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Abstract: We fabricated a soft thin-film vibrotactile actuator, which can be easily inserted into
wearable devices, based on an electroactive PVC gel. One of the most important factors in fabricating
a soft and thin vibrotactile actuator is to create vibrational force strong enough to stimulate human
skin in a wide frequency range. To achieve this, we investigate the working principle of the PVC gel
and suggest a new structure in which most of electric energy contributes to the deformation of the
PVC gel. Due to this structure, the vibrational amplitude of the proposed PVC gel actuator could
considerably increase (0.816 g (g = 9.8 m/s2) at resonant frequency). The vibrotactile amplitude is
proportional to the amount of input voltage. It increased from 0.05 g up to 0.416 g with increasing
applied voltages from 200 V to 1 kV at 1 Hz. The experimental results show that the proposed
actuator can create a variety of haptic sensations.
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1. Introduction

Due to the advances of computer hardware and material engineering, electroactive polymers
(EAPs), which can be grouped into two categories of ionic and non-ionic EAPs, have recently been
receiving a great deal of attention as a raw material for compact haptic actuators. In ionic EAPs,
positive ions move toward the cathode under voltage input, and this movement makes the ionic EAP
actuate. For making ionic EAP actuators, researchers have been studying hydrogels and ionic polymer
metal composites (IPMCs). Xue et al. developed an electrically controllable supramolecular hydrogel as
an actuator from a self-assembling short peptide [1]. Lee et al. investigated the effect of metal ion type
on the movement of catechol-modified hydrogel actuators and revealed that the type of an ionoprinted
metal ion can be used to tune the rate and extent of actuation for catechol-containing hydrogel [2].
Yang et al. proposed a soft bending actuator with graphene oxide-containing hydrogels to enhance its
bending [3]. Migliorini et al. presented an underwater soft actuator using Na-4-vinylbenzenesulfonate
(Na-4-VBS) based homeostatic hydrogel [4]. Feng et al. presented an actuator for controlling
scissor-type grippers using IPMC [5]. Tas et al. developed an ion-selective IPMC actuator based
on crown ether [6]. Although the ionic EAP creates a large bending motion under relatively low input
voltage (1~3 V), it is normally operated in wet conditions and it requires high electric power (high
electric current) for operation. Another problem is that its actuation force is not sufficiently strong
to stimulate human skin. Unlike ionic EAP, non-ionic EAP has a fast response time and can create
stronger force [7]. A new vibrotactile tactile module (ViviTouchTM) based on a non-ionic EAP was
developed in order to convey realistic haptic sensation to game users [8]. Since the performance of
the non-ionic EAP is influenced by the ratio of pre-stretching, a new mechanism for stretching the
non-ionic EAP was addressed [9,10]. An arrayed tactile display with liquid coupling was presented
using a non-ionic EAP [11]. Graphene or hydrogel was applied to transparent non-ionic EAPs to
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make the actuator transparent [12,13]. In the case of non-ionic EAP, it quickly expands in planar
directions and compresses the thickness direction when voltage is applied to the electrodes, which
are attached at both sides of the EAP. As soon as the applied voltage is removed, the non-ionic EAP
quickly returns to its original shape. By this fast response behavior, non-ionic EAPs have been used for
vibrotactile actuators. However, non-ionic EAPs require a pre-stretching or multi-stacking process to
maximize force that is strong enough to stimulate human mechanoreceptors. Since the pre-stretching
process for a non-ionic EAP makes the thickness of the actuator thin, it can be easily torn by small
external force, even the high input voltage [14]. Another problem is that the non-ionic EAPs require
stretchable electrodes. These problems cause low durability and/or a complex manufacturing process
in fabrication of a haptic actuator based on non-ionic EAPs.

In order to solve these problems, a non-ionic plasticized polyvinyl chloride gel (PVC gel) was
previously introduced [15,16]. The PVC gel shows electroactive and reconfigurable behavior with
applied voltage. When we provide voltage input to the PVC gel, the PVC gel deforms toward an anode.
As we remove a voltage input, it quickly returns to its initial shape by the elastic restoring force of
the PVC gel, observing reversible deformation. Additionally, the PVC gel does not need stretchable
electrodes for operation. Due to the characteristics of the PVC gel, it can serve as a material for a soft
thin-film vibrotactile actuator. A contraction type soft actuator using poly vinyl chloride gel was
developed [17]. Their work has excellent performance in contraction at low frequency. However, it is
not easy to use their work to fabricate vibrotactile actuators which are operated at high frequencies
(over 150 Hz).

Generally, the elastic restoring force is proportional to the displacement. Hence, to maximize
the displacement in a small and thin actuator, wave-shaped PVC gel, which has valleys and ridges,
was designed [15]. This wave-shaped PVC gel having valleys and ridges was placed between two
parallel electrodes, and the valleys and the ridges were contacted to an upper electrode (for a cathode)
and a lower electrode (for an anode), respectively. Under applied electric voltage, the deformation of
the PVC gel mostly occurs at the ridges of the wave-shaped PVC gel, while the deformation scarcely
occurs at the valleys of the wave-shaped PVC gel. That is, applied electric energy at the valleys of the
wave-shaped PVC gel makes a very small contribution to the actuation of the PVC gel and almost
disappears. In order to overcome the limitations of the wave-shaped PVC gel with valleys and ridges,
it is necessary to consider a new structure which maximizes its vibrational force.

In this paper, we propose a new structure of an electroactive PVC gel based vibrotactile actuator
for increasing vibrational force with minimizing energy loss. Furthermore, we conduct an experiment
to investigate four haptic behaviors (one is from the proposed actuator and the others are from the
previously presented flexible actuators) and to compare them. The results show that the haptic
behavior of the proposed actuator is superior to the previous actuators and the proposed actuator can
be applied to consumer electronic devices—such as flexible display devices, smart watches, and smart
bands—to create haptic sensation. This paper is organized as follows. Section 2 briefly describes the
previously proposed flexible vibrotactile actuator and its disadvantages. In Section 3, a new design
of a new-shaped soft thin-film vibrotactile actuator based on PVC gel is proposed. In Section 4, we
quantitatively measure the haptic behavior of the proposed actuator, and compare the haptic behavior
of the proposed actuator with other previously presented soft vibrotactile actuators. Furthermore, we
investigate the haptic behavior of the proposed actuator on various curved objects. Finally, Section 5
summarizes the present work.

2. Design of PVC Gel Vibrotactile Actuator

To fabricate a wave-shaped polyvinyl chloride (PVC) gel (PVC gel), we prepared purified PVC
powder, acetyl tributyl citrate (ATBC) plasticizer, and tetrahydrofuran (THF). The purified PVC
powder and the ATBC plasticizer were dissolved in the THF solution during 4 h to incorporate
the ATBC plasticizer completely into the PVC. The uniformly mixed PVC/ATBC solution was
poured into a Teflon dish that was carved into a wave-shaped form. After sufficiently evaporating
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the THF in the PVC/ATBC solution at room temperature for 72 h, a wave-shaped PVC gel was
obtained. Figure 1 shows the fabrication process of the wave-shaped PVC gel. Using the obtained
wave-shaped PVC gel, a soft vibrotactile actuator was presented as shown in Figure 2. The actuator
was composed of an upper layer, a wave-shaped PVC gel layer, and a lower layer. The upper layer
was composed of an actuation part, bars, and a flexible supporter. The thickness of the wave-shaped
PVC gel was 400 µm, and the width of the wave was 1 mm.
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The behavior of the PVC gel under voltage input is different from the conventional non-ionic
EAPs. When voltage input is applied to the PVC gel, the PVC gel deforms toward an anode by moving
the dipoles with PVC chains as shown in Figure 3. Detailed information about the mechanism of the
PVC gel can be found in our previous work [15]. In the previous work, a wave shape of the PVC
gel was considered for maximizing the elastic restoring force because the elastic restoring force is
proportional to the displacement. There is considerable deformation in the ridges of the wave-shaped
PVC gel, whereas there is little deformation in the valleys as we can see in Figure 3. In Figure 3, dr, and
dv are displacements of a ridge and a valley, respectively. From the Figure 3, most input energy applied
to the valleys at the wave-shaped PVC gel scarcely affected to the operation of the wave-shaped PVC
gel. To overcome the limitation of our previous work, we designed a new structure for concentrating
most of electric energy on the actuation.
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3. A New Design of an Improved Soft Thin-Film Vibrotactile Actuator

As we mentioned above, the conventional PVC gel based vibrotactile actuator did not fully reflect
the characteristics of the wave-shaped PVC gel. In this section, we present a new improved soft
vibrotactile actuator that reflects the characteristics of the wave-shaped PVC gel. Figure 4 shows
the fabrication process of the improved soft vibrotactile actuator based on PVC gel. First, we
prepared a flexible polyimide film (Kepton) having 20 mm (H) × 50 mm (W) × 200 µm (T), which has
heat-resisting and insulating properties, flexibility, and high durability [18]. After that, we prepared
an aluminum mask for sputtering electrodes onto the polyimide film. This aluminum mask, whose
size is 20 (H) × 50 (W) × 1 mm (T), has 20 × 20-arrayed rectangular holes in order to position all
rectangular holes in the center of the corresponding ridges of the wave-shaped PVC gel. The fabricated
aluminum mask was loaded onto the polyimide film, and then a 100 nm gold was sputtered onto
the polyimide film and the mask. By removing the mask, the patterned electrode can be applied
onto the polyimide film. We then carried out a laser cutting process for fabricating plate springs at
both ends of the polyimide film (Figure 4e). These two plate springs were considered for helping the
restoration of the actuator when the applied input voltage was removed. We named the polyimide
with electrodes in Figure 4e a gold-sputtered polyimide film. A wave-shaped PVC gel was loaded onto
the fabricated gold-sputtered polyimide film. Next, the wave-shaped PVC gel was covered by another
gold-sputtered polyimide film as shown in Figure 4g. By joining two gold-sputtered polyimide films,
we finally obtained a soft vibrotactile actuator (Figure 4h,i). According to the laser cutting process,
the actuation part can easily move in an up and down direction with voltage inputs (Figure 5a,b).
Due to this structure, the electric energy could be focused onto the ridges of the wave-shaped PVC gel.
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4. Experiments and Results

The stiffness of the PVC gel is an important factor in the proposed actuator. Hence, we investigated
the stress–strain behavior which is associated with the stiffness of the PVC gel. To investigate the
stress–strain relationship of the PVC gel, uniaxial tensile tests of the PVC gel was carried out using
dumbbell-shaped specimen, which was cut out from a flat drop-cast film. The test was conducted
using a universal testing machine (UTM, H5KT, Tinius Olsen, PA, USA) according to ASTM D638
type V with a crosshead speed of 50 mm/min at room temperature. Figure 6 shows the stress–strain
relationship of the PVC gel. We can see that the stress increases as the strain increases.
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We prepared two soft PVC gel based vibrotactile actuators (one is the proposed actuator and the
other is the previously developed actuator), and we also prepared the other soft actuators based on
polyurethane [19] and cellulose acetate [20] in order to investigate their haptic behaviors and to compare
them. The prepared four actuators have the same size but have different structure. Figure 7 shows the
experimental environment consisting of a function generator (Protek 9305, Protek, Incheon, Korea),
an accelerometer (Charge Accelerometer type 4393, Bruel & Kjaer, Nærum, Denmark), a high voltage
amplifier (Trek 10/40A-HS, TREK, New York, NY, USA), and an oscilloscope (MSO/DPO 2000,
Tektronix, Oregon, OR, USA). A mass of 100 g was attached on each prepared vibrotactile actuator.
A function generator, which creates 0 to 1 Vpp square AC input voltage, was connected to a high
voltage amplifier (having a gain of 1000) and the amplified voltage was applied to each vibrotactile
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actuator. An accelerometer was put on the mass of 100 g for measuring vibration force. The measured
acceleration was displayed on an oscilloscope. In this experiment, the vibration force was obtained as
a function of input frequency in a range of 0 Hz to 300 Hz.
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actuator based on wave-shaped PVC gel.

We compared the proposed actuator and three other soft vibrotactile actuators. Figure 8 shows the
haptic results of four soft vibrotactile actuators as a function of the input frequency. Figure 8a shows
the result of the proposed actuator with new design. We plotted the haptic results of the proposed
vibrotactile actuator and the other vibrotactile actuators (the conventional design, cellulose acetate
based actuator, and polyurethane based actuator) for easy comparison in Figure 8b. It can be seen
that the vibration amplitude of the proposed vibrotactile actuator is higher than the other vibrotactile
actuators in the wide frequency range. In particular, the vibration amplitude of the proposed actuator
at the resonant frequency increased to about 0.816 g (g = 9.8 m/s2). Due to the design for concentrating
most of electric energy on the ridges of the PVC gel, we can increase the vibration amplitude of the
proposed actuator.
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Figure 8. Vibration amplitudes of the four soft vibrotactile actuators. (a) Vibration amplitude
of the proposed design; (b) vibrotactile amplitudes of the four actuators (the proposed design,
the conventional design, the polyurethane based actuator, and the cellulose acetate based actuator).

The applied input voltage waveform affects the haptic behavior of vibrotactile actuators. So, we
conducted another experiment to investigate the haptic behaviors of the proposed vibrotactile actuator
according to the input waveforms. In this experiment, we applied two input voltage waveforms (one
is square wave and the other one is sinusoidal wave) to the proposed actuator and measured the
output acceleration behaviors. The same experimental environment as Figure 7 was used for this
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experiment. Figure 9a,b show the results when the proposed actuator was operated by the square
wave input and the sinusoidal input, respectively. The measured resonant frequencies are almost the
same (about 160 Hz), whereas the measured resonant peaks are different from each other (0.816 g for
square wave and 0.632 g for sinusoidal wave). The vibration amplitude under the square wave input
is bigger than the sinusoidal input in an entire frequency range (0 to 300 Hz).
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(a), and the sinusoidal input (b), respectively.

The relationship between output acceleration and input voltage is an important factor.
So, we measured output acceleration as a function of input voltage. The same experimental
environment (Figure 7) consisting of a function generator, an accelerometer, a high voltage amplifier,
and an oscilloscope was used for measuring the force–voltage relationship of the proposed actuator.
The applied voltage was altered in the range of 0 V to 1000 V at 100 V intervals and the input
frequency was fixed at 1 Hz. The output force increases monotonically with the amplitude of voltage
input. Figure 10 shows that the measured output force was increased from 0 g (0 V) to 0.416 g (1000 V)
for the input with a frequency of 1 Hz.
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In order to show that the proposed actuator can be operated under bending condition, we
measured the displacement using a laser displacement sensor (Keyence LK-G15, Nevada, NV, USA),
and data was gathered by using a signal conditioner (Bruel & Kjaer Pulse analyzer, Bruel & Kjaer,
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Nærum, Denmark) with a PC. During measurements, an AC voltage of square wave was applied to
the actuator by a function generator (Agilent 33220A, Agilent Technologies, Folsom, California, CA,
USA) that was connected to a high voltage power amplifier (Trek 10/40A-HS, TREK, New York, NY,
USA). We prepared four bending samples and one flat sample. The bending radius of the prepared
bending samples were adjusted to 27.5, 22.5, 17.5, and 12.5 mm, which were denoted as 27.5, 22.5,
17.5, and 12.5 r, respectively. Figure 11 is the results of the prepared samples’ displacements according
to the bending radius. The displacement gradually decreased with decreasing bending radius. The
measured displacement decreased from 42.75 µm (Flat) to 41.4 µm (27.5 r) for the input with voltage
1000 V. It also decreased from 41.4 µm to 24.81 µm with decreasing bending radius from 27.5 r to 12.5 r.
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The perceptual strength of vibration that users feel may be lower with our soft actuator than other
heavier actuators when providing vibrations of the same amplitude. Furthermore, the contact area of
our actuator on the skin varies during stimulation due to the membrane’s flexibility, whereas other
solid contactors maintain the same contact area. For these reasons, we conducted the same perceptual
experiment as [19] to evaluate the range of perceived vibrotactile intensity that our soft actuator can
provide in comparison to a traditional rigid actuator in a perceptual experiment. In this experiment,
two vibrotactile actuators were used. One actuator was the proposed actuator (for reference stimulus),
and the other actuator used to create comparison stimuli was a mechanical mini-shaker (model 4810,
Bruel & Kjaer, Nærum, Denmark); dynamic mass 18 g) with an amplifier (model 2709, Bruel &
Kjaer, Nærum, Denmark). The vibratory stimulus (with sinusoidal waveform), which is one of four
frequencies (80, 120, 160, and 200 Hz), was randomly selected and was conveyed to subjects. For each
frequency, we provided the reference stimulus to users using our soft actuator with the maximum
amplitude (1 kVp-p) in a sinusoidal waveform. Sinusoidal comparison stimuli were provided by the
mini-shaker at the same frequency, but with varying amplitudes. The one-up, one-down interleaved
adaptive staircase procedure [21] was used to measure the point of subjective equality (PSE) of
comparison stimuli. Each stimulus was presented for 1 s. Each upward and downward staircase was
terminated when five respective response reversals were encountered. Ten subjects (seven males and
three females) without any sensory loss or dysesthesia were participated in this experiment. All of
them were between 22 and 31 years old with a mean of 26.5. The subjects signed a standard consent
form after being explained the experimental method and purpose. For more information on this
experiment’s environment, refer to previous research [19].

Before conducting the main test, we measured the contact force of the subjects using a force sensor
(Nano 17, ATI Technologies, Riverside, California, CA, USA). The measured force ranged from 0.12 N
to 0.3 N with a mean of 0.22 N and all subjects could clearly perceive stimuli created by both actuators
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with their contact force. We depicted the measured mean of the PSE using a box plot (Figure 12).
The mean PSEs were 0.206 g for 80 Hz, 0.267 g for 120 Hz, 0.439 g for 160 Hz, and 0.309 g for 200 Hz,
respectively. The mean PSEs were relatively lower than the vibrational amplitude of the proposed
actuator (Figure 7). The results mean that the maximum amplitude vibrations produced by our soft
actuator were perceived as strong as the vibrations of amplitude 0.2–0.44 g generated by the shaker
that had dynamic mass of 18.4 g. Such vibrations are a maximum of 1.4-times stronger than the
vibration from [19] and they are sufficient for clear perception. For example, the vibrotactile signal for
virtual button clicks that participants regarded as the most realistic out of 36 stimuli had an amplitude
of approximately 0.2 g (rendered by a linear resonant actuator at its resonance frequency of 178 Hz
through a mobile phone that weighed 73.7 g) [22].
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5. Conclusions

We fabricated a newly designed soft PVC gel based vibrotactile actuator. A quantitative
experiment was conducted with a function generator and an accelerometer to measure the vibration
force (haptic behavior) of the proposed actuator. The quantitative experimental results show that the
haptic behavior of the proposed actuator is superior to that of the conventional PVC gel based haptic
actuator. A haptic behavior on various curved objects was also investigated with the proposed actuator.
The results clearly show that the proposed actuator is sufficient to create a variety of haptic sensations
on various curved objects. It is encouraging that the proposed electroactive and reconfigurable PVC
gel based actuator satisfies the following conditions to be useful for not only mobile devices but also
wearable and shape changeable future devices: (1) alerting capability; (2) ability to handle interaction
with a target object; and (3) delicate manipulation of target objects. Now, we are investigating the
design parameters of the PVC gel based vibrotactile actuator to optimizing the structure of the actuator.
We are expecting that the optimized design of the actuator can maximize the haptic performance
of the PVC gel based vibrotactile actuator. Furthermore, we are currently investigating an accurate
mathematical model that provides a low cost and fast method for optimizing the design of the propose
PVC gel based actuator.
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