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Abstract: The problem of inverse kinematics is fundamental in robot control. Many traditional
inverse kinematics solutions, such as geometry, iteration, and algebraic methods, are inadequate
in high-speed solutions and accurate positioning. In recent years, the problem of robot inverse
kinematics based on neural networks has received extensive attention, but its precision control is
convenient and needs to be improved. This paper studies a particle swarm optimization (PSO) back
propagation (BP) neural network algorithm to solve the inverse kinematics problem of a UR3 robot
based on six degrees of freedom, overcoming some disadvantages of BP neural networks. The BP
neural network improves the convergence precision, convergence speed, and generalization ability.
The results show that the position error is solved by the research method with respect to the UR3
robot inverse kinematics with the joint angle less than 0.1 degrees and the output end tool less than
0.1 mm, achieving the required positioning for medical puncture surgery, which demands precise
positioning of the robot to less than 1 mm. Aiming at the precise application of the puncturing robot,
the preliminary experiment has been conducted and the preliminary results have been obtained,
which lays the foundation for the popularization of the robot in the medical field.
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1. Introduction

Robots are currently used in industrial and medical applications where high accuracy, repeatability,
and stability of the operations are required [1]. With the development of modern control technology,
robot technology has been widely used in new fields, such as in medical robots. A surgical robot
operating system is a collection of a number of modern, complex, high technologies, and the
doctor, through the robot system, can perform surgical operations without touching patients.
A minimally-invasive surgical robot is a combination of medical image processing technology and
the operation of the mechanical arm to perform puncture surgery on the patient, to achieve minimal
invasiveness, accuracy, efficiency, and stability.

The most important problem of the serial robot, which is the solution of the kinematics of the
manipulator, can be successfully implemented. Robot kinematics handles the mapping between joint
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space (h) and Cartesian space (x, y, z), where h represents the positions of the joints of a robotic
manipulator and (x, y, z) represent the position of the end effector of the manipulator [2]. Kinematics
analysis of the robot includes two aspects: the forward kinematics and the inverse kinematics. The forward
kinematics are the mappings from the joint angle to the Cartesian coordinate system. The inverse
kinematics are known to solve the joint variables under the position and posture of the end effector.

Traditionally, there are three methods to solve the inverse kinematics problem of the robot:
the geometric method, the algebraic method, and the iterative method. Any method has its own
shortcomings in solving the inverse kinematics. For instance, closed-form solutions are not guaranteed
for the algebraic methods, and closed-form solutions for the first three joints of the robot must exist
geometrically when the geometric method is used. Similarly, the iterative inverse kinematics solution
method converges to only one solution that depends on the starting point [1]. These methods often
require high-performance computer hardware, and the calculation accuracy cannot be guaranteed.
For these reasons, researchers have begun to focus on the application of artificial neural networks to
the kinematics of the robot.

The inverse kinematics analysis of the six degrees of freedom (DOF) industrial robot is carried out
by using the back propagation neural network algorithm [3], but this method cannot solve the problem
when the joint angle error is too large. In [4], a method is presented for solving the inverse kinematics
of redundant robots and the prevention of singular points. In [5], for the singular series robot arm
configuration and uncertainty, a method was proposed based on an artificial neural network, and the
training process is very difficult, and needs sensors added to each joint.

There are many researchers focusing on the genetic algorithm to obtain the inverse kinematics
of the robot [6–8]. Kamal and Djamel [6] researched particle swarm optimization (PSO) and genetic
algorithms (GA) for finite impulse response (FIR) filter design. Kalra and colleagues [7] used an
evolutionary approach based on a real-coded genetic algorithm to obtain the multimodal inverse
kinematics problem of industrial robots. In their method, the fitness function is defined in a manner that
requires separate evaluation of the positional error of the robot and the total joint displacement. These
two approaches can be used together to solve some specific problems. Mustafa and Kerim [8] used four
different optimization algorithms (the genetic algorithm (GA), the particle swarm optimization (PSO)
algorithm, the quantum particle swarm optimization (QPSO) algorithm, and the gravitational search
algorithm (GSA)) for solving the inverse kinematics problem of a four DOF serial robot manipulator.

The main purpose of this paper is to improve the precision of the inverse kinematics solution
from a particle swarm optimization (PSO) back propagation (BP) neural network algorithm, especially
for processing data in a short period of time, and the time in which the robot is in motion. The particle
swarm optimization algorithm is employed to find the global advantage with the BP neural network
to find the optimal solution, overcome some inherent defects (easy to fall into local minimum, slow
convergence and poor generalization ability etc.) of the BP neural network, and thus further improve
the convergence precision of BP neural network, the convergence speed, and generalization ability.
The main contribution is that the algorithm is applied to the inverse kinematics of UR six degree of
freedom manipulator, which guarantees the accuracy of the end position accuracy of the robot with
six degrees of freedom within 0.1 mm, and the robot joint angle at 0.01 degrees. The main innovation
of this study is the application of this technique in the precise localization of medical needle surgery.
In the experimental part, we achieved very good results and achieved high-precision positioning of the
puncture operation. We had to ensure that the experimental puncture accuracy was less than 1 mm,
which can meet the needs of medical needle surgery.

2. Research and Methods

2.1. The Principle of Precision Positioning of a Puncture Robot

Minimally-invasive surgery (MIS) is a cost-effective alternative to open surgery whereby essentially
the same operations are performed using specialized instruments designed to fit into the body through
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several tiny punctures instead of one large incision [9]. The principle of the operation of the puncture
robot is shown in Figure 1.
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Figure 1. Position principle of the puncturing robot.

Firstly, patients require a CT scan, and the medical image will be generated by the computer to
complete the three-dimensional reconstruction. Then a doctor can observe and diagnose the disease
according to the three-dimensional model. Finally, the doctor determines the position of the puncture
target point coordinates, and determines the insertion point through the analysis of the patients’ skin.
Between the target point and insertion point of connection is the puncture route (the green line in
Figure 1). The route must avoid the patient’s bones, blood vessels, and other organs. The accurate
puncture route directly determines the quality of the puncturing operation. Research on precise
positioning technology of the manipulator used in this study was conducted to establish the series
robot puncture route. The puncture route target point and insertion point coordinates are sent to the
robot through the data processing computer, and at the end-effector of the robot, the puncture guide
tube accurately positions the needle into the patient’s skin, the puncture route keeping with the robot
end position and posture.

2.2. Analysis of the UR3 Manipulator

The UR3 manipulator (Figure 2) is a new and small six DOF collaborative robotic by the Universal
Robots Company (Odense, Denmark). The key features of the UR3 manipulator are that it is a flexible,
lightweight, collaborative, and safe table-top robot. The UR3’s six joints contribute to the transformational
and rotational movements of its end effector. The kinematics analysis of the UR3 is more complex than
other manipulators. The Schematic and frame assignment of UR3 is shown in Figure 3.
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Currently, there are no exact Matlab models for this robot. In this paper, we researched the precise
positioning technique using the UR3 for medical puncture surgery. Kinematic modeling of the robot
based on the Denavit-Hartenberg (D-H) parameters provided by the UR3 manual are shown in Table 1.

Table 1. Denavit-Hartenberg (D-H) parameters for the UR3 robot.

Link θ (rad) a (mm) d (mm) α (rad)

Joint 1 θ1 0 151.9 π/2
Joint 2 θ2 –243.65 0 0
Joint 3 θ3 –213.25 0 0
Joint 4 θ4 0 112.35 π/2
Joint 5 θ5 0 85.35 –π/2
Joint 6 θ6 0 81.9 0

The robot homogeneous transformation matrix i−1
i T for a single joint is expressed in Equations (1)

and (2), which uses four link parameters [10]. This transformation is known as the D-H notation:

T = Ttran(zi−1, di)Ttran(xi−1, ai)Trot(xi−1, ai) (1)

i−1
i T =


cθi −cαisθi sαisθi aicθi
sθi cαicθi −sαicθi aisθi
0 sθi cαi di
0 0 0 1

 (2)

based on the transformation matrix between adjacent links i−1
i T(i = 1, 2, . . . , 6). Among them, ai, di, αi

depend on the constant of robot structure parameters; θi(i = 1, 2, . . . 6) represent the joint variables,
cθi = cos θi, sθi = sin θi, sαi = sin αi, and cαi = cos αi. Thus, we can obtain the transformation matrix
from the base to the end effector, whose position matrix by the homogeneous coordinate transformation
is given by Equation (3):

0
6T =

6

∏
i=1

i−1
i T =

[
0
6R3×3

0
6P3×1

0 1

]
=


r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1

 (3)

Among them, 0
6R3×3 is the rotation matrix of the robot end effector, and 0

6P3×1 is the position
matrix of the robot end effector, where rij represents the rotational elements of the transformation
matrix (i and j = 1, 2, 3) and px, py, pz are the elements of the position vector.

A UR3 robot with six DOF was used in this study. The manipulator has a six DOF Cartesian
position of the end effector (x, y, z), which is obtained directly from the 0

6T matrix [11]. The orientation
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of the end effector is described according to the RPY (roll-pitch-yaw) rotation. These rotations are the
angles around the Z-Y-Z axis, as shown in Equation (4):

RZ′Y′Z′ (α, β, γ) =

 cαcβcγ− sαsγ −cαcβsγ− sαcγ cαsβ

sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ

−sβcγ sβsγ cβ

 (4)

Solving the 0
6T matrix, we can obtain the angles, which are calculated by Equations (5)–(7):

α = Atan2(r23, r13) (5)

β = Atan2(r13 cos α + r23 sin α, r33) (6)

γ = Atan2(−r11 sin α + r21 cos α, r22 cos α− r12 sin α) (7)

These equations can provide the robot position, which is relative to the universe coordinate
system [12]. The coordinates of each joint are used to describe the position and orientation of the robot.
The forward kinematics equation of the robot is described by Equation (8):

Fforward kinematics(θ1, θ2, θ3, θ4, θ5, θ6) =
(

px, py, pz, α, β, γ
)

(8)

As shown in Equation (8), when the six joint angles of the robot are known, the Cartesian
coordinate system of the robot can be calculated according to the forward kinematics [13]. However,
the six joint angles of the robot must be computed in an industrial application, so the inverse kinematics
equation is solved by Equation (9):

Finverse kinematics
(

px, py, pz, α, β, γ
)
= (θ1, θ2, θ3, θ4, θ5, θ6) (9)

In the next part, α, β, γ, px, py, pz will be used as the input variables of the BP neural network
model, and the joint angles θi(i = 1, 2, . . . , 6) will be used as the output variables of the BP
neural network.

2.3. BP Neural Network

A BP (back propagation) network, which was proposed by Rumelhart and McCelland in 1986, is
a type of error back propagation training algorithm for the multilayer feedforward network. It consists
of two processes: the forward spread of information and the reverse propagation of error; the neural
network model is one of the most widely used. BP neural networks can be compared to the input and
output of the highly nonlinear mapping, which is characterized by the spread of the error to correct
the weights and thresholds of the network. By approximating the nonlinear function several times,
the BP neural network can approximate the complex function. A BP neural network model of a single
neuron is shown in Figure 4.
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For a given artificial neuron, xj(j = 1, 2, · · · , n) is the component of the input vector of the neuron,
ωij(j = 1, 2, · · · , n) is the weight component of the input vector of the neuron, andωi0 = θ represents
a threshold or bias. Usually, the x0 input is assigned the value −1, which makes it a bias input with
wk0 = θ. This leaves only actual inputs to the neuron: from x1 to xn.

The output of the yi neuron is expressed in Equation (10):

yi = f (neti) = f (xw) = f (
n

∑
j=1

wijxj − θ) (10)

where f is the transfer function. We approximate the function by the sigmoid function. If the weight is
positive, it means that the corresponding input point is in a state of excitement and has a strengthening
effect; if the weight is negative, it has an inhibiting effect. The function is expressed in Equation (11):

f (x) =
1

1 + e−ax , (0 < f (x) < 1) (11)

In this paper, according to the network structure, the input layer has six neurons, respectively,
corresponding to α, β, γ, px, py, pz. The output layer has six neurons: the six joint angles corresponding
to the UR3 robot’s six angles θ1, θ2, θ3, θ4, θ5, and θ6. The number of hidden layer units is a very
complicated problem: its determination needs to agree with the experience of the designer and several
tests. The hidden layer unit number with the number of input/output units has a direct relationship;
if the number is too great, not only will the training time increase, causing the learning time to become
too long, but the error may be large. If the number is too low, then the neural network may have too
little information to solve the problem. Therefore, it is very important to select a suitable number of
hidden layers [14,15]. In this paper, after a large number of comparisons and experiments, two hidden
layers are selected: 24 and 18 units, respectively. In this paper, the design of the BP neural network
topology is shown in Figure 5.
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Figure 5 illustrates the topology of the designed network which consists of three layers, one
of which is a hidden layer, presented to store the internal representation. The fundamental idea
underlying the design of the network is that the information entering the input layer is mapped as an
internal representation in the units of the hidden layer (s) and the outputs are generated by this internal
representation, rather than by the input vector. Given that there are enough hidden neurons, input
vectors can always be encoded in such a form that the appropriate output vector can be generated
from any input vector [16].
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Although BP neural networks have many remarkable characteristics, they also have some inherent
defects: easily falling into a local minimum, slow convergence speed, and weak generalization ability.
Therefore, they require some improvement by combining with an optimization algorithm.

2.4. PSO Optimization Combined with the BP Neural Network

Particle swarm optimization (PSO) was proposed by Kennedy and Eberhart [17], and is derived
from the study of the behavior of bird predation combined with the regularity of the collective activity
of birds to establish a simplified model by the population. The PSO algorithm also belongs to the area
of evolutionary algorithms (EAs).

PSO, which is similar to a genetic algorithm, is an iterative optimization algorithm [18,19].
The system is initialized with a set of random solutions. PSO does not have a genetic algorithm
“crossover” and “mutation” operation, rather, it follows the current search to find the optimal value of
the global optimum. The PSO algorithm was brought to the attention of academic circles as it has the
advantages of easy implementation, high precision, fast convergence, easy adjustment parameters,
and so on. PSO has been extensively used in function optimization, neural network training, fuzzy
control systems, and genetic algorithms.

Particle swarm optimization (PSO) is a parallel algorithm, and finds the optimal solution by
iteration. In each iteration, the particle updates itself by tracking two extremes [20]. The first extreme
is the optimal solution of the particle itself, called the personal best value (pbest); the other is the
group best value (gbest). The target value is set as the best value of the fitness function, and i particles
can be expressed as a D-dimensional vector Xi = [Xi1, Xi2, . . . , Xid], and the velocity of particles can
be expressed as Vi = [Xi1, Xi2, . . . , Xid]. The current best position of the particle is represented as
Xpbesti = Xpbesti1, Xpbesti2, . . . , Xpbestid, and the current optimal position of the individual is represented
by Xpbesti. The best position of the particle group is represented as Xgbesti = Xgbest1, Xgbest2, . . . , Xgbestd,
Xgbest, representing the historical optimal location of a group. In each iteration, the particle swarm
updates its speed and position by the individual extreme value, and the group extreme value.
The updated formula is shown in Equations (12) and (13):

Vk+1
id = ωVk

id + c1r1

(
Pk

ib − Xk
id

)
+ c2r2

(
Pk

gd − Xk
id

)
(12)

Xk+1
id = Xk

id + Vk+1
id (13)

where Xk
id and Vk

id are, respectively, the position and velocity of the i-th particle at the k-th iteration.
V is the velocity of the particle, ω is the weighting function, r1 and r2 are random numbers between 0
and 1, and c1 and c2 are learning factors; usually, c1 = c2 = 2. Pk

ib − Xk
id is the deviation of the individual

extreme value, and Pk
gd−Xk

id is the deviation of the group extreme value. In the process of optimization,
the velocity of each particle is limited to the maximum speed of Vmax; if the update speed is greater
than the set Vmax, then the one-dimensional velocity is limited to Vmax.

This part of the research setup follows the flowchart based on the PSO-BP neural network as
shown in Figure 6, and the steps are as follows:

1. Firstly, one needs to determine the topology of the neural network, initialize the BP neural
network, and determine the initial value and threshold.

2. In the PSO algorithm, one needs to initialize the particle velocity, calculate the corresponding
fitness function, and create the individual extreme and extreme groups.

3. Then update the particle’s velocity, position, and fitness function; update the individual extreme
and extreme groups, and determine whether it meets the conditions. If the conditions are not
satisfied, the parameter is updated again. If the conditions are satisfied, the optimal solution
is obtained.

4. Finally, the optimal solution of the PSO algorithm is given by the trained BP neural network,
and then the weights and thresholds are updated to determine whether the training results meet
the termination condition. If the condition is not satisfied, then the neural network is trained
again; if it is satisfied, then finish the network testing and output the result.
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The fitness function of the PSO algorithm is defined as the square sum of the difference between the
joint angle and the desired joint angle when the BP neural network is trained, expressed in Equation (14):

J f itness(k) =
N

∑
i=1

(
θk − θj

)2 (14)

The network output θk is a function of the weight of ω: θk = f (ω).
This part studies the PSO algorithm and BP neural network, using the PSO algorithm to

find the global advantages combined with the BP neural network to find the optimal local
solution, so as to further improve the BP neural network convergence precision, convergence speed,
and generalization ability.
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3. Experimental Results and Validation

Combined with the BP neural network optimized by the PSO algorithm, the algorithm is trained
by using the sample data [21]. In the simulation experiment, 950 groups of data were selected as the
training samples, and 50 groups of data were used as the test samples by using the UR3 manipulator
in the working space of 1000 groups of data. The samples of the UR3 robot end position coordinates
and Euler angles were used as the input nodes of the BP neural network, and the UR3 robot’s six joint
angles for the 50 sets of data output the forecast sample; then, using the PSO algorithm to optimize
the convergence, the BP neural network weights and thresholds repeatedly trained the six robot joint
angles, providing 50 sets of data for the output prediction samples.

In the course of training, the position vector and the rotation angle of the UR3 robot are used as
the input points of the BP neural network, and the values of the six joint angles are the output points.
The PSO algorithm is used as the optimization of the fitness function. The weights and thresholds of
the BP neural network are obtained by particle swarm optimization, and the output value of each joint
variable is obtained by a simulated test.

For the network after training, we get the error range of the test set and the range of the mean
square error (MSE) which is shown in Table 2. The error range of 50 sets of joint angles, the error range
of the joint angle by the BP neural network was calculated as [–0.3059, 0.4130], and the mean square
error (MSE) was in the range of [6.72 × 10−3, 8.12 × 10−2]; the error range of the joint angles by the BP
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neural network-optimized PSO was calculated as [–0.1859, 0.1079], the mean square error (MSE) was
in the range of [2.39 × 10−4, 6.42 × 10−3]. Figures 7–12 show the contrast of the BP neural network,
and the PSO-BP neural network for the output robot joint angle error4θ. Figure 13 is the comparison
of the mean square error (MSE) of the two algorithms.
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Table 2. Error range test set and mean square error.

Joint Angles and MSE
(Mean Square Error)

BP (Back Propagation)
Neural Network

PSO (Particle Swarm Optimization)-BP
Neural Network

∆θ1 −0.2005–0.4130 −0.0534–0.065
∆θ2 −0.2100–0.1954 −0.1199–0.0605
∆θ3 −0.2178–0.2046 −0.0672–0.0704
∆θ4 −0.3059–0.2178 −0.0486–0.0508
∆θ5 −0.2376–0.1661 −0.1859–0.0526
∆θ6 −0.2376–0.3168 −0.0658–0.1079
MSE 6.72 × 10−3–8.12 × 10−2 2.39 × 10−4–6.42 × 10−3

The experimental results show that, after the machine arm BP optimization PSO neural network
obtained by the inverse kinematics of the robot is compared with the BP neural network joint angle
error to a high level, the value of the mean square error (MSE) is also enhanced by an order of
magnitude. The BP neural network based on PSO optimization is used to solve the inverse kinematics
of the manipulator and to verify its effectiveness.
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4. Application of the Puncture Robot

The technology of the puncture robot is new in many research fields, such as medicine, mechanics,
imaging, robotics, and so on. This part is based on CT image processing and three-dimensional
reconstruction for the guidance and the six degrees of freedom for robot precision positioning technology
research; the final step towards completion of medical minimally-invasive surgery with precise positioning
control (the principle is shown in Figure 1). The brief process of the experiment is as follows:

(1) Firstly, a piece of porcine spine meat is affixed to some fixed marked points (Figure 14a),
and then the DICOM (Digital Imaging and Communications in Medicine) image is obtained by
CT scanning.

(2) The CT image is copied to the image processing computer, and the 3D reconstruction is performed on
the computer (Figure 14b). Then the coordinates of the marked points in the 3D model are selected.

(3) We can then use, as a coordinate measuring arm, the mechanical measurement of spinal meat
marked points on the robot with six degrees of freedom, combined with the coordinates of the
marked points in the CT 3D model. Through the space registration conversion, we can obtain
the position relationship between the spine meat in the CT 3D model coordinate system, and the
robot coordinate system.

(4) The coordinates of the target points and the coordinates of the needle insertion points are selected
in the CT 3D model, which determines the route of the needle insertion. The position and rotation
in the robot coordinate system are obtained according to the needle insertion route, such as the
green line in Figure 14b.

(5) Through the POS-BP neural network algorithm to train the data, we obtain the corresponding
joint angles of the robot’s end puncture needle guide pipe when required to reach the specified
position and rotation. After the command is sent, the robot moves to the position and ensures its
rotation (Figure 14c).

(6) The doctor confirms the positioning of the robot and inserts the needle into the porcine spine
(Figure 14d). Once again, through the CT scan of the porcine spine meat, and the reconstruction
of the three-dimensional image, a comparison of the needle in the three-dimensional model and
the surgical planning of the needle route is conducted, so as to determine the success of the
puncture operation.
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In this part, we researched the puncture surgery experiment built on porcine spine meat, and verified
the PSO-optimized BP neural network algorithm for a robot based on the inverse kinematics problem.
The experiment has achieved good results, the accurate positioning of the UR3 robot was ensured
within 0.1 mm, and the precision of the robot joint angle was ensured at 0.01 degrees. The results fully
met the requirements of the puncture positioning accuracy requirements within 1 mm.

5. Conclusions

In this paper, a hybrid approach has been presented which combines the particle swarm
optimization algorithm and BP neural network algorithms to solve the inverse kinematics problem for
a six degree manipulator based on end-effector error minimization. The proposed approach combines
the characteristics of particle swarm optimization to overcome some inherent defects of BP neural
network, and improve the convergence precision of the BP neural network, the convergence speed,
and generalization ability. It is difficult to obtain high-precision inverse kinematics solutions because
the six DOF robot arm is complex, and there are many problems such as large computational complexity,
no guarantee of accuracy, long computation time and so on. In this case, the proposed method will be
particularly useful to improve the precision of the result obtained from the PSO-optimized BP neural
network algorithm. The joint error and mean square error performance of the PSO-optimized BP
neural network are improved by an order of magnitude over the pure BP neural network.

The innovative application of this technology is used in the precise positioning technology of
medical puncture surgery; to perform the traditional puncture operation in low precision; to solve poor
reliability; to reduce the pain of the patient; to tackle the large labor intensity of the doctor; to eliminate
over reliance on the experience of doctors and to address other issues. After obtaining a large number
of experimental data, the accuracy can meet the requirements of precise positioning in medical needle
surgery, and it has important theoretical and practical value in the research of the key technologies of
precise puncturing robots.
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