)
T

N
∑

k=1
(µik)

ω
, 1 ≤ i ≤ c (14)

The prior probabilities formula for each classification are given by:

αi =
1
N

N

∑
k=1

µik (15)

6. Clustering Results and Analysis

In order to further analyze the driver’s steering characteristics under the steering conditions
after clustering, the results are shown by the average angular velocity and the average steering angle.
As shown in Figures 11–13, the fuzzy C-means algorithm, the Gustafson–Kessel algorithm and the
Gath–Geva algorithm were used to divide the driver’s steering test results into four classes, and in each
algorithm, the cluster center for each class is marked. (0.18, 0.59), (0.33, 0.18), (0.55, 0.785) and (0.785,
0.625) are the four clustering centers given by the fuzzy C-means algorithm; the Gustafson–Kessel
algorithm gives four clustering centers: (0.155, 0.62), (0.27, 0.305), (0.46, 0.53) and (0.76, 0.67). The four
cluster centers (0.115, 0.63), (0.255, 0.365), (0.44, 0.48) and (0.742, 0.649) are given by the Gath–Geva
algorithm. According to the fourth cluster center, we can see that the average angular velocity and the
average steering angle of the drivers’ steering are larger. This reflects the driver’s steering intention
under the U-turn condition. Analysis of the first and second cluster centers revealed that these two
types of conditions exist; the lower average angular velocity and larger average steering angle. It can
be judged at this time that the first cluster reflects the drivers’ steering intention under the lane change
condition, and the second cluster centers reflects drivers’ steering intention under the lane keeping
condition. The remaining third cluster center between the fourth and first two cluster centers usually
belongs to the ordinary driver’s intentions for the turn right/left steering conditions.Appl. Sci. 2017, 7, 1014 14 of 18 
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Figure 11. Visualization of the classification results of the driver’s steering intention based on the fuzzy
C-means algorithm.
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Figure 12. Visualization of the classification results of the driver’s steering intention based on the
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Figure 13. Visualization of the classification results of the driver’s steering intention based on the
Gath–Geva algorithm.

Three kinds of clustering analysis methods can be used to separate the experimental data under
different steering conditions into four different types. However, by comparing the three clustering
methods, we can find that for the third cluster center, the average steering angle is greater than the
average steering angle of the center of the fourth cluster using the fuzzy C-means algorithm, which is
contrary to the fact that the average steering angle under the normal right/left turn is less than the
average steering angle of the U-turn. Therefore, the accuracy of the Gustafson–Kessel algorithm and
the Gath–Geva algorithm is superior to the fuzzy C-means algorithm.

In order to analyze the clustering effect more scientifically, in the clustering method, the most
representative criteria for evaluating the clustering effect are the Partition Coefficient (PC) and the
Classification Entropy (CE), which are defined as follows:
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The Partition Coefficient (PC) measures the amount of “overlapping” between clusters. It is
defined by Bezdek as follows:

PC (c) =
1
N

c

∑
i=1

N

∑
j=1

(µij)
2 (16)

The Classification Entropy (CE) measures the fuzziness of the cluster partition only, which is
similar to the partition coefficient.

CE (c) = − 1
N

c

∑
i=1

N

∑
j=1

µij log(µij) (17)

In this paper, C is the number of clusters and N is the total number of experiments. When the
two validity evaluation functions reach the optimal value, that is PC (c) reaches the maximum value
and CE (c) reaches the minimum value, the clustering analysis effect is better. The comparisons of PC
(c) and CE (c) and the required time among different clustering algorithms under different working
conditions are shown in Table 5.

Table 5. Recorded data of the evaluation in three ways.

Algorithm PC (c) CE (c) Time Consumed (s)

Fuzzy C-means 0.6935 0.6096 5.1685
Gustafson–Kessel 0.7356 0.4892 5.7304

Gath–Geva 0.9493 0.0377 5.5268

By analyzing Table 6, we can see that the Gath–Geva algorithm achieves the maximum value
for the Partition Coefficient (PC). At the same time, the Gath–Geva algorithm achieves the minimum
value for the Classification Entropy (CE). Due to the complexity of the Gath–Geva algorithm, the time
consumed area is somewhat more than the fuzzy C-means, but it is also within acceptable limits.
To sum up, the Gath–Geva algorithm is better than the other two methods for the classification and
identification of driver’s intention.

Table 6. The results of the identification.

Distances Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

The distance to Clustering Center 1 3.4 2.3 0.28 2.8 3.64
The distance to Clustering Center 2 6.8 6.1 4.03 0.65 7.39
The distance to Clustering Center 3 0.25 0.74 2.79 2.7 5.71
The distance to Clustering Center 4 2.2 3.0 4.99 2.47 0.16

The result of identification Clustering 3 Clustering 3 Clustering 1 Clustering 2 Clustering 4

7. The Results of the Identification of Driver’s Steering Intention

The identification process of the driver’s steering intention is shown in Figure 14 by the method of
principal component analysis and the Gath–Geva algorithm, including the offline part, online part and
identification. The offline part is to analyze the driver’s steering intention data under different steering
conditions through the principal component analysis and Gath–Geva algorithm analysis and get the
clustering center. The online and identification parts are the processes of the real-time identification
of the driver’s steering intention. Firstly, the first 2 s of the test data are obtained under a certain
condition in the driving simulator. Secondly, the characteristics of the data parameters are extracted,
and then, the distances between the characteristic parameters and the center of each clustering center
are calculated. Finally, according to the principle of the smallest distance, the driver’s steering intention
is determined. The distance calculation formula is:

di = ‖x− ci‖, i = 1, 2, 3, 4 (18)
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where x represents the characteristic parameters of one condition, x =
(
x1, x2, · · · , xp

)
; ci represents

the clustering center parameters for clustering, ci =
(
ci1, ci2, · · · , cip

)
.
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In order to verify the validity of the identification method designed by this article, five different
drivers were selected. Five tests were carried out on the driving simulator, namely turning right,
turning left, lane changing, lane keeping and U-turn condition. (0.45, 0.65), (0.44, 0.48) and (0.742,
0.649) are given by the Gath–Geva algorithm according to the above, respectively representing lane
changing, lane keeping, turning right and U-turn condition. As shown in Table 6, in Conditions 1–5,
the distances between the characteristic parameters and the center of each clustering center were
calculated. It is shown that the results of each identification are exactly the same as the actual driver’s
intention. Therefore, the effectiveness of the identification method designed by this article is verified.

8. Conclusions

In this paper, driver’s characteristic steering parameters under different conditions were proposed.
Real vehicle tests under four kinds of typical operating conditions were implemented by five excellent
driving school coaches with different ages and genders. The test vehicles covered four different
countries’ passenger cars. Then, the principal component analysis and clustering analysis were
combined to classify and identify the driver’s steering intention. By comparison and analysis,
the Gath–Geva algorithm was significantly better than the other two clustering algorithms under
different typical operating conditions to classify and identify the driver’s steering intention. In order
to verify the validity of the identification method designed by this article, five different drivers were
selected. Five tests were carried out on the driving simulator. It was show that the results of each
identification were exactly the same as the actual driver’s intention. Therefore, the effectiveness of the
identification method designed by this article was verified.
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