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Featured Application: This study introduces a new software reliability model with the Weibull
fault detection rate function that takes into account the uncertainty of operating environments.

Abstract: When software systems are introduced, these systems are used in field environments that
are the same as or close to those used in the development-testing environments; however, they may
also be used in many different locations that may differ from the environment in which they were
developed and tested. As such, it is difficult to improve software reliability for a variety of reasons,
such as a given environment, or a bug location in code. In this paper, we propose a new software
reliability model that takes into account the uncertainty of operating environments. The explicit mean
value function solution for the proposed model is presented. Examples are presented to illustrate
the goodness of fit of the proposed model and several existing non-homogeneous Poisson process
(NHPP) models and confidence intervals of all models based on two sets of failure data collected
from software applications. The results show that the proposed model fits the data more closely than
other existing NHPP models to a significant extent.

Keywords: non-homogeneous Poisson process; software reliability; Weibull function; mean
squared error

1. Introduction

Software systems have become an essential part of our lives. These systems are very important
because they are able to ensure the provision of high-quality services to customers due to their reliability
and stability. However, software development is a difficult and complex process. Therefore, the main
focus of software companies is on improving the reliability and stability of a software system. This has
prompted research in software reliability engineering and many software reliability growth models
(SRGM) have been proposed over the past decades. Many existing non-homogeneous Poisson process
(NHPP) software reliability models have been developed through the fault intensity rate function and
the mean value functions m(t) within a controlled testing environment to estimate reliability metrics
such as the number of residual faults, failure rate, and reliability of software. Generally, the reliability
increases more quickly and later the improvement slows down. Software reliability models are used
to estimate and predict the reliability, number of remaining faults, failure intensity, total software
development cost, and so forth, of software. Various software reliability models and application studies
have been developed to date. Discovering the confidence intervals of software reliability is done in
the field of software reliability because it can enhance the decision of software releases and control
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the related expenditures for software testing [1]. First, Yamada and Osaki [2] considered that the
maximum likelihood estimates concerning the confidence interval of the mean value function can be
estimated. Yin and Trivedi [3] present the confidence bounds for the model parameters via the Bayesian
approach. Huang [4] also present a graph to illustrate the confidence interval of the mean value
function. Gonzalez et al. [5] presented a general methodology that applied to a power distribution
test system considering the effect of weather conditions and aging of components in the system
reliability indexes for the analysis of repairable systems using non-homogeneous Poisson process,
including several conditions in the system at the same time. Nagaraju and Fiondella [6] presented
an adaptive expectation-maximization algorithm for non-homogeneous Poisson process software
reliability growth models, and illustrated the steps of this adaptive approach through a detailed
example, which demonstrates improved flexibility over the standard expectation-maximization (EM)
algorithm. Srivastava and Mondal [7] proposed a predictive maintenance model for an N-component
repairable system by integrating non-homogeneous Poisson process (NHPP) models and system
availability concept, such that the use of costly predictive maintenance technology is minimized.
Kim et al. [8] described application of the software reliability model of the target system to increase
the software reliability, and presented some analytical methods as well as the prediction and
estimation results.

Chatterjee and Singh [9] proposed a software reliability model based on NHPP that incorporates
a logistic-exponential testing coverage function with imperfect debugging. In addition, Chatterjee and
Shukla [10] developed a software reliability model that considers different types of faults incorporating
both imperfect debugging and a change point. Yamada et al. [11] developed a software-reliability
growth model incorporating the amount of test effort expended during the software testing
phase. Joh et al. [12] proposed a new Weibull distribution based on vulnerability discovery model.
Sagar et al. [13] presented best software reliability growth model with including feature of both Weibull
distribution and inflection S-shaped SRGM to estimate the defects of software system, and provide
help to researchers and software industries to develop highly reliable software products.

Generally, existing models are applied to software testing data and then used to make predictions
on the software failures and reliability in the field. Here, the important point is that the test environment
and operational environment are different from each other. Once software systems are introduced,
the software systems used in the field environments are the same as or close to those used in the
development-testing environment; however, the systems may be used in many different locations.
Several researchers started applying the factor of operational environments. A few researchers,
Yang and Xie, Huang et al., and Zhang et al. [14–16], proposed a method of predicting the fault
detection rate to reflect changes in operating environments, and used methodology that modifies the
software reliability model in the operating environments by introducing a calibration factor. Teng and
Pham [17] discussed a generalized model that captures the uncertainty of the environment and its
effects upon the software failure rate. Pham [18,19] and Chang et al. [20] developed a software
reliability model incorporating the uncertainty of the system fault detection rate per unit of time
subject to the operating environment. Honda et al. [21] proposed a generalized software reliability
model (GSRM) based on a stochastic process and simulated developments that include uncertainties
and dynamics. Pham [22] recently presented a new generalized software reliability model subject to
the uncertainty of operating environments. And also, Song et al. [23] presented a new model with
consideration of a three-parameter fault detection rate in the software development process, and relate
it to the error detection rate function with consideration of the uncertainty of operating environments.

In this paper, we discuss a new model with consideration for the Weibull function in the
software development process and relate it to the error detection rate function with consideration
of the uncertainty of operating environments. We examine the goodness of fit of the fault detection
rate software reliability model and other existing NHPP models based on several sets of software
testing data. The explicit solution of the mean value function for the new model is derived in Section 2.
Criteria for model comparisons and confidence interval for selection of the best model are discussed in
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Section 3. Model analysis and results are discussed in Section 4. Section 5 presents the conclusions
and remarks.

2. A New Software Reliability Model

In this section, we propose a new NHPP software reliability model. First, we describe the NHPP
software reliability model and present a solution of the new mean value function considering the new
fault detection rate function against the generalized NHPP software reliability model, incorporating
the uncertainty of fault detection rate per unit of time in the operating environments.

2.1. Non-Homogeneous Poisson Process Model

The software fault detection process has been widely formulated by using a counting process.
A counting process, {N(t), t ≥ 0}, is said to be a non-homogeneous Poisson process with intensity
function λ(t) if N(t) follows a Poisson distribution with the mean value function m(t), namely,

Pr{N(t) = n} = {m(t)}n

n!
exp {−m(t)}, n = 0, 1, 2, 3 . . . .

The mean value function m(t), which is the expected number of faults detected at time t, can be
expressed as

m(t) =
∫ t

0
λ(s)ds

where λ(t) represents the failure intensity.
A general framework for NHPP-based SRGM has been proposed by Pham et al. [24]. They have

modeled m(t) using the differential equation

d m(t)
dt

= b(t)[a(t)−m(t)] (1)

Solving Equation (1) makes it possible to obtain different values of m(t) using different values for
a(t) and b(t), which reflects various assumptions of the software testing process.

2.2. Weibull Fault Detection Rate Function Model

A generalized NHPP model incorporating the uncertainty of operating environments can be
formulated as follows [19]:

d m(t)
dt

= η[b(t)][N−m(t)], (2)

where η is a random variable that represents the uncertainty of the system fault detection rate in the
operating environments with a probability density function g, N is the expected number of faults that
exists in the software before testing, b(t) is the fault detection rate function, which also represents
the average failure rate of a fault, and m(t) is the expected number of errors detected by time t or the
mean value function. We propose an NHPP software reliability model, including the uncertainty of
the operating environment using Equation (2) and the following assumptions [19,23]:

(a) The occurrence of software failures follows an NHPP.
(b) Software can fail during execution, caused by faults in the software.
(c) The software-failure detection rate at any time is proportional to the number of remaining faults

in the software at that time.
(d) When a software failure occurs, a debugging effort removes the faults immediately.
(e) For each debugging effort, regardless of whether the faults are successfully removed, some new

faults may be introduced into the software system.
(f) The environment affects the unit failure detection rate, b(t), by multiplying by a factor η.
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The solution for the mean value function m(t), where the initial condition m(0) = 0, is given by [19]:

m(t) =
∫
η

N(1− e−η
∫ t

0 b(x)dx)dg(η). (3)

Pham [22] recently developed a generalized software reliability model incorporating the
uncertainty of fault detection rate per unit of time in the operating environments where the random
variable η has a generalized probability density function g with two parameters, α ≥ 0 and β ≥ 0,
and the mean value function from Equation (3) is given by:

m(t) = N(1− β

β+
∫ t

0 b(s)ds
)
α

, (4)

where b(t) is the fault detection rate per fault per unit of time.
The Weibull distribution is one of the most commonly used distributions for modeling irregular

data, is very easy to interpret and very useful. The Weibull distribution is a distribution that can
be used instead of a normal distribution for data with a bias, and used lifetime distributions in
reliability engineering. Weibull distribution has been applied in the area of reliability quality control
duration, and failure time modelling. This distribution can be widely and effectively used in reliability
applications because it has wide variety of shapes in its density and failure rate functions, making it
useful for fitting many types of data. In the modelling software development was often described by
Weibull-type curves. The discrete Weibull distribution can describe flexibility stochastic behavior of
the failure occurrence times. The Weibull-based method is significantly better than the Laplacian-based
rate prediction. Both logistic and Weibull distributions will result in a cumulative distribution function
with an S-shaped for the lifetime software product [25,26].

In this paper, we consider a Weibull fault detection rate function b(t) to be as follows:

b(t) = abbtb−1, a, b > 0, (5)

where a and b are known as the scale and shape parameters, respectively. A Weibull fault detection
rate function b(t) is decreasing for b < 1, increasing for b > 1, and constant when b = 1. We obtain
a new NHPP software reliability model subject to the uncertainty of the environments, m(t), that can
be used to determine the expected number of software failures detected by time t by substituting the
function b(t) above into Equation (4):

m(t) = N(1− β

β+ (at)b )
α

, (6)

3. Model Comparisons

In this section, we present a set of comparison criteria for best model selection, quantitatively
compare the models using these comparison criteria, and obtain the confidence intervals of the NHPP
software reliability model.

3.1. Criteria for Model Comparisons

Once the analytical expression for the mean value function m(t) is derived, the model parameters
to be estimated in the mean value function can then be obtained with the help of a developed Matlab
program based on the least-squares estimate (LSE) method. Five common criteria [27,28], namely the
mean squared error (MSE), the sum absolute error (SAE), the predictive ratio risk (PRR), the predictive
power (PP), and Akaike’s information criterion (AIC), will be used as criteria for the model estimation
of the goodness of fit and to compare the proposed model and other existing models as listed in Table 1.
Table 1 summarizes the proposed model and several existing well-known NHPP models with different
mean value functions. Note that models 9 and 10 in Table 1 did consider environmental uncertainty.
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Table 1. Software reliability models. Software reliability growth model (SRGM).

No. Model m(t)

1 G-O Model [29] m(t) = a(1− e−bt)

2 Delayed S-shaped SRGM [30] m(t) = a(1− (1 + bt)e−bt)

3 Inflection S-shaped SRGM [31] m(t) = a(1−e−bt)

1+βe−bt

4 Yamada Imperfect Debugging Model [32] m(t) = a[1− e−bt]
[
1− α

b
]
+ αat

5 PNZ Model [24] m(t) =
a[1− e−bt]

[
1− α

b

]
+ αat

1 + βe−bt

6 Pham-Zhang Model [33] m(t) =

(
(c + a)[1− e−bt]−

[
ab

b−α (e−αt − e−bt)
])

1 + βe−bt

7 Dependent-Parameter Model1 [34] m(t) = α(1 + γt)(γt + e−γt − 1)

8 Dependent-Parameter Model2 [34] m(t) = m0(
γt+1
γt0+1 )e

−γ(t−t0) +α(γt + 1)(γt− 1 + (1− γt0)e−γ(t−t0)

9 Testing Coverage Model [20] m(t) = N
[

1−
(

β

β+(at)b

)α]
10 Three-parameter Model [23] m(t) = N

[
1−

(
β

β− a
b ln

(
(1+c)e−bt

1+ce−bt

)
)]

11 Proposed New Model m(t) = N
(

1− β

β+(at)b

)α

The mean squared error is given by

MSE =
∑n

i=0 (m(ti)− yi)
2

n−m
.

The sum absolute error is given by

SAE =
n

∑
i=0
|m(ti)− yi|.

The predictive ratio risk and the predictive power are given as follows:

PRR =
n

∑
i=0

(
m̂(ti)− yi

m̂(ti)

)2

, PP =
n

∑
i=0

(
m̂(ti)− yi

yi

)2

.

To compare the all model’s ability in terms of maximizing the likelihood function (MLF) while
considering the degrees of freedom, Akaike’s information criterion (AIC) is applied:

AIC = −2 log|MLF|+ 2m

where yi is the total number of failures observed at time ti; m is the number of unknown parameters in
the model; and m(ti) is the estimated cumulative number of failures at ti for i = 1, 2, · · · , n.

The mean squared error measures the distance of a model estimate from the actual data with
the consideration of the number of observations, n, and the number of unknown parameters in the
model, m. The sum absolute error is similar to the sum squared error, but the way of measuring the
deviation is by the use of absolute values, and sums the absolute value of the deviation between the
actual data and the estimated curve. The predictive ratio risk measures the distance of model estimates
from the actual data against the model estimate. The predictive power measures the distance of model
estimates from the actual data against the actual data. MSE, SAE, PRR, and PP are the criterion to
measure the difference between the actual and predicted values. AIC is a measure of goodness of fit of
an estimated statistical model, and considered to be a measure which can be used to rank the models,
and it gives a penalty to a model with more number of parameters. For all five of these criteria—MSE,
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SAE, PRR, PP and AIC—the smaller the value, the closer the model fits relative to other models run on
the same data set.

3.2. Estimation of the Confidence Intervals

In this section, we use Equation (7) to obtain the confidence intervals [27] of the software reliability
models in Table 1. The confidence interval is given by

m̂(t)± Zα/2

√
m̂(t), (7)

where Zα/2 is 100(1− α) percentile of the standard normal distribution.

4. Numerical Examples

Wireless base stations provide the interface between mobile phone users and the conventional
telephone network. It can take hundreds of wireless base stations to provide adequate coverage for
users within a moderately sized metropolitan area. Controlling the cost of an individual base station
is therefore an important objective. On the other hand, the availability of a base station is also an
important consideration since wireless users expect the system availability to be comparable to the high
availability they experience with the conventional telephone network. The software in this numerical
example runs on an element within a wireless network switching center. Its main function includes
routing voice channels and signaling messages to relevant radio resources and processing entities [35].
Dataset #1, field failure data for Release 1 listed in Table 2, was reported by Jeske and Zhang [35].
Release 1 included Year 2000 compatibility modifications, an operating system upgrade, and some
new features pertaining to the signaling message processing. Release 1 had a life cycle of 13 months
in the field. The cumulative field exposure time of the software was 167,900 system days, and a total
of 115 failures were observed in the field. Table 2 shows the field failure data for Release 1 for each
of the 13 months. Software failure data is available from the field for Release 1. Dataset #2, test data
for Release 2 listed in Table 3, was also reported by Jeske and Zhang [35]. The test data is the set of
failures that were observed during a combination of feature testing and load testing. The test interval
that was used in this analysis was a 36-week period between. At times, as many as 11 different base
station controller frame (BCF) frames were being used in parallel to test the software. Thus, to obtain
an overall number of days spent testing the software we aggregated the number of days spent testing
the software on each frame. The 36 weeks of Release 2 testing accumulates 1001 days of exposure
time. Dataset #2 also show the cumulative software failures and the cumulative exposure time for
the software on a weekly basis during the test interval. Tables 4 and 5 summarize the results of the
estimated parameters of all 11 models in Table 1 using the least-squares estimation (LSE) technique
and the values of the five common criteria (MSE, SAE, PRR, PP and AIC).

Table 2. Field failure data for Release 1—Dataset #1.

Month Index System Days (Days) System Days (Cumulative) Failures Cumulative Failures

1 961 961 7 7
2 4170 5131 3 10
3 8789 13,920 14 24
4 11,858 25,778 8 32
5 13,110 38,888 11 43
6 14,198 53,086 8 51
7 14,265 67,351 7 58
8 15,175 82,526 19 77
9 15,376 97,902 17 94

10 15,704 113,606 6 100
11 18,182 131,788 11 111
12 17,760 149,548 4 115
13 18,352 167,900 0 115
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Table 3. Test data for Release 2—Dataset #2.

Week Index System Days
(Cumulative) Cumulative Failures Week Index System Days

(Cumulative) Cumulative Failures

1 5 5 19 383 105
2 9 6 20 418 110
3 13 13 21 467 117
4 18 13 22 519 123
5 28 22 23 570 128
6 33 24 24 619 130
7 43 29 25 657 136
8 63 34 26 699 141
9 88 40 27 733 148

10 123 46 28 775 156
11 153 53 29 798 156
12 178 63 30 845 164
13 203 70 31 892 166
14 238 71 32 934 169
15 263 74 33 955 170
16 288 78 34 977 176
17 318 90 35 999 180
18 348 98 36 1001 181

Table 4. Model parameter estimation and comparison criteria from Dataset #1. Least-squares estimate
(LSE); mean squared error (MSE); sum absolute error (SAE); predictive ratio risk (PRR), predictive
power (PP); Akaike’s information criterion (AIC).

Model LSE’s MSE SAE PRR PP AIC

GO â = 2354138, b̂ = 0.000004 43.6400 72.2548 0.3879 1.0239 98.7606
DS â = 168.009, b̂ = 0.195 20.7414 43.2510 2.3107 0.4295 92.2587
IS â = 134.540,b̂ = 0.336, β̂ = 8.939 15.3196 37.2090 0.2120 0.1587 85.3000

YID â = 1.130, b̂ = 1.110, α̂ = 9.129 33.3890 51.0913 0.3027 0.2495 100.7378
PNZ â = 134.549, b̂ = 0.3359, α̂ = 0.0,β̂ = 8.940 17.0223 37.2442 0.2124 0.1588 87.3098
PZ â = 51.455, b̂ = 0.336, α̂ = 289998.1,β̂ = 8.939, ĉ = 83.085 19.1495 37.2091 0.2120 0.1587 89.3019

DP1 α̂ = 0.0088, γ̂ = 9.996 370.8651 207.3750 60.5062 2.6446 164.5728
DP2 α̂ = 672.637, γ̂ = 0.04, t0 = 0.027, m0 = 23.541 215.7784 133.2294 1.1037 8.6260 168.846
TC â = 0.242, b̂ = 1.701, α̂ = 17.967, β̂ = 73.604, N̂ = 149.410 25.9244 41.8087 1.4473 0.3601 95.5655

3DP â = 2.980, b̂ = 0.336, β̂ = 0.080, ĉ = 1105.772, N̂ = 135.142 19.1517 37.2107 0.2119 0.1588 89.3053
NEW â = 0.095, b̂ = 15.606, α̂ = 0.085,β̂ = 1.855, N̂ = 116.551 11.2281 26.5568 0.2042 0.1558 79.3459

Table 5. Model parameter estimation and comparison criteria from Dataset #2.

Model LSE’s MSE SAE PRR PP AIC

GO â = 291.768, b̂ = 0.001 95.3796 299.7160 24.7924 3.4879 198.5419
DS â = 168.568, b̂ = 0.0057 178.4899 387.7724 7368.5885 7.4923 317.8791
IS â = 200.110,b̂ = 0.002, β̂ = 0.059 43.2888 182.9709 10.4336 2.1725 202.0752

YID â = 81.999, b̂ = 0.0063, α̂ = 0.0014 18.9651 119.1208 3.1804 1.0871 187.7564
PNZ â = 67.132, b̂ = 0.009, α̂ = 0.0019,β̂ = 0.0001 18.2406 119.7722 1.5566 0.6869 188.9438
PZ â = 200.057, b̂ = 0.002, α̂ = 9999.433,β̂ = 0.058, ĉ = 0.001 46.0819 183.0449 10.4090 2.1698 206.0887

DP1 α̂ = 0.0003, γ̂ = 0.866 2075.6677 1411.8412 1,165,906.40 17.1338 554.6335
DP2 α̂ = 9.035, γ̂ = 0.005, t0 = 48.975, m0 = 49.004 1379.2331 1134.6843 13.0318 156.8519 572.8343
TC â = 0.002, b̂ = 0.646, α̂ = 0.137, β̂ = 8.920, N̂ = 7973.501 16.5529 116.0937 0.3033 0.4499 187.4100

3DP â = 0.011, b̂ = 0.707, β̂ = 8.029, ĉ = 0.000001, N̂ = 300.684 34.5762 154.1593 7.7768 1.8500 199.3282
NEW â = 0.004, b̂ = 1.471, α̂ = 0.430,β̂ = 78.738, N̂ = 504.403 9.8789 90.3633 0.2944 0.5159 187.4204

We obtained the five common criteria when t = 1, 2, · · · , 13 from Dataset #1 (Table 2),
with exposure time (Cum. System days) from Dataset #2 (Table 3), As can be seen from Table 4,
the MSE, SAE, PRR, PP and AIC values for the proposed new model are the lowest values compared
to all models. We can see that the values of MSE, SAE, and AIC of the proposed new model are
11.2281, 26.5568, and 79.3459, respectively, which is significantly smaller than the value of the other
software reliability models. The values of PRR and PP of the proposed new model are 0.2042, 0.1558,
respectively. As can be seen from Table 5, the MSE, SAE and PRR value for the proposed new model
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are the lowest values, and the PP and AIC value for the proposed new model are the second lowest
values compared to all models. We can see that the values of MSE and SAE of the proposed new model
are 9.8789, 90.3633, respectively, which is significantly smaller than the value of the other software
reliability models. The values of PRR, PP, and AIC of the proposed new model are 0.2944, 0.5159,
187.4204, respectively. The results show the difference between the actual and predicted values of the
new model is smaller than the other models and the AIC value which is the measure of goodness of fit
of an estimated statistical model is much smaller than the other software reliability models.

Figure 1 shows the graph of the mean value functions for all 11 models for Datasets #1 and #2,
respectively. Figures 2 and 3 show that the relative error value of the software reliability model can
quickly approach zero in comparison with the other models confirming its ability to provide more
accurate prediction. Figures 4 and A1 show the graph of the mean value function and confidence
interval each of the proposed new model for Datasets #1 and #2, respectively. Refer to the Appendix A
for confidence intervals for the other software reliability models.
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5. Conclusions

Generally, existing models are applied to software testing data and then used to make predictions
on the software failures and reliability in the field. Here, the important point is that the test environment
and operational environment are different from each other. We do not know in which operating
environment the software will be used. Therefore, we need to develop the software reliability model
considering uncertainty of operating environment. In this paper, we discussed a new software
reliability model based on a Weibull fault detection rate function of Weibull distribution, which is the
most commonly used distribution for modeling irregular data subject to the uncertainty of operating
environments. Tables 4 and 5 summarized the results of the estimated parameters of all 11 models in
Table 1 using the LSE technique and the five common criteria (MSE, SAE, PRR, PP and AIC) value for
two data sets. As can be seen from Table 4, the MSE, SAE, PRR, PP and AIC value for the proposed
new model are the lowest values compared to all models. As can be seen from Table 5, the MSE, SAE
and PRR value for the proposed new model are the lowest values compared to all models. As the
results show the difference between the actual and predicted values of the new model is smaller than
the other models, and the AIC value, which is the measure of goodness of fit of an estimated statistical
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model, is much smaller than the other models. Finally, we show confidence intervals of all 11 models
from Dataset #1 and #2, respectively. By estimating the confidence interval, we will help to find the
optimal software reliability model at different confidence levels. Future work will involve broader
validation of this conclusion based on recent data sets.
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Table A1. Confidence interval of all 11 models from Dataset #1 (α = 0.05).

Model
Time Index

1 2 3 4 5 6 7 8 9 10 11 12 13

GO
LCL 3.4 10.3 17.8 25.6 33.6 41.8 50.0 58.3 66.7 75.1 83.6 92.2 100.7
UCL 15.4 27.3 38.7 49.7 60.5 71.2 81.8 92.3 102.8 113.2 123.5 133.8 144.1

DS
LCL −0.5 3.7 11.0 20.0 30.0 40.3 50.6 60.4 69.6 78.1 86.0 93.0 99.4
UCL 6.1 16.1 28.3 41.8 55.7 69.4 82.5 94.9 106.4 116.9 126.4 134.9 142.5

IS
LCL 0.7 5.1 11.3 19.1 28.5 38.9 49.9 60.7 70.7 79.6 87.1 93.1 97.9
UCL 9.7 18.6 28.8 40.6 53.6 67.5 81.7 95.3 107.7 118.6 127.7 135.0 140.7

YID
LCL 0.5 6.2 13.7 21.9 30.5 39.4 48.4 57.5 66.6 75.9 85.2 94.6 104.0
UCL 9.2 20.5 32.5 44.5 56.4 68.1 79.7 91.3 102.7 114.1 125.4 136.7 147.9

PNZ
LCL 0.7 5.1 11.3 19.1 28.5 38.9 49.9 60.7 70.7 79.6 87.1 93.1 97.9
UCL 9.7 18.6 28.8 40.6 53.6 67.5 81.6 95.3 107.7 118.6 127.7 135.0 140.7
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Table A1. Cont.

Model
Time Index

1 2 3 4 5 6 7 8 9 10 11 12 13

PZ
LCL 0.7 5.1 11.3 19.1 28.5 38.9 49.9 60.7 70.7 79.6 87.1 93.1 97.9
UCL 9.7 18.6 28.8 40.6 53.6 67.5 81.7 95.3 107.7 118.6 127.7 135.0 140.7

DP1
LCL −1.0 −0.2 2.4 6.7 12.8 20.6 30.2 41.6 54.7 69.5 86.2 104.6 124.7
UCL 2.7 7.2 13.4 21.4 31.2 42.7 55.9 71.0 87.8 106.3 126.6 148.7 172.5

DP2
LCL 14.5 15.8 18.1 21.5 26.1 32.0 39.2 47.9 58.1 69.9 83.3 98.4 115.3
UCL 33.7 35.7 39.1 44.0 50.4 58.3 67.9 79.2 92.1 106.7 123.1 141.4 161.4

TC
LCL −0.3 4.0 11.0 19.8 29.7 40.1 50.5 60.5 69.9 78.5 86.2 93.0 98.9
UCL 6.8 16.5 28.3 41.5 55.3 69.1 82.5 95.1 106.8 117.3 126.7 134.9 141.9

3PDF
LCL 0.7 5.1 11.3 19.2 28.5 38.9 49.9 60.7 70.7 79.6 87.1 93.1 97.9
UCL 9.7 18.6 28.8 40.6 53.6 67.5 81.7 95.3 107.7 118.6 127.7 135.0 140.7

NEW
LCL 0.7 5.4 12.0 19.8 28.6 38.3 48.6 59.6 71.0 81.7 89.6 93.5 94.8
UCL 9.6 19.1 29.9 41.5 53.8 66.7 80.1 94.0 108.0 121.2 130.8 135.4 137.0

Table A2. Confidence interval of all 11 models from Dataset #2 (α = 0.05).

Model
Time Index

5 9 13 18 28 33 43 63 88 123 153 178

GO
LCL −0.9 −0.6 0.0 0.7 2.5 3.4 5.4 9.5 14.9 22.4 28.8 34.1
UCL 3.8 5.8 7.6 9.7 13.6 15.5 19.2 26.1 34.3 45.2 54.0 61.1

DS
LCL −0.4 −0.7 −0.9 −1.0 −0.8 −0.6 0.2 2.8 7.6 16.3 24.8 32.2
UCL 0.6 1.1 1.7 2.6 4.7 5.8 8.4 14.3 23.0 36.4 48.5 58.7

IS
LCL −0.8 −0.2 0.5 1.6 4.0 5.3 7.9 13.2 19.9 29.1 36.6 42.7
UCL 4.6 7.0 9.2 11.8 16.6 18.9 23.4 31.8 41.6 54.4 64.5 72.4

YID
LCL −0.6 0.4 1.5 3.1 6.3 8.0 11.3 17.7 25.3 34.9 42.2 47.8
UCL 5.7 8.7 11.5 14.8 20.7 23.5 28.9 38.5 49.2 62.2 71.8 79.0

PNZ
LCL −0.4 0.8 2.1 4.0 7.7 9.5 13.2 20.1 27.8 37.1 44.0 49.2
UCL 6.3 9.8 12.9 16.5 23.1 26.1 31.8 41.9 52.6 65.2 74.2 80.8

PZ
LCL −0.8 −0.2 0.5 1.6 4.0 5.3 7.9 13.2 19.9 29.1 36.6 42.7
UCL 4.6 7.0 9.2 11.8 16.6 18.9 23.4 31.8 41.7 54.4 64.5 72.5

DP1
LCL −0.1 −0.2 −0.3 −0.5 −0.7 −0.7 −0.9 −1.0 −0.8 −0.2 0.8 1.9
UCL 0.2 0.3 0.4 0.6 1.0 1.2 1.7 2.7 4.3 7.0 9.8 12.4

DP2
LCL 36.1 36.1 36.0 36.0 35.8 35.7 35.5 34.8 33.9 32.6 31.6 30.9
UCL 63.8 63.8 63.7 63.7 63.4 63.3 63.0 62.1 60.9 59.2 57.8 56.9

TC
LCL 1.3 3.2 4.9 6.8 10.3 12.0 15.0 20.6 26.8 34.6 40.8 45.6
UCL 11.1 15.0 18.2 21.6 27.4 29.9 34.5 42.6 51.3 61.9 69.9 76.2

3PDF
LCL −0.8 −0.1 0.8 2.0 4.6 5.9 8.7 14.3 21.2 30.5 38.0 43.9
UCL 4.9 7.4 9.8 12.5 17.6 20.1 24.7 33.5 43.5 56.3 66.3 74.0

NEW
LCL 1.5 3.4 5.1 7.1 10.7 12.4 15.5 21.1 27.5 35.4 41.7 46.6
UCL 11.5 15.4 18.7 22.1 27.9 30.5 35.2 43.4 52.2 62.9 71.1 77.5

Model
Time Index

208 238 263 288 318 348 383 418 467 519 570 619

GO
LCL 40.3 46.4 51.4 56.3 62.0 67.6 74.0 80.1 88.4 96.8 104.7 111.9
UCL 69.3 77.2 83.6 89.8 97.0 103.9 111.7 119.3 129.3 139.4 148.8 157.4

DS
LCL 41.3 50.3 57.6 64.6 72.5 79.8 87.7 94.8 103.5 111.3 117.5 122.5
UCL 70.7 82.2 91.4 100.1 109.9 118.9 128.5 137.0 147.4 156.6 164.0 169.9

IS
LCL 49.7 56.4 61.7 66.8 72.6 78.1 84.2 89.9 97.4 104.5 110.9 116.5
UCL 81.4 89.9 96.5 102.9 110.1 116.8 124.2 131.2 140.1 148.7 156.2 162.9

YID
LCL 54.0 59.7 64.1 68.2 72.9 77.3 82.2 86.9 93.1 99.4 105.3 110.9
UCL 86.9 94.0 99.5 104.7 110.5 115.9 121.8 127.5 135.0 142.5 149.6 156.2

PNZ
LCL 54.8 59.9 63.8 67.6 71.9 75.9 80.5 85.0 91.0 97.3 103.4 109.2
UCL 87.9 94.3 99.2 103.9 109.1 114.1 119.7 125.1 132.5 140.0 147.3 154.2
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Table A2. Cont.

Model
Time Index

208 238 263 288 318 348 383 418 467 519 570 619

PZ
LCL 49.7 56.4 61.7 66.8 72.6 78.1 84.2 90.0 97.4 104.6 110.9 116.5
UCL 81.5 89.9 96.6 102.9 110.1 116.9 124.3 131.2 140.1 148.7 156.3 162.9

DP1
LCL 3.6 5.8 7.8 10.2 13.4 17.0 21.7 27.0 35.3 45.3 56.3 68.0
UCL 15.9 19.7 23.3 27.1 32.1 37.5 44.3 51.6 62.8 75.9 89.9 104.4

DP2
LCL 30.4 30.2 30.4 30.8 31.8 33.3 35.7 38.7 44.2 51.5 60.2 70.0
UCL 56.2 55.9 56.2 56.8 58.1 60.1 63.2 67.3 74.4 83.8 94.8 106.9

TC
LCL 51.0 56.2 60.4 64.4 69.0 73.5 78.5 83.4 89.9 96.6 102.9 108.7
UCL 83.1 89.7 94.9 99.9 105.6 111.1 117.3 123.2 131.1 139.2 146.7 153.6

3PDF
LCL 50.7 57.1 62.2 67.0 72.5 77.8 83.5 89.0 96.1 103.0 109.3 115.0
UCL 82.7 90.8 97.1 103.2 110.0 116.4 123.4 130.0 138.6 146.9 154.4 161.0

NEW
LCL 52.2 57.5 61.8 65.9 70.7 75.3 80.4 85.5 92.2 99.1 105.5 111.5
UCL 84.6 91.3 96.7 101.8 107.7 113.3 119.7 125.7 133.9 142.1 149.8 156.9

Model
Time Index

657 699 733 775 798 845 892 934 955 977 999 1001

GO
LCL 117.3 123.0 127.5 132.8 135.6 141.2 146.5 151.0 153.2 155.5 157.7 157.9
UCL 163.8 170.5 175.7 181.9 185.2 191.7 197.9 203.2 205.8 208.4 210.9 211.2

DS
LCL 125.7 128.7 130.8 133.0 134.0 135.8 137.3 138.3 138.8 139.2 139.6 139.7
UCL 173.6 177.2 179.6 182.2 183.4 185.5 187.2 188.4 189.0 189.5 189.9 190.0

IS
LCL 120.5 124.6 127.7 131.2 133.1 136.5 139.7 142.3 143.5 144.8 145.9 146.0
UCL 167.6 172.4 176.0 180.1 182.3 186.3 190.0 193.1 194.5 195.9 197.3 197.4

YID
LCL 115.1 119.8 123.5 128.1 130.6 135.6 140.7 145.2 147.5 149.8 152.2 152.4
UCL 161.2 166.7 171.1 176.5 179.4 185.3 191.2 196.4 199.1 201.8 204.5 204.8

PNZ
LCL 113.7 118.7 122.7 127.6 130.3 135.9 141.4 146.4 148.9 151.5 154.1 154.3
UCL 159.5 165.4 170.1 175.9 179.1 185.6 192.0 197.8 200.7 203.7 206.7 207.0

PZ
LCL 120.5 124.6 127.7 131.2 133.0 136.5 139.7 142.3 143.5 144.7 145.9 146.0
UCL 167.6 172.4 176.0 180.1 182.3 186.3 190.0 193.0 194.5 195.9 197.3 197.4

DP1
LCL 77.8 89.4 99.3 112.4 119.8 135.8 152.8 168.8 177.1 186.0 195.2 196.0
UCL 116.4 130.5 142.4 157.9 166.7 185.5 205.2 223.7 233.3 243.5 253.9 254.9

DP2
LCL 78.5 88.9 98.0 110.0 117.0 132.2 148.5 164.1 172.1 180.9 189.8 190.6
UCL 117.3 129.9 140.8 155.2 163.5 181.3 200.3 218.2 227.6 237.5 247.8 248.7

TC
LCL 113.1 117.8 121.6 126.1 128.5 133.4 138.2 142.3 144.4 146.5 148.6 148.8
UCL 158.8 164.4 168.8 174.1 177.0 182.7 188.2 193.1 195.5 198.0 200.4 200.6

3PDF
LCL 119.1 123.3 126.6 130.5 132.5 136.4 140.2 143.3 144.8 146.4 147.9 148.0
UCL 165.8 170.9 174.7 179.2 181.6 186.2 190.6 194.3 196.0 197.8 199.6 199.7

NEW
LCL 116.0 120.8 124.6 129.2 131.7 136.6 141.4 145.6 147.7 149.8 151.9 152.1
UCL 162.2 167.9 172.4 177.8 180.7 186.4 192.1 196.9 199.3 201.8 204.2 204.5
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