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Abstract: The thermal characteristics of a motorized spindle are the main determinants of its
performance, and influence the machining accuracy of computer numerical control machine tools. It
is important to accurately predict the thermal field of a motorized spindle during its operation to
improve its thermal characteristics. This paper proposes a model to predict the temperature field of a
high-speed and high-precision motorized spindle under different working conditions using a finite
element model and test data. The finite element model considers the influence of the parameters of
the cooling system and the lubrication system, and that of environmental conditions on the coefficient
of heat transfer based on test data for the surface temperature of the motorized spindle. A genetic
algorithm is used to optimize the coefficient of heat transfer of the spindle, and its temperature field
is predicted using a three-dimensional model that employs this optimal coefficient. A prediction
model of the 170MD30 temperature field of the motorized spindle is created and simulation data for
the temperature field are compared with the test data. The results show that when the speed of the
spindle is 10,000 rpm, the relative mean prediction error is 1.5%, and when its speed is 15,000 rpm,
the prediction error is 3.6%. Therefore, the proposed prediction model can predict the temperature
field of the motorized spindle with high accuracy.

Keywords: motorized spindle; temperature field; prediction model; heat transfer coefficient;
finite element

1. Introduction

The motorized spindle unit is crucial to numerical control (NC) machine tools and the key
component to guarantee the precision of machines. Its performance directly influences the technology
used and determines the development of the machine tool [1]. The motorized spindle unit is
indispensable to high performance computer numerical control (CNC) machine tools. Several
studies have focused on improving the spindle [2–5]. The motorized spindle incurs mechanical
and electromagnetic losses because of its high speed and non-sinusoidal power supply. Most of these
losses are transformed into heat and transferred to the surrounding air, cooling fluid, and machine
parts. This results in uneven heat deformation of the parts of the machine, which directly affects the
accuracy of the spindle and the bearing preload. As many as 75% of the overall geometrical errors in
workpieces manufactured by machines are considered to be induced by the effects of temperature [6].
The temperature of the motorized spindle is an important index to evaluate its performance at high
speeds [7]. High-power and high-speed motorized spindles feature a larger rise in temperature than
surroundings, which is therefore important to control.
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There are two methods for controlling the rise in temperature of the motorized spindle. One
involves actively controlling the cooling and lubrication systems to avoid high temperatures, and
the other consists of optimizing the design of the structure of the motorized spindle [8,9]. These two
methods are different, but both require the development of a thermal model for the motorized spindle
to predict the temperature field. The Ellesmere Company has been developing CAD software for
motor design software for the last 10 years, which includes modules for thermal error calculation [10].
However, it is challenging to effectively calculate thermal error in the motorized spindle as it is
fundamentally different from an ordinary motor. The motorized spindle system contains a few
subsystems, such as water cooling, lubrication, and the inverter. Thus, its heat generation and transfer
processes are more complex.

Finite element analysis is often used in a simplified thermal design of the motorized spindle
unit [11,12]. Such thermal boundary conditions as the processing conditions of the heating and cooling
environments are loaded into the model to simulate the temperature distribution of the motorized
spindle. Jedrzejewski et al. [13–17] researched finite element thermal modeling of NC machine
tools and created a hybrid model of a high-speed machining center spindle box using finite element
modeling. This method was used to model the components of the symmetrical axis. A comparison
of the results between the hybrid prediction model and the finite difference method shows that the
prediction error in the hybrid model was less than 2 ◦C. Neugebauer et al. [18] proposed a method that
allows the permanent adaptation of the heat transmission coefficient to better apply convective heat
transmission to time-variable thermal simulations, especially for mechanical finite element models.
Holkup [19] presented a thermo-mechanical model of spindles that predicts temperature distribution
and thermal growth by considering transient changes in the bearing stiffness and contact loads.

Zhang et al. [20] built a model for the thermal characteristics of the high-speed motorized spindle
using finite element analysis and calculated the static/transient temperature field as well as the thermal
coupled field. Chen et al. [21] proposed a bearing thermo-mechanical dynamic model that considers
preload methods and thermal responses, and analyzed frictional losses and the support stiffness of
the bearings. The electromagnetic loss of the built-in motor with input power was investigated using
electromagnetism. Based on the analyses of the boundary conditions of heat generation and heat
convection, a solution procedure was designed to analyze the comprehensive thermo-mechanical
dynamic behaviors of the motorized spindle. In the same year, Chen et al. [22] created a motor loss
model based on electromagnetics for finite element thermal analysis.

Even when considering the virtues of thermal models of the motorized spindle, where multi-field
coupling and the dynamic characteristics of its thermal state can be easily considered, its nonlinear
characteristics are very difficult to handle. Moreover, cooling methods for the motor and the bearings
are usually implemented using a convective cooling fluid. The coefficient of heat convection that
represents the relationship between the solid surface and the cooling medium is influenced by several
factors. It is challenging to predict this coefficient, and this yields models with inadequate accuracy.
An effective method to improve the predictive accuracy of the thermal field involves creating a model
for the heat transfer coefficient using a heuristic approach.

In practice, the internal temperature of the motorized spindle is important. Predictions of the
temperature field of the motorized spindle based on the mechanistic model are reliable, but the
accuracy of prediction can be further improved if the model takes advantage of the easily measured
surface temperature of the spindle. In this paper, a hybrid model that combines the finite element
model with temperature data is proposed and the dynamic temperature field of the motorized spindle
is predicted. In the proposed model, a heuristic approach based on genetic algorithm is used to
optimize the heat transfer coefficient. The model was verified by comparing the results of simulations
with those of experiments, and yielded high prediction accuracy.
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2. Heat Generation and Heat Transfer in a Motorized Spindle

The motorized spindle is a mechatronic product composed of a stator, a rotor, a spindle, a shell,
a water jacket, front bearings, rear bearings, and bearing housing. It is built into an asynchronous
alternating current motor, and its structure is as shown in Figure 1. The rotor and spindle are integrated
through pressure matching, and the latter is supported by front and rear bearings. The stator of the
motor is fixed on a shell through a water jacket. It is well known that heat generation is inevitable
owing to high speed of the motorized spindle. The main sources of heat generation are the heating
of the motor, and frictional heat from the front and rear bearings. Furthermore, the power supply
of the motorized spindle is an inverter that generates higher harmonics, because of which the motor
generates additional resistive losses owing to the copper in the stator and rotor, the iron in the stator,
and additional stray loss. Moreover, the skin effect in the rotor induces greater losses in the copper
at power supplies of high frequency. The losses from these high harmonic voltages and currents
result in an increase in motor temperature. This causes thermal deformation in the components of the
motorized spindle and affects its dynamic performance. Lubrication and cooling systems are designed
to prevent the motorized spindle from overheating. In general, the stator of the motorized spindle is
cooled using cooling water pumped through a jacket. Bearings are lubricated with oil and gas, where
fine drops of oil are carried by compressed gas into the air gap between the stator and rotor, and the
clearance of the bearing. These drops then flow out of the motorized spindle. Therefore, the bearings
are lubricated, and the rotor, shaft, and bearings are actively cooled.
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Figure 1. Structure of the motorized spindle.

The above discussion shows that heat transfer in the motorized spindle is complex. The heat
transfer mode of the motorized spindle consists mainly of conduction and convection. The equation of
energy conservation is as follows:

ρ1Cp1
∂T
∂t

+ ρ2Cp2υ∇T = ∇·(k∇T) + Q (1)

where Q = Ptot
V , Ptot is heat generation, V is the volume of the heat source, ρ1 is the density of the solid,

ρ2 is that of the fluid, Cp1 and Cp2 are the heat capacities of the solid and the fluid, respectively, T is
the temperature of the motorized spindle, υ is fluid velocity, ∇ is the Laplace operator, k is thermal
conductivity, and Q is the rate of heat generation.

According to heat transfer theory, the relationship between the coefficient of convective heat
transfer and temperature is

q = h · (Text − T) (2)
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where q is heat flux, h is the vector of the coefficient of heat transfer, and Text is the temperature of the
fluid medium.

Five processes contribute to heat transfer in the motorized spindle. Between the surface of the
spindle shell and air is natural convection heat transfer, with the heat transfer coefficient given by [23]

h1 = 9.7 (W/(m·◦C)) (3)

Between the gas-gap and the compressed air is the forced convection heat transfer, with the heat
transfer coefficient represented as:

h2 =
Nuλa

H
(4)

where Nu = 0.239( δ
r )

0.25
Re0.5, Re = u1 H

r , u1 = (u2
a + u2

t )
1/2, u1 is the speed of airflow in the air gap

(m/s), ua and ut are the input speed of the compressed air and the speed of rotation of the spindle,
respectively, r is the radius of the outer surface of the rotor (m), H is the dimensionality of the geometry
of the air gap (m), Re is the Reynolds number, Nu is the Nusselt number, δ is the gap between the
stator and the rotor (m), and λa is the thermal conductivity of air (W/(m·◦C)).

Between the spindle end and the environmental air is the forced convective heat transfer, with the
heat transfer coefficient given as:

h3 = 28
(

1 +
√

0.45ut

)
(5)

where ut is the circumferential velocity of the end of the rotor (m/s).
Between the front bearing and the compressed air, and between the rear bearing and the

compressed air, is the forced convection of heat. Thus, the coefficients of heat transfer are:

h4 = c0 + c1uc2 (6)

where u =

[(
v1

Aax

)2
+
(

ωdm
2

)2
]0.8

, Aax = 2dmπ∆h, dm is the average diameter of the bearing (m), ∆h is

the average distance between the cage and the inner and outer rings of the bearing (m), Aax is the area
of axial air flow through the bearing (m2), u is the average speed of air flowing through the bearing
(m/s), v1 is air flow through the bearing (m3/s), ω is the angular velocity (rad/s) of the motorized
spindle, and the values of c0, c1, and c2 are 9.7, 5.33, and 0.8, respectively.

The heat transfer coefficient for the forced convection of the cooling water and the water jacket is:

h5 =
Nu′λw

D
(7)

where Nu′ = 0.012(Re0.87 − 280)Pr0.4
[

1 +
(

D
L

) 2
3
]
( Pr

Prw
)

0.11
, Re = vD

µ , D = 4A
X , v is the characteristic

velocity (m/s) of the cooling water, µ is the kinematic viscosity (m2/s) of the cooling water, D is the
geometric characteristic size (m), A is the area of cross-sectional flow (m2), X is the circumference of
the section of wet flow (m), Pr is the Prandtl number of water, with Pr

Prw
≈ 1, and λw is its thermal

conductivity (W/(m·◦C)).
The parameters of the cooling and lubrication systems as well as the motion of the motorized

spindle are directly related to the heat transfer coefficients, which are dynamic and nonlinear. In
traditional finite element modeling of the motorized spindle, these characteristics are ignored, which
leads to inaccurate calculations of the temperature field.

The above problem can be solved by optimizing heat transfer coefficients based on test data for
temperature. The implementation of this exploits the relationship between temperature and the heat
transfer coefficients of the motorized spindle.
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3. Hybrid Prediction Model of the Temperature Field of the Motorized Spindle

In the traditional temperature field of the motorized spindle model, the heat transfer coefficients
at key positions are calculated using an empirical formula that leads to an associated error in the
calculation of the temperature field. This paper provides a precise temperature field for the finite
element model of the motorized spindle where the heat transfer coefficients are optimized using a
genetic algorithm. The finite element model of the boundary conditions of the motorized spindle is then
used to accurately obtain the temperature field. The prediction model of the temperature field of the
motorized spindle is shown in Figure 2. First, the initial values of the heat transfer coefficients h (h1, h2,
h3, h4, and h5) are first calculated according to the empirical formulae shown in Formulae (3)–(7). Heat
generation rates are calculated according to losses in the motorized spindle. The boundary conditions
of the rates of heat generation and the initial value of the heat transfer coefficients are used as initial
conditions of the finite element model to calculate the temperature field. Second, the speed of the
motorized spindle, the temperature of the cooling water, its flow rate, the pressure of the compressed,
and the interval of fuel supply are varied as the surface temperature of the motorized spindle is
monitored. Third, the heat transfer coefficients of the motorized spindle are optimized by genetic
manipulation. It is clear from the flowchart in Figure 3 that the five elements of the genetic algorithm
are coding, initial population generation, population fitness assessment, genetic manipulation, and
operation parameters’ setting.
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The objective function is given by

fm =
1
m

m

∑
i=1
|Tei − Tsi| (8)

where m is the number of measurement positions, Tei is the monitored temperature of the motorized
spindle, and Tsi is the simulation temperature of the motorized spindle. The fitness function is

f f it =
1

1 + fm
(9)

where fm and f f it are the termination conditions for iterations used to optimize the heat transfer
coefficient. When fm ≤ 0.5 ◦C, that is, f f it ≤ 0.67, the iterations are terminated. Moreover, to render
the research results more suitable for engineering applications, the maximum number of iterations is
limited to 100. If the value of the fitness function satisfies the conditions of convergence, the given heat
transfer coefficient is considered optimized. Otherwise, the genetic operation obtains a set of new heat
transfer coefficients, evaluates their fitness, and judges the convergence once again.
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Finally, the optimized heat transfer coefficients are used as the boundary conditions of the model
and the temperature field of the motorized spindle is predicted.

Compared with the finite element heat transfer coefficients of traditional models, those of the
model developed in this work are associated with the cooling system, lubrication system, control
system, and load of the motorized spindle, which have dynamic and nonlinear characteristics. As long
as the key position of spindle temperature can be measured, this model can predict the temperature
field of the motorized spindle under different operating conditions.Appl. Sci. 2017, 7, 1091 6 of 14 
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4. Temperature Field Prediction Model Application

A finite element model of the 170MD30 motorized spindle (Luoyang Bearing Science & Technology
Co., Ltd., Luoyang, Henan, China) was built in COMSOL( 5.2a, COMSOL AB, Tegnergatan 23,
Stockholm, Sweden), and is shown in Figure 4 [24]. Table 1 lists the main parameters of the motorized
spindle and Table 2 shows the material parameters of the model. In this model, the heating of the
motor and bearings is considered. The angular contact ball bearing, rotor, and stator are assembled on
the spindle while all screws, the vent, the oil hole, and other fine structures are ignored. The finite
element model had 544,565 degrees of freedom in terms of temperature. The characteristic shape
function was Lagrangian (square) and the GMRES iterative solver was used. The pre-smoothing scan
type was Sor and the post-smoother scan type was Soru. The rough solver Pardis was used as well. An
optimization model for the heat transfer coefficients of the motorized spindle was created in MATLAB
(8.0.0.783, Mathworks, Natick, MA, USA, 2012) and the results of the iterations were used as boundary
conditions of the finite element model to calculate the temperature field of the motorized spindle.
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Figure 4. Finite element model of the 170MD30 motorized spindle. (a) Geometrical model, (b) finite
element analysis meshing model.

Table 1. The main parameters of the motorized spindle.

Parameters Value

Rotor external diameter (mm) 79.4
Rotor iron core length (mm) 112

Stator internal diameter (mm) 80
Stator iron core length (mm) 110

Shaft maximum diameter (mm) 56
Shaft length (mm) 170

Motorized spindle external diameter (mm) 266
Bearing model 7008C

Table 2. Parameters of materials of the model.

Component Material Density (g/cm3)
Thermal Conductivity

(W/(m·◦C))
Specific Heat Capacity

(J/(kg·◦C))

Stator windings Copper 8.9 400.0 386.0
Stator core Silicon steel 7.9 35.0 535.0

Water jacket 40Cr 7.9 60.5 434.0
Rotor bar Cast aluminum 2.8 – 875.0

Shaft 40Cr 7.9 60.5 434.0
Coolant Water 1.0 0.6 4200.0

4.1. Acquiring Temperature Data

The prediction of the temperature field of the motorized spindle depends on the measured
temperature at critical positions. The experimental system used is shown in Figure 5, and included
an oil-gas lubrication system, a cooling system, a temperature test system, a loading system, and a
speed control system. Air pressure, air temperature, and intervals of fuel supply could be monitored
in the oil-gas lubrication system. The flow of cooling water and inlet temperature of the cooling system
could also be controlled and monitored, but only the outlet temperature of the cooling system could.
Consequently, the load and speed of the motorized spindle were also controllable and testable. The
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temperature test system consisted of temperature sensors placed on the surface of the motorized
spindle. The surface temperature could be measured under different conditions involving the load,
temperature of the cooling water, its flow rate, and the rate of flow of the lubricating oil using this
test system.
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4.2. Boundary Conditions of the Model

One of the boundary conditions of the prediction model is the rate of heat generation, which is
calculated based on losses in the motorized spindle. The motor losses and bearing friction losses could
be measured by the loss experimental device shown in Figure 6. The specific steps are as follows:
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First, the loading machine and motorized spindle are connected, power supply to the motorized
spindle is cut off, and it is rotated synchronously with the loading machine. At this point, the spindle
exhibits only frictional loss, and the input power PJ1 of the loading machine is tested.

Second, the motorized spindle and loading machine are disconnected, where the latter has the
same speed as in the first step, and the input power PJ2 of the loading machine is determined.
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Third, the motorized spindle and loading machine are disconnected, where the former has zero
load under the same speed as in the first step, the electrical parameter tester measures the input voltage
and current of the motorized spindle, and the input power pin of the motorized spindle is obtained. At
the same time, the torque/speed transducer can measure the output torque and speed of the motorized
spindle, and the output power pout of the motorized spindle can be measured. The loss due to friction
in the motorized spindle is

p f = PJ1 − PJ2 (10)

and the loss in the motor is
pe = Pin − Pout − p f (11)

Usually, two-thirds of the motor loss occurs at the stator and one-third at the rotor [25]. Using the
above method, the bearing loss, rotor loss, and stator loss of the 170MD30 motorized spindle (Luoyang
Bearing Science & Technology Co., Ltd., Luoyang, Henan, China) were measured at 10,000 rpm and
15,000 rpm as shown in Table 3. All losses were converted into heat, and the rates of heat generation of
the stator, rotor, and bearing are calculated as the boundary conditions of the finite element model.

Table 3. The heat rates of the motorized spindle.

Speed (rpm) Heat of Stator (w) Heat of Rotor (w) Bearing Heat (w)

10,000 326.68 143.32 77.08
15,000 452.67 226.33 151

In the finite element model for the temperature field of the motorized spindle, another
boundary condition is the heat transfer coefficient at the key positions. In this paper, the traditional
empirical formula [26–28] was used to calculate the initial value of the heat transfer coefficient. The
temperature-related test data for the optimization of the heat transfer coefficient were drawn from a
temperature test system consisting of 31 temperature sensors placed on the surface of the motorized
spindle. The arrangement of the temperature test is shown in Figure 7. Test position 1 was at the front
bearing, position 3 at the rear bearing, position 2 was directly between the first two, and the end of
the spindle formed test position 4. There were 10 thermocouples from test positions 1 to 3 that were
uniformly distributed along the direction of the circumference. Moreover, an infrared thermal sensor
was arranged at test position 4.
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To prove the validity of the model, the temperature field of the motorized spindle was predicted
under the following two conditions. The test parameters when the speed of the motorized spindle
was 10,000 rpm included cooling water flow of 0.25 m3/h, an initial temperature of 12 ◦C of the
cooling water, compressed air inlet pressure of 0.365 MPa, a fuel supply interval of 2 min, and
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compressed air temperature of 8 ◦C. The test parameters when the speed of the motorized spindle was
15,000 rpm featured cooling water flow of 0.32 m3/h, an initial temperature of 19 ◦C of the cooling
water, compressed air inlet pressure of 0.35 MPa, a fuel supply interval of 3 min, and compressed air
temperature of 18 ◦C. The initial and optimized values of the heat transfer coefficients are shown in
Table 4.

Table 4. The heat transfer coefficients.

Speed
(rpm)

Initial Value (W/(m·◦C)) Optimized (W/(m·◦C))

h1 h2 h3 h4 h5 h1* h2* h3* h4* h5*

10,000 9.7 146.8 121.4 71.4 190.0 20.0 188.4 188.2 127.7 500.3
15,000 9.7 178.4 142.5 109.1 223.9 10.8 171.3 223.8 134.9 331.4

4.3. Simulation

When the speed of the motorized spindle was 10,000 rpm, the isotherm was obtained from the
temperature field prediction model to optimize the heat transfer coefficient as shown in Figure 8.
Figure 8a,b show that the isotherms changed significantly with increase in the number of iterations of
the heat transfer coefficient from 25 to 50. However, there was a slight change for iterations 75 to 100 as
shown in Figure 8c,d. This implies that the results of the optimization of the heat transfer coefficient of
the motorized spindle based on the genetic algorithm were convergent.
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Similarly, Figure 9 shows the isotherm of the motorized spindle at 15,000 rpm. Figure 9a shows
the isotherm for the initial values of the heat transfer coefficient and Figure 9b the isotherm when the
coefficient was optimized over 100 iterations. Comparing Figure 9a,b, the effect of the heat transfer
coefficient on the temperature field of the motorized spindle appeared to be significant.Appl. Sci. 2017, 7, 1091 11 of 14 
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4.4. Results and Comparison

The simulation and monitored temperatures of the motorized spindle were compared to determine
the accuracy of the model. Figure 10 shows this comparison after the heat transfer coefficient was
optimized for 100 iterations. Figure 10a shows the results for 10,000 rpm and Figure 10b for 15,000 rpm.
From Figure 10, it is clear that the predicted temperatures were very close to the experimental
measurements for the latest time steps.
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To further validate the temperature field of the prediction model of the motorized spindle, it is
necessary to compare the simulation temperatures and test temperatures of other locations on the
motorized spindle, and to calculate the overall error in the model. In the test system, the temperature
of water at the outlet was assumed to be consistent with that of the water jacket at the given location.
The temperature of water at the outlet can be determined; therefore, the temperature of the water
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jacket outlet could be used to determine the accuracy of prediction. The position of the outlet is shown
in Figure 1. The relative mean error of the predictions of the model is
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1
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n

∑
t=1

∣∣∣∣∣∣Tt −
_
T t
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The variance s2 and standard deviation s of the prediction model are
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Figure 11 shows the predicted and measured differences in temperature at the water outlet. Both
the table and the figure show data pertaining to the temperature of the water jacket outlet for spindle
speeds of 10,000 rpm and 15,000 rpm. Also shown in Figure 11 is the prediction error in the model.
According to Formulae (12)–(14), when the spindle speed was 10,000 rpm, the relative mean prediction
error was 1.5%, variance was 2.87 × 10−4, and the standard deviation was 0.017. At 15,000 rpm,
the prediction error was similarly small, the relative mean prediction error was 3.6%, variance was
2.0 × 10−3, and the standard deviation was 0.045.
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5. Conclusions

In this paper, a hybrid model to predict the temperature field of a motorized spindle was proposed
and experimentally verified. The model, based on the finite element method and temperature data
collected at the surface of a motorized spindle, is dynamic, and can predict the characteristics of the
temperature field distribution of the motorized spindle. The heat transfer coefficients were optimized
based on the genetic algorithm by using surface temperature data as the boundary conditions of
the model. A comparison of simulation analysis with experimental results showed that the model
can predict the temperature field with high accuracy. The prediction of the temperature field of the
motorized spindle can provide the basis for the assessment of its state. In future work, a prediction
model of the thermal distortion of the motorized spindle based on the temperature field prediction
model will be built to found the automatic compensation of thermal deformation.
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