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Abstract: Based on tunable diode laser absorption spectroscopy (TDLAS), two-dimensional (2D)
distribution reconstructions of gas concentration and temperature are realized using an algebraic
reconstruction technique (ART). The influence of the beam distribution and grid size on combustion
field reconstruction is investigated to attain optimal reconstruction results with a limited number
of beams. Under limited optical-path numbers, it shows that a better spatial resolution is attainable
only when the laser beam paths are vertical and parallel to the symmetry axis of the combustion
field. Furthermore, experiments with 16 beam paths using one and two flat flame combustion fields
are carried out in different fuel-air equivalence ratios under room temperature. The results are in
agreement with the simulation results, and the time resolution is less than 1 s.

Keywords: absorption; spectroscopy; diode lasers; temperature; combustion diagnostics;
tomographic imaging

1. Introduction

In combustion-related systems, measurements of temperature and species concentrations are
necessary to fundamentally understand the combustion, optimize the operation process, and improve
the combustion efficiency. In recent years, many diagnostic techniques used for measurement of
combustion characterization, such as laser light scattering [1,2], molecular filtered Rayleigh scattering
(FRS) [3], coherent anti-stokes Raman scattering (CARS) [4], planar laser induced fluorescence
(PLIF/LIF) [5–7], have been reported. Although these techniques mentioned above have a number of
advantages compared to traditional contact measurement, there are still some inevitable limitations.
The FRS and CARS have excellent monitoring capability for high-temperature and extreme conditions,
but they cannot provide accurate measurements in low-pressure and low-temperature conditions.
Similarly, the PLIF/LIF technique takes advantages of a high spatial resolution and a fast response
time, but it has difficulties attaining absolute concentration measurements and precise calibration of
free radicals. Moreover, the technology mentioned above suffers from complex optical systems and
difficulties associated with expensive equipment.

Tunable diode laser absorption spectroscopy (TDLAS) has been widely used for the detection of
various gases and high enthalpy flows [8]. TDLAS usually measures path-averaged information along
the laser beam and is thus restricted to flows with near-uniform properties [9]. It was first employed
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for the measurement of temperature and species concentration simultaneously in combustion flows by
Wang [10]. Line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS) sensors for gas
temperature and species concentration only retrieve path-averaged information along the laser beam
traditionally. Nevertheless, there are still some researchers who applied LOS-TDLAS to diagnose the
non-uniformity flow fields based on multiple absorption lines with only one optical beam. For instance,
Sanders developed a sensor for oxygen gas temperature distributions [11]. Liu and Zhang studied
the temperature and water vapor distributions [12,13]. The multi-spectral LOS-TDLAS technique can
retrieve one-dimensional temperature and species distribution, but it is still limited in the application of
practical combustion conditions. In recent years, TDLAS is combined with the computed tomography
(CT) to form a new measurement method called tunable diode laser absorption tomography (TDLAT).
The absorption spectrum effects of spatial variations can also be compensated in fluid properties. It has
been developed for measuring 2D distributions of temperature and gas concentration. Many validation
tests of the TDLAT have been done on the University of Virginia's Supersonic Combustion Facility
and on the NASA Langley Direct-Connect Supersonic Combustion Test Facility [14–17]. For instance,
Ma et al. designed a hyperspectral tomography (HT) system that can measure the 2D distribution of
temperature and H2O concentration simultaneously with a temporal resolution of 50 kHz at 225 spatial
grid points [16]. In addition, Xu developed an on-line tomography system that includes two distributed
feedback (DFB) laser diodes and fan-beam illumination from five views and 60 rays measurements [18].
In fact, the distributions of temperature and chemical species should be measured in real time and
fast response to provide important feedback to the boiler-control, for example, at incinerator facilities
and thermal power plants. Therefore, the above detection methods cannot be directly applied to the
real-time measurement of dynamic flames systems; the reasons are as follows: (1) the rotating probing
beams or target leads to a reduction in temporal responses; (2) the complicated optical and mechanical
structures; (3) the powerful computer needed for off-line computation and analysis.

The object of this work is to study an on-line measurement system to monitor the 2D distributions
of temperature and H2O mole fraction on the dynamic flames using TDLAT. In order to illustrate
the influence of beam distribution and grid number on symmetric and asymmetric combustion
field reconstruction, the numerical simulations are also introduced as important research content.
Moreover, an 8 × 8 reconstruction scheme is designed with a 1395 nm DFB diode laser. Then,
the combustion parameters and reconstructed image models under one and two flat flame furnaces are
investigated. The measurements demonstrate the ability of TDLAT sensing to monitor temperature
and gas concentration distributions in harsh practical environments.

2. Absorption Spectroscopy Fundamentals

As mentioned above, TDLAT consists of both TDLAS and CT technology. TDLAS is used to
obtain the spectral information in various positions around the measurement space, and the CT
technology is then used to reconstruct 2D images of the temperature and gas concentration with above
transmission signals. When a laser at frequency ν [cm−1] enters a gas sample with a path length of
L [cm], the absorbance αν is expressed as [19]

αν =
∫ L

0
P(x)C(x)S[T(x)]φdl (1)

where x is the absorbing species, P(x) [atm] is the local total pressure, C(x) is the molar fraction of
the absorbing species, T(x) [K] is the local temperature, and φ [cm] is the normalized line shape
function. For atmosphere pressure and a high temperature, the line shape is usually approximated by
a Voigt profile [20,21]. The line strength of molecular transition S [T(x)] [cm−2atm−1] is a function of
temperature as follows [22]:

S(T) = S(T0)
Q(T0)
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where Q(T) is the partition function of the absorbing molecule [23], T0 [K] is the reference temperature,
k [J/K] is the Boltzmann’s constant, h [J·s] is Planck’s constant, c [cm/s] is the speed of light, v0 [cm−1]
is the line-center frequency, and E” [cm−1] is the lower state energy of the transition v0. Because the
line-shape function φ is normalized

∫
φdν ≡ 1, the integrated absorbance Av [cm−1] can be inferred

from Equation (1).

Aν =
∫ +∞

−∞
ανdν =

∫ L

0
P(x)C(x)S[T(x)]dl (3)

The integrated absorbance of two transition lines is measured simultaneously with the same
species mole fraction, the same pressure, the same mole fraction, and the same path length. The above
two absorbance ratios can be further simplified to the ratio of line strengths R, which is a function of
temperature only as expressed Equation (4) named double-line thermometry [24].

R(T) =
A1

A2
=

αν1

αν2
=

S1(T)
S2(T)

=
S1(T0)

S2(T0)
exp
[
−hc

k
(E′′1 − E′′2 )

(
1
T
− 1

T0

)]
(4)

Then, the temperature can be calculated at different temperature dependences:

T =
hc
k
(
E′′2 − E′′1

)
ln R + ln S2(T0)

S1(T0)
+ hc

k
E′′2 −E′′1

T0

. (5)

The integrated absorbance areas Aν for each line can be calculated by Voigt line-shape fitting
methods. The gas mole fraction can in turn be obtained from the absorption of either transition
with the known temperature, pressure, and path-length in Equation (3). However, this double-line
thermometry actually obtains a path-averaged value because of the inherent assumption of a uniform
temperature distribution along the line of sight. For the 2D distributions of temperature and gas
concentration, the test section is divided into M × N grids, as shown in Figure 1. Meanwhile, the target
gas concentration and temperature are assumed to be uniform in each small grid. The optical path
length Li,j of the i-th laser beam within the j-th grid can be calculated according to the two intersecting
position of the grid and beam. It should be noted that the numbers of discretized grids, views, and laser
beams are important for the accuracy of the tomographic image.
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According to Equation (3), the integrated absorbance of the i-th laser beam Av,i can be expressed as

Av,i =
M×N

∑
j

αν,jLi,j =
M×N

∑
j

[PS(v, T)C)]ν,j

(i = 1, 2 . . . I; j = 1, 2 . . . M× N)

(6)
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where αν,i is the absorption coefficient in the j-th grid. M × N and I are the total grid and beams
number, respectively. If using two wavelengths with I laser beams, then Equation (6) can be rewritten
in matrix equation as 

L1,1 L1,2 · · · L1,M×N
L2,1 L2,2 · · · L2,M×N

...
...

...
...

LI,1 LI,2 · · · LI,M×N




α1

α2
...

αM×N


v

=


A1

A2
...

AI


v

. (7)

The matrix L can be determined by geometrical arrangement. The integrated absorbance Av1 and
Av2 are obtained with measurements. In this work, the absorption coefficients αν can be calculated by
solving the linear equation, Equation (7). The linear equation is iteratively solved using the algebraic
reconstruction technique (ART) [25] as

αj(k + 1) = αj(k) + λ
Ai−∑M×N

j=1 αj(k)Li,j

∑M×N
j=1 Li,j

2 Li,j

(i = 1, 2 . . . . I; j = 1, 2 . . . M× N)
(8)

where k is the iteration index in the ART procedure, and λ (0 < λ < 2) is the relaxation coefficient that
plays an important role in accuracy performance and determining convergence rate [26]. It is evident
that the λ represents the contribution of the absorption at j-grid to the integral i-th beam. Therefore,
the λ of conventional ART should be replaced by an automatic adjustment relaxation parameter
during the reconstruction process, named the modified adaptive algebraic reconstruction technique
(MAART) [27]. The λ of Equation (8) is expressed as

λ = β
αj(k)Li,j

∑M×N
j=1 αj(k)Li,j

(9)

where β is a constant during the calculation. The β value would be recommended for selection from
0.1 to 0.3, which depends on the number of grids and beams. The reconstruction is terminated when
the change of absorption coefficient ε in Equation (10) between two consecutive iterations is less than
1 × 10−6.

αj(k + 1)− αj(k) ≤ ε(ε = 10−6) (10)

The absorbances αv1,j and αv2,j in the j-th grid are obtained by performing the tomographic
reconstruction. Finally, the temperature Tj in j-th grid can be retrieved from Equations (4) and (5),
the H2O mole fraction can be calculated from Equation (11).

Cj =
αν1,j

S1(Tj)
(11)

3. Numerical Simulation and Analysis

In order to evaluate the efficiency of the MAART and assess the influences of the view angles and
numbers, numerical simulations are carried out. Four stationary phantom flames and a square
geometry of 8 × 8 grids are considered for simultaneous combustion imaging reconstructions.
The different flame temperature imaging Tset and the H2O concentration imaging Cset are generated
using a Gaussian function and a Random function as shown in Figures 2 and 3, respectively.
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Including one flame to four flames, the set temperature distribution Tset are set at 1500 K ± 50 K
in the high temperature region and 400 K ± 50 K in the low temperature region. Typically,
the H2O concentration distribution is generally well correlated with the temperature distribution
in a hydrocarbon flame. Therefore, the set volume fractions of H2O Cset in the measurement
grids are assumed to be 0.17 ± 0.005 and 0.015 ± 0.005, correspondingly. It is known that the
orientation of the view and the number of rays per view has a significant bearing on the quality of
reconstruction [28,29]. Therefore, we assumed four different laser beams distributions to study the
influence on the reconstruction in simulations. As shown in Figure 4, the number of laser beams
included is 16, 18, 32, and 44 with multi-projection. The integrated absorbance is obtained by simulated
line-of-sight integration for two water vapor (H2O) absorption lines 7165.82 cm−1 and 7164.91 cm−1.
Spectroscopic parameters for the absorption transitions such as line-strengths, lower state energy,
coefficients for their temperature dependency, and broadening coefficients are selected from the
HITRAN (High Resolution Transmission) 2008 database, as shown in Table 1. Meanwhile, in order to
select the most suitable spectral line couples, the numerical simulation is carried out using the above
database. The two absorption lines simulations are shown in Figure 5, and the known parameter
constants as P = 1 atm, L = 32 cm, T = 500 K, C = 0.2%, and T = 1500 K, C = 15%. Simulated line-of-sight
data are inverted using the MAART, which is introduced in the above theoretical section.
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Furthermore, the tomographic images have been compared with the four simulated flames, which
are discretized into M × N grids (M = N = 8). The quality of reconstructed results for distributions
of both temperature and H2O concentration are evaluated by the mean relative error eT and eC as
Equations (11) and (12), respectively.

eT =
M×N

∑
i

(∣∣∣Tcal
i − Tset

i

∣∣∣/Tset
i

)
/(M× N) (12)

eC =
M×N

∑
i

(∣∣∣Ccal
i − Cset

i

∣∣∣/Cset
i

)
/(M× N) (13)

where Tcal and Ccal denote the calculated temperature and the H2O concentration of
reconstructed distributions. Similarly, Tset and Cset stand for the set temperature and the H2O
concentration, respectively.
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Figure 6 shows the eT and eC variation curves for different simulation flames under four beam
distributions. The value of eT and eC are reduced with increasing the numbers of views and laser beams.
The relative errors of temperatures are less than the concentration reconstruction results. The reason is
that the integral area errors caused a greater impact on concentration results from the weak absorption
in the peripheral low temperature regions of flame. For the centrosymmetry phantoms of flame as
shown in Figure 2a,b,d, we have better reconstruction results when the laser beam paths are vertical
and parallel to the symmetry axis of the flame as shown in Figure 4a and the beam number is 16.
However, for the non-centrosymmetric phantoms of flame, like in Figures 2c and 3c, we do not have
an acceptable and practical reconstruction result when the beam number is 16 and the beam paths are
not vertical and parallel to the symmetry axis of the flame. Increasing the number of views and beams,
eT and eC are reduced to less than 0.05 and 0.1, respectively, when the number of beams are 32 and 44,
as shown in Figure 4c,d. Therefore, the better spatial resolution could be gained only when the laser
beam paths are vertical and parallel to the symmetry axis of the combustion field under the limited
number of light paths.

Table 1. The selected absorption transition spectral parameters.

Parameter Wavenumber/cm−1 Line Strength
/cm−2atm−1 (@300 K) Lower State Energy/cm−1 Line

Separation/cm−1

v1 7164.91 0.00385 1394
1.09

v2 7165.82 0.14409 212
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Figure 6. (a) The mean relative errors of temperature on the different number of beams. The eT_1 flame,
eT_2 flames, eT_3 flames, and eT_4 flames are the temperature mean relative errors within one, two,
three, and four flames. (b) The mean relative errors of H2O concentration on the different number of
beams. The eC_1 flame, eC_2 flames, eC_3 flames, and eC_4 flames are the H2O concentration mean
relative errors within one, two, three, and four flames.

4. Experiment Process and Analysis

The TDLAS-based tomography system is shown in Figure 7a. Figure 7b shows a photograph
of the optical test section and the configuration of the probe beams: 8 horizontally and 8 vertically,
and with a spacing of 4 cm between neighboring probe beams. To be specific, the diode laser controller
and function generator provide stable temperature and precise current controlling signals for a DFB
laser. Thus, two vapor transitions v1 = 7165.84 cm−1 and v2 = 7164.91 cm−1 can be covered by the
saw tooth scanning current. The output laser is split into 16 channels with a 1 × 16 fiber coupler.
Each separated output beam is firstly collimated by a collimator and then guided through the interest
region. Finally, the laser beam comprising absorption information is sampled by two arrays that
contain 16 equally spaced photodiodes. Each signal is transferred into the Personal Computer to
reconstruct the 2D distributions of temperature and H2O mole fraction by the on-line manner modified
ART. The sampling data of the photodetector output and the data processing are performed using
a LabVIEW 2014 (National Instruments, Austin, TX, USA) program.
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Figure 7. The experimental system. (a) The scheme of the tunable diode laser absorption tomography
(TDLAT) system with 8 × 8 grids, (b) the photograph of the optical test section: left and upper are
16 collimators, right and under are 16 detectors.

In order to online get the integrated absorbance Av, the output wavelength is measured by
a wavelength meter 621B-IR (Bristol Instruments, Victor, NY, USA). The output wave number is
inversely proportional to the laser drive current, and the variation is 0.032 cm−1/mA obtained by
linear fitting. The relationship between the output wavenumber and the laser drive current at different
temperatures is shown in Figure 8. In our tomography experiments, the laser temperature is set to
31 ◦C and the drive current from 63 mA to 118 mA aims to scan over the two vapor absorptions from
7164.64 cm−1 to 7166.40 cm−1. The wavenumber tuning speed of the DFB laser is 10 Hz, and the
average of 10 measurements has been done to remove the white noise. A 16-channel synchronous
A/D (Analog to Digital) acquisition card is used in this condition, so that the time to record 16 sets
of photodetector signal is 1 s including all beam positions. In principle, a more accurate analysis of
the integrated absorbance areas at atmospheric pressures can be achieved by fitting the experimental
spectra with a Voigt functions, for instance, the standard Humlíček algorithm [30]. It is worth noting
that the homogeneous temperature distribution is assumed along the paths of each beam. However,
in these experiments, there is no observed improvement in the accuracy of the Voigt fitting, and it will
be computationally more intensive than Lorentzian functions. Therefore, the Lorentzian line-shape
function is used to fit all the absorption spectrums. Figure 9 shows the final direct absorption signals
in flame (red solid line) and in room air (black dot line) for two transitions at v1 = 7164.91 cm−1 and
v2 = 7165.82 cm−1, respectively. The two integrated absorbance for each channel can be calculated by
fitting and the modified ART. In the case of computing efficiency, it takes less than 1 s to reconstruct
the images of temperature and H2O mole fraction. Therefore, the reconstructed 2D distributions of
temperature and H2O mole fraction can be updated and displayed only every 1 s. If we need to
analyze the change of combustion more quickly, we need to increase the scanning frequency (hundred
or thousand times) to meet the requirements.
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Figure 9. The obtained direct absorption signals in room air (black dot line) and in the flame (red solid
line) for two transitions at v1 = 7164.91 cm−1 and v2 = 7165.82 cm−1, respectively.

In the experiment, a premixed flame is generated by a circular flat flame burner (Holthuis &
Associates, Sebastopol, CA, USA). Figure 10 shows the schematic of the burner. The gas fuel and air
were mixed in a buffering zone and then passed through the honeycomb grids before flew in to the
flame region. In order to build a flat flame, the burner was equipped with a mesh screen. The volumetric
flow-rates of the gas fuel and air were accurately controlled by two float-type flowmeters (Shuanghuan,
Changzhou, China). The diameter of burner is 12 cm, and the side length of the square measurement
region is 32 cm. The height of the laser beams 8 × 8 grids is adjusted 2 cm above the burner surface,
as shown in Figure 11. That is to say, the 2D distributions of temperature and H2O mole fraction on
the cross section of the flame at H = 2 cm are reconstructed per second in this experiment. In the
combustion process, the air flow rate is set to 20 L/min and three different combustion states are
operated by setting the gas fuel (CH4) flow rates to 1.0 L/min, 1.6 L/min, and 2.1 L/min, which resulted
in the fuel–air equivalence ratio (φ) approximate to 0.5, 0.75, and 1, respectively. When the flame is
stabilized, the 2D distributions of temperature Tcal and H2O mole fraction Ccal are obtained. In order
to smooth the reconstructed image, the cubic spline interpolating function is applied to the final image
data process [31]. In the core of the flame, the value of Tcal and Ccal are larger than beside value in
case of a higher equivalent ratio. As shown in Figure 12a, their temperature peaks are 955 K, 992 K,
and 1127 K under three different kinds of equivalence ratios, respectively. Based on the analysis,
the combustion temperature reaches the highest when the equivalence ratio of the premixed flow is
exactly stoichiometric. At the same time, the core flame temperatures have been recorded by a B-type
thermocouple, and the measurement results are 905 K, 970 K, and 1066 K, respectively. Therefore, the
temperature relative errors between the peaks value of Tcal and the B-type thermocouple (Huakong,
Beijing, China) are less than 5.6%. The same effect is observed in the case of the H2O mole fraction
distribution Ccal as in the case of Tcal, as seen in Figure 12b. The core flame theoretical value of H2O
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mole fraction is 0.190 when calculated with chemical equilibrium method for a fuel-air equivalence
ratio of 1. The H2O mole fraction Ccal of the other two combustion states, whose equivalent ratio are
0.75 and 0.5, are 0.146 and 0.099 from theoretical estimates. The experimental measurements are 0.174,
0.135, and 0.092 in the core flame of three combustion states. Therefore, the relative errors between
theoretical value and reconstruction Ccal are less than 8.6%. Because the flame region is smaller than
the measurement region and the flow disturbance mixes the boundary air into the flame, these cause
the H2O concentration to be lower than its theoretical value. At the boundary of the flame, Tcal and
Ccal gradually decrease to surrounding values because of heat transfer and gas mixing between the
combustion products and the surrounding air.Appl. Sci. 2017, 7, 990 10 of 13 
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Figure 12. The results of distributions within three kinds of fuel-air equivalence ratio (φ).
(a) Temperature distributions and (b) H2O concentration distributions.

In order to verify the performance of the tomographic sensor and algorithm, the distributions of
temperature and H2O mole fraction are reconstructed with two circular flat flames burners as is shown
in Figure 13. The divided laser beam grids are also 2 cm high above the two flat flames. In the process
of combustion, the air velocity of Burner 1 and Burner 2 are set to 20 L/min and their fuel velocity are
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set to 1.8 L/min and 2.0 L/min for different combustion states, respectively. Similarly, the images of
2D distribution of temperature Tcal and H2O mole fraction Ccal are shown in Figure 14. The double
temperature peaks are 927 K and 996 K at the center of Burner 1 and Burner 2, respectively. Meanwhile,
the distribution of Ccal corresponds to the Tcal, and the peak values are 0.094 and 0.134. The Tcal and
Ccal out of the combustion area are just above ambient temperature and humidity. The experimental
results are well coincident with the theoretical calculation, and yet, the errors are close to 10%. Because
the area of effective measurement is larger than the combustion region of interest, the air around
the flow has great effects on the results. Although we have obtained good imaging results using the
cubic spline interpolating function, the practical image quality is still limited by the finite number of
laser beams.Appl. Sci. 2017, 7, 990 11 of 13 
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5. Conclusions 

A TDLAT sensor was developed for the simultaneous tomographic imaging of temperature and 
species concentration. The influences of the number of beams, initial beam angle, and flame 
distribution on the reconstructed results were analyzed in numerical simulations. Four various flame 
profiles including symmetrical and asymmetrical distributions were reconstructed using four 
different beam distributions. The simulation results indicate that the larger numbers of views and 
laser beams provide a significant contribution in improving the accuracy of the tomographic 
reconstruction. If working within a limited number of beams, an acceptable error range could still be 
achieved by keeping the direction of the laser beams vertical and parallel to the symmetry axis. 
However, this method has some limitations, such as the symmetry of the combustion field needs to 
be known in advance, and it is impossible to divide into a very dense mesh. 

To validate the system performance, the temperature and H2O mole fraction distribution of the 
symmetric premixed flames including one and two burners are reconstructed with an 8 × 8 beam 
distribution. The distribution images of temperature and H2O mole fraction are carried out during 
three combustion states, and the time resolution is less than 1 s. The results show that the TDLAT 
sensor is a new effective method for reconstruction of the temperature and H2O concentration 
distribution. Furthermore, it exhibits a good potential for combustion flame monitoring. The dynamic 
flame shape diagnosis can be used for combustion feedback control in order to maintain combustion 
efficiency and minimize pollutant emissions during their operation life cycle. The spatial and 
temporal resolutions can be increased by improving the scan frequency of DFB laser and data-
processing algorithms in the future. 
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A TDLAT sensor was developed for the simultaneous tomographic imaging of temperature and 
species concentration. The influences of the number of beams, initial beam angle, and flame 
distribution on the reconstructed results were analyzed in numerical simulations. Four various flame 
profiles including symmetrical and asymmetrical distributions were reconstructed using four 
different beam distributions. The simulation results indicate that the larger numbers of views and 
laser beams provide a significant contribution in improving the accuracy of the tomographic 
reconstruction. If working within a limited number of beams, an acceptable error range could still be 
achieved by keeping the direction of the laser beams vertical and parallel to the symmetry axis. 
However, this method has some limitations, such as the symmetry of the combustion field needs to 
be known in advance, and it is impossible to divide into a very dense mesh. 

To validate the system performance, the temperature and H2O mole fraction distribution of the 
symmetric premixed flames including one and two burners are reconstructed with an 8 × 8 beam 
distribution. The distribution images of temperature and H2O mole fraction are carried out during 
three combustion states, and the time resolution is less than 1 s. The results show that the TDLAT 
sensor is a new effective method for reconstruction of the temperature and H2O concentration 
distribution. Furthermore, it exhibits a good potential for combustion flame monitoring. The dynamic 
flame shape diagnosis can be used for combustion feedback control in order to maintain combustion 
efficiency and minimize pollutant emissions during their operation life cycle. The spatial and 
temporal resolutions can be increased by improving the scan frequency of DFB laser and data-
processing algorithms in the future. 
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Figure 14. Double flat flame burner reconstruction images. (a) Temperature distribution and (b) H2O
concentration distribution.

5. Conclusions

A TDLAT sensor was developed for the simultaneous tomographic imaging of temperature and
species concentration. The influences of the number of beams, initial beam angle, and flame distribution
on the reconstructed results were analyzed in numerical simulations. Four various flame profiles
including symmetrical and asymmetrical distributions were reconstructed using four different beam
distributions. The simulation results indicate that the larger numbers of views and laser beams provide
a significant contribution in improving the accuracy of the tomographic reconstruction. If working
within a limited number of beams, an acceptable error range could still be achieved by keeping the
direction of the laser beams vertical and parallel to the symmetry axis. However, this method has
some limitations, such as the symmetry of the combustion field needs to be known in advance, and it
is impossible to divide into a very dense mesh.

To validate the system performance, the temperature and H2O mole fraction distribution of the
symmetric premixed flames including one and two burners are reconstructed with an 8 × 8 beam
distribution. The distribution images of temperature and H2O mole fraction are carried out during
three combustion states, and the time resolution is less than 1 s. The results show that the TDLAT sensor
is a new effective method for reconstruction of the temperature and H2O concentration distribution.
Furthermore, it exhibits a good potential for combustion flame monitoring. The dynamic flame shape
diagnosis can be used for combustion feedback control in order to maintain combustion efficiency and
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minimize pollutant emissions during their operation life cycle. The spatial and temporal resolutions
can be increased by improving the scan frequency of DFB laser and data-processing algorithms in
the future.
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