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Abstract: Diaryl-substituted anthracene derivatives containing 3-(trifluoromethyl)phenyl)
groups, 9,10-diphenyl-2-(3-(trifluoromethyl)phenyl)anthracene (1), 9,10-di([1,1′-biphenyl]-4-yl)-2-
(3-(trifluoromethyl)phenyl)anthracene (2), and 9,10-di(naphthalen-2-yl)-2-(3-(trifluoromethyl)phenyl)
anthracene (3) were synthesized and characterized. The compounds 1–3 possessed high thermal
stability and proper frontier-energy levels, which make them suitable as host materials for blue organic
light-emitting diodes. The electroluminescent (EL) emission maximum of the three N,N-diphenylamino
phenyl vinyl biphenyl (DPAVBi)-doped (8 wt %) devices for compounds 1–3 was exhibited at 488
nm (for 1) and 512 nm (for 2 and 3). Among them, the 1-based device displayed the highest device
performances in terms of brightness (Lmax = 2153.5 cd·m−2), current efficiency (2.1 cd·A−1), and external
quantum efficiency (0.8%), compared to the 2- and 3-based devices.

Keywords: anthracene; organic light-emitting diodes (OLED); blue-host material; electroluminescence

1. Introduction

Since the first report of Tang and VanSlyke in 1987 [1], organic electroluminescent (EL) devices
have been receiving much scientific and commercial attention because of their latent capabilities,
such as full-color displays, excellent brightness, fast response time, low turn-on voltage, wide viewing
angle, and flexible light source [2]. Extremely pure red, green, and blue luminophores with high
electrochemical stability and efficiency are particularly essential for a vivid full-color display in
organic light-emitting diodes (OLEDs). To date, OLED materials for red and green emission with
high performance have been developed [3–11]. However, continuous efforts to enhance stability and
efficiency in blue fluorescent materials, which possess relatively low chemical and electrochemical
properties, caused by the intrinsic wide band-gap, are still required [12,13].
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As a notable candidate for effective blue-emitting materials, anthracene derivatives have
attracted much attention in OLEDs because of their excellent optical and electroluminescent
properties [14–28]. However, these organic fluorescent π-conjugated compounds pose small problems,
such as poor thermal stability and device failure caused by intermolecular π-stacking features.
Novel silicon-cored (triphenylsilane) [29,30] or asymmetric anthracene derivatives [31–33] containing
bulky aryl substituents at the 9,10-position that exhibit high thermal stability and good EL properties
as blue host materials have recently been investigated. Furthermore, 9,10-diarylanthracene (DAA)
compounds containing aryl groups such as spirobifluorene [34] and carbazole [35,36] moieties are
advantageous in terms of preventing close packing of the molecular structure, thereby achieving
high quantum efficiency and EL properties. Along with the foregoing studies, DAA derivatives
bearing various substituents at the C-2 position of anthracene moieties have also been recently
investigated [37,38].

In an effort to extend such concepts, we were interested in the DAA compounds with
trifluoromethyl units at the C-2 position of the anthracene core. The trifluoromethyl group, in particular,
can give rise to enhancing electron mobility, thereby improving the balance of charge injection
and transfer [39]. In addition, the introduction of a bulky 3-(trifluoromethyl)phenyl) unit into the
anthracene core can efficiently prevent the intermolecular aggregations and reduce self-quenching
behaviors. Although several fluorinated DAA derivatives at the 9,10-position of the anthracene
groups as noticeable blue host materials have been reported [40,41], the example of 2-fluorinated DAA
compounds has never been studied.

From this perspective, we have systematically designed and synthesized a series of DAA
derivatives (i.e., 9,10-diphenyl-2-(3-(trifluoromethyl)phenyl)anthracene (1), 9,10-di([1,1′-biphenyl]-
4-yl)-2-(3-(trifluoromethyl)phenyl)anthracene (2), and 9,10-di(naphthalen-2-yl)-2-(3-(trifluoromethyl)
phenyl)anthracene (3)) bearing fluorinated end-capping groups at the C-2 position of the anthracene
core to investigate their thermal/electrochemical stabilities and electronic performances. The synthesis,
characterization, and luminescence properties of the newly prepared DAA compounds (1–3), along
with their application as the blue host materials for OLEDs, are presented in detail herein.

2. Materials and Methods

2.1. General Considerations

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) and were used
without any further purification. All solvents, such as toluene, tetrahydrofuran (THF), and ethanol,
were dried by distillation from sodium diphenylketyl under dinitrogen and were stored over 5 Å
activated molecular sieves [42]. Spectrophotometric-grade dichloromethane (DCM) was used as
received. All reactions were carried out under a nitrogen atmosphere. Commercial reagents
were used without any further purification after purchasing from Sigma-Aldrich (bromobenzene,
4-bromobiphenyl, 2-bromonaphthalene, n-butyllithium solution (2.5 M in hexane, n-BuLi), potassium
iodide (KI), sodium hypophosphite (NaPO2H2), acetic acid, 3-trifluoromethylphenylboronic acid,
copper iodide (CuI), tetrakis(triphenylphosphine)palladium (Pd(PPh3)4), potassium carbonate
(K2CO3)). The 2-bromo-9,10-arylanthracene precursors (1a–3a) were analogously prepared according
to the reported procedures [38,43]. Deuterated solvent (CDCl3) from Cambridge Isotope Laboratories
(Tewksbury, MA, USA) was used after drying over activated molecular sieves (5 Å). Nuclear Magnetic
Resonance (NMR) spectra were recorded at ambient temperature on Bruker Avance 400 spectrometer
(400.13 MHz for 1H, 100.62 MHz for 13C, and 376.5 MHz for 19F) using standard parameters.
Chemical shifts are given in ppm, and are referenced against external Me4Si (1H, 13C) and
CFCl3 (19F). Elemental analyses were performed on an EA3000 (Eurovector, Pavia, Italy) in the
Central Laboratory of Kangwon National University. The thermal properties of compound were
investigated by TGA2940 system (TA Instrument, New Castle, DE, USA) and DSC2910 system
(TA Instrument, New Castle, DE, USA) under a nitrogen atmosphere at a heating rate of 10 ◦C/min.
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UV/Vis absorption and PL spectra were recorded on a Jasco V-530 (Jasco, Easton, MD, USA) and a
Spex Fluorog-3 Luminescence spectrophotometer (HORIBA, Edison, NJ, USA), respectively, in CH2Cl2
solvent with a 1-cm quartz cuvette at ambient temperature. Cyclic voltammetry measurements were
performed using an AUTOLAB/PGSTAT12 system (Artisan Technology Group, Champaign, IL, USA).

2.2. General Synthesis of 9,10-aryl-2-(3-(trifluoromethyl)phenyl)anthracene (1–3)

The mixture of the relevant 2-bromo-9,10-arylanthracene precursor (1.00 mmol),
3-trifluoromethylphenylboronic acid (0.30 g, 1.58 mmol), Pd(PPh3)4 (0.06 g, 0.05 mmol) and
K2CO3 (0.76 g, 5.50 mmol) was added to the solvent of 24 mL (toluene/H2O/ethanol = 2:1:1, v/v/v) at
ambient temperature. After stirring for 1 h, the reaction mixture was allowed to slowly heated to 110
◦C and stirred for 24 h. The resulting solution was extracted with CH2Cl2 (30 mL × 3). The combined
organic portions were dried over MgSO4 and the solvent was removed under reduced pressure.
Purification by column chromatography (eluent: ethylacetate/n-hexane = 1:10, v/v) afforded the
products (1–3).

2.2.1. Data for 9,10-diphenyl-2-(3-(trifluoromethyl)phenyl)anthracene (1)

Pale yellow solid (0.24 g, 48%). 1H NMR (CDCl3): δ 7.89 (d, J = 1.2 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.77
(br s, 1H), 7.72 (d, J = 7.2 Hz, 1H), 7.70 (d, J = 4.8 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.61 (m, 4H), 7.56 (m,
4H), 7.51 (m, 5H), 7.34 (q, J = 8.0 Hz, 2H). 13C NMR (CDCl3): δ 141.92, 138.80, 138.66, 137.73, 137.14,
135.85, 131.29, 131.27, 130.96, 130.55, 130.39, 130.22, 129.84, 129.25, 129.13, 128.53, 128.49, 128.08, 127.71,
127.62, 127.03, 127.01, 125.45, 125.33, 125.31, 125.05, 124.48, 124.05, 124.01, 123.92, 123.88, 122.75, 77.20
(CF3). 19F NMR (CDCl3): δ–62.7. Anal. Calcd. for C33H21F3: C, 83.53; H, 4.46. Found: C, 82.99; H, 4.13.

2.2.2. Data for 9,10-di([1,1′-biphenyl]-4-yl)-2-(3-(trifluoromethyl)phenyl)anthracene (2)

Pale yellow solid (0.30 g, 44%). 1H NMR (CDCl3): δ 7.99 (d, J = 1.2 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.86
(d, J = 7.6 Hz, 4H), 7.84 (m, 1H), 7.80 (m, 4H), 7.78 (d, J = 1.2 Hz, 2H), 7.71 (d, J = 8.0 Hz, 1H), 7.61 (m,
4H), 7.58 (m, 1H), 7.52 (m, 6H), 7.42 (m, 2H), 7.39 (m, 2H). 13C NMR (CDCl3): δ 141.92, 140.78, 140.74,
140.44, 137.77, 137.65, 137.43, 136.89, 136.03, 131.79, 131.75, 131.29, 130.97, 130.62, 130.49, 130.31, 129.91,
129.29, 129.22, 128.93, 128.15, 127.51, 127.21, 127.19, 127.16, 127.09, 127.07, 125.46, 125.44, 125.06, 124.63,
124.10, 124.06, 123.96, 123.92, 122.75, 77.20 (CF3). 19F NMR (CDCl3): δ–62.6. Anal. Calcd. for C45H29F3:
C, 86.24; H, 4.66. Found: C, 85.78; H, 4.20.

2.2.3. Data for 9,10-di(naphthalen-2-yl)-2-(3-(trifluoromethyl)phenyl)anthracene (3)

Pale yellow solid (0.31 g, 46%). 1H NMR (CDCl3): δ 8.11 (d, J = 7.78 Hz, 2H), 8.04 (m, 4H), 7.94 (m, 3H),
7.86 (d, J = 8.0 Hz, 1H), 7.74 (m, 3H), 7.66 (m, 3H), 7.61 (m, 4H), 7.54 (dd, J = 8.2, 7.6 Hz, 1H), 7.50 (d, J =
7.6 Hz, 1H), 7.42 (t, J = 8.4 Hz, 2H), 7.32 (q, J = 8.2 Hz, 2H). 13C NMR (CDCl3): δ 141.84, 137.62, 137.12,
136.31, 136.21, 136.17, 133.44, 133.42, 132.86, 132.82, 131.20, 130.88, 130.65, 130.42, 130.33, 130.25, 130.00,
129.47, 129.45, 129.33, 129.24, 128.20, 128.16, 128.15, 128.11, 127.96, 127.94, 127.14, 127.10, 126.54, 126.50,
126.33, 125.48, 125.44, 125.09, 124.73, 124.08, 124.04, 123.93, 122.70, 77.20 (CF3). 19F NMR (CDCl3):
δ–62.6. Anal. Calcd. for C41H25F3: C, 85.70; H, 4.39. Found: C, 85.21; H, 3.98.

2.3. Cyclic Voltammetry

Cyclic voltammetry measurements of 1–3 were performed by a three-electrode cell configuration
system consisting of platinum working and counter electrodes and a Ag/AgNO3 (0.1 M in CH3CN)
reference electrode at room temperature. The solvent was acetonitrile (CH3CN) and 0.1 M
tetrabutylammonium hexafluorophosphate was used as the supporting electrolyte. All solvents
were sufficiently degassed for 1 h before use. The oxidation potentials were recorded at a scan rate of
100 mV/s and reported with reference to the ferrocene/ferrocenium (Fc/Fc+) redox couple.



Appl. Sci. 2017, 7, 1109 4 of 11

2.4. Device Fabrication and Characterization

The OLED devices were fabricated on glass substrates precoated with a 150 nm thick indium
tin oxide (ITO) layer with a sheet resistance of ~10 Ω per square. The ITO glass was cleaned with
ultrasonication in deionized (DI) water, detergent, acetone, methanol and DI water for 10 min each
in sequence. Then, the ITO substrate was dried with N2 gas flow and treated with UV-ozone for
15 min at 100 ◦C. After the cleaning procedure, the ITO substrate was loaded into a high-vacuum
chamber at a base pressure of <1.0 × 10−7 Torr. The 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl
(NPB), tris(8-hydoxyquinolinato)aluminum (Alq3), and DPAVBi were purchased from Luminescence
Technology Corp. and they were used without further purification. The organic materials and
LiF were sequentially deposited onto the substrate with thermal evaporation using Knudsen cells.
The NPB and Alq3 were deposited with a rate of 0.8 Å·s−1 while each host material and DPAVBi
were codeposited with a rate of 0.2 Å·s−1 and 0.016 Å·s−1. After that, the sample was transferred to
another high-vacuum chamber without breaking vacuum, and then Al was deposited using a BN
boat at a rate of ~1 Å·s−1. The total thicknesses and deposition rates were monitored with a quartz
crystal microbalance. The device area was 0.04 cm2. The current density–voltage–luminance (J–V–L)
characteristics of the OLEDs were measured using two Keithley 2400 source measure units and a Si
photodiode. The electroluminescence (EL) spectra were measured using a PR650 spectroradiometer
(StellarNet Inc., Tampa, FL, USA). Assuming Lambertian emission, the external quantum efficiency
(EQE) was calculated from the measured J–V–L characteristics and EL spectrum.

3. Results and Discussion

3.1. Synthesis and Characterization

Scheme 1 shows the synthetic routes for new 3-CF3-phenyl substituted DAA compounds 1–3.
The precursors (1a–3a) of the anthracene derivatives were produced by the reaction between
2-bromoanthracene-9,10-dione and lithium salts of each bromoaryl compound, followed by
acidification in a relatively high yield (i.e., 46–61%). These precursors could be readily converted
into the final products 1–3 from the Suzuki-Miyaura coupling with (3-CF3-phenyl) boronic acid in
moderate yields (44–48%). The formation of compounds 1–3 was confirmed by 1H, 13C NMR, 19F NMR
spectroscopy (Figures S1–S6, Supplementary Materials), and elemental analysis (EA). The 1H and
13C NMR spectra of all DAA derivatives were in good agreement with the predicted structures.
The 19F NMR signals of 1–3 detected around δ–62 ppm also indicated the presence of the CF3-phenyl
unit. Moreover, the chemical shifts of the resonances associated with the proton and carbon atoms in
these molecules were in the expected range.
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Scheme 1. Synthetic routes for diarylanthracene (DAA) derivatives 1–3. Reagents and conditions:
(i) bromobenzene (for 1), 4-bromobiphenyl (for 2) or 2-bromonaphthalene (for 3), n-BuLi, THF, −78 ◦C,
(ii) KI, NaPO2H2, acetic acid, (iii) 3-trifluoromethylphenylboronic acid, CuI, Pd(PPh3)4, K2CO3,
toluene/H2O/ethanol (v/v/v, 2:1:1), 110 ◦C, 24 h.
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3.2. Thermal Properties

The thermal properties of DAA derivatives 1–3 were examined by thermogravimetric
analysis (TGA) and differential scanning calorimetry (DSC) under dinitrogen atmosphere.
Compounds 1–3 exhibited Td5 values of 262, 387, and 358 ◦C, respectively, indicating that the terminal
naphthyl and biphenyl groups showed greater heat-resistant properties than the phenyl moiety. Such a
good thermal stability of compounds 1–3 was enough to stand the high temperature for the vacuum
vapor deposition. These results clearly showed that the bulky aromatic groups on the C9 and C10
positions of the anthracene moiety led to an enhanced thermal stability. A DSC analysis was performed
from 25 to 125 ◦C (for 1) or 180 ◦C (for 2 and 3) at a heating rate of 10 ◦C/min to investigate the
morphological stability of 1–3. Figure 1 shows that the glass transition temperature (Tg) of 1–3 was
obtained at 65, 121, and 118 ◦C, respectively.
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3.3. Photophysical and Electrochemical Properties

The photophysical properties of DAA compounds 1–3 were investigated by UV–Vis absorption
and photoluminescence (PL) spectroscopy (Figure 2 and Table 1). The absorption spectra of 1–3 in
dichloromethane (1.0 × 10−5 M) displayed the typical ππ* vibronic transition patterns (λabs = 365,
384, and 405 nm for 1 and λabs = 367, 386, and 407 nm for 2 and 3, Table 1) derived from the isolated
anthracene moieties. The absorption maximum point (λabs) of 2 and 3 was slightly red-shifted by
ca. 2 nm compared to that of compound 1. These features were also shown in the fluorescence spectra
of each compound. The emission maxima (λem) of 1–3 were observed at 429 nm for 1 and 439 nm for
2 and 3 (Table 1), respectively. Accordingly, the red-shifted spectra of 2 and 3 distinctively implied
that both the naphthyl and biphenyl moiety had a slightly stronger electron-donating property than
the phenyl group and, thus, could induce the narrow band gaps. The band gaps estimated from the
absorption edge for 2 and 3 were indeed slightly narrower than that of 1 (2.93 eV for 2 or 3 and 2.98 eV
for 1, Table 1). Furthermore, the PL spectra of all compounds were similar to the previously reported
DAA derivatives (Figure 2) [44] assignable to the lowest ππ* transition on the anthracene units.

The electrochemical properties of 1–3 were examined by cyclic voltammetry (CV) measurements
(Figure 3). From the first oxidation onset potential, the highest occupied molecular orbital (HOMO)
energy levels of 1–3 were calculated to be −5.51, −5.61, and −5.55 eV, respectively. The LUMO levels
can be estimated by combining the HOMO level and the optical band gap (Eg) determined from the
edge of the UV–Vis absorption spectra. Consequently, the energy levels of 1–3 were also calculated as
−2.53, −2.69, and −2.62 eV, respectively (Table 1). Such values indicated that DAA compounds 1–3
had suitable frontier energy levels and wide energy band gaps (Eg) of ca. 2.9–3.0 eV as host materials
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Table 1. Photophysical and electrochemical properties of 1–3.

Compound λabs
1 (nm) λem

1

(nm)
Eg

2

(eV)
Eox

3

(V)
HOMO 4

(eV)
LUMO 5

(eV)
Tg

(◦C)
Td5
(◦C) Φ 6

1 365, 384, 405 429 2.98 1.11 −5.51 −2.53 65 262 0.24
2 367, 386, 407 439 2.93 1.22 −5.62 −2.69 121 387 0.21
3 367, 386, 407 439 2.93 1.15 −5.55 −2.62 118 358 0.22

1 1.0 × 10−5 M in CH2Cl2. 2 Estimated from the absorption edge. 3 Oxidation onset potential vs. a Fc/Fc+ couple.
4 Calculated from the Eox. 5 Estimated from the HOMO and band-gap (Eg) energies. 6 Quantum yield measured
using quinine sulfate as a standard (0.5 M H2SO4, rΦ = 0.55) in CH2Cl2 (1.0 × 10−5 M). HOMO, highest occupied
molecular orbital; LUMO, lowest unoccupied molecular orbital.

3.4. Electroluminescent Properties

The anthracene-based compounds 1–3 were investigated as blue host materials by fabricating
multi-layer OLEDs with a DPAVBi dopant. Figure 4 presents the energy diagram of the OLEDs and the
molecular structure of the organic materials used in the OLEDs. NPB was selected as the hole transport
layer (HTL) material due to its having similar HOMO energy levels to 1–3 (ca. 5.5–5.6 eV) and NPB
(ca. 5.4 eV). Figure 4 illustrates that the devices were fabricated with the following configuration:
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ITO/NPB (40 nm)/1, 2, or 3 (30 nm, DPAVBi (8 wt %))/Alq3 (30 nm)/LiF (0.5 nm)/Al (100 nm) device,
where ITO is the anode; NPB is the HTL; the chemically purified anthracene derivatives 1, 2 or 3 (host)
and DPAVBi (dopant) served as the emission layer (EML); Alq3 was the electron transport layer (ETL);
and a thin LiF served as the electron injection layer at the Al cathode interface.Appl. Sci. 2017, 7, 1109 7 of 11 
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Figure 4. Energy diagram of the organic light-emitting diodes (OLEDs) using 1–3 with
N,N-diphenylamino phenyl vinyl biphenyl (DPAVBi) (8 wt %) as an emitter and molecular structures
of each compound; NPB, 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl; ITO, indium tin oxide;
HTL, hole transport layer; EML, ETL, emission layer; electron transport layer.

Figure 5a shows the EL spectra of the OLEDs using 1–3 with a DPAVBi dopant. All devices
exhibited the expected blue emissions and their main EL peaks were commonly observed at 488 and
512 nm with a shoulder peak at 556 nm. The peak intensity at 512 nm was somewhat higher than the
reported EL features of DPAVBi, which was attributed to the slight emission from Alq3. The maximum
EL peak was observed at 488 nm for 1 and 2 and at 512 nm for 3 because of the increased Alq3 emission
originating from the inefficient charge transport to the EML in 3-based OLEDs.

Figure 5b shows the measured L–V characteristics of the 1–3-based OLEDs with an 8 wt % ratio
of DPAVBi. At 10 V, the 1–3-based OLEDs showed an L of 2153.5, 243.0, and 156.3 cd·m−2, respectively.
The inset shows the measured J–V characteristics of the OLEDs. Moreover, at 10 V, the 1–3-based
OLEDs presented a J of 91.6, 16.4, and 13.2 mA·cm−2, respectively. We defined the turn-on and
operating voltages as the voltages providing the L of 1 and 100 cd·m−2. As a result, the turn-on voltage
of the 1–3-based OLEDs was 6.0, 7.8, and 8.5 V, while the operating voltage was 7.4, 9.4, and 9.8 V,
respectively. The current efficiency of 1–3 based OLEDs at the operating voltage was 2.1, 1.4, and 1.1 cd
A−1, respectively. Meanwhile, the power efficiency of the 1–3-based OLEDs at the operating voltage
was 0.9, 0.5, and 0.4 lm·W−1. Combining the J–V–L characteristics and the EL spectra, the external
quantum efficiency (EQE) of the 1–3-based OLEDs at the operating voltage was calculated as 0.8%,
0.5%, and 0.4%. The Commission Internationale de l’Eclairage (CIE) color coordinates for 1–3 appeared
at (0.25, 0.51), (0.25, 0.51), and (0.27, 0.52), respectively. Table 2 summarizes the measured device
parameters. These results clearly indicated that the 1-based OLEDs showed superior charge transport
and light emission abilities among all devices. Although the turn-on voltages of these devices were
a little high, and the efficiencies was not outstanding, the results exhibit the possibilities of these
anthracene-based compounds as blue-host materials in OLEDs.
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Table 2. Device parameters of the 1–3-based organic light-emitting diodes (OLEDs) from the current
density–voltage–luminance (J–V–L) characteristics and the electroluminescent (EL) spectra.

Compound Turn-on
Voltage 1 (V)

Operating
Voltage 2 (V)

Current
Efficiency 3

(cd·A−1)

Power
Efficiency 3

(lm·W−1)

EQE 3

(%)
CIE

(x, y)

1 (8%) 6.0 7.4 2.1 0.9 0.8 (0.25,
0.51)

2 (8%) 7.8 9.4 1.4 0.5 0.5 (0.25,
0.51)

3 (8%) 8.5 9.8 1.1 0.4 0.4 (0.27,
0.52)

1 Voltage at 1 cd/m2. 2 Voltage at 100 cd/m2. 3 Detected at the operating voltage. EQE, external quantum efficiency;
CIE, Commission Internationale de l’Eclairage.Appl. Sci. 2017, 7, 1109 8 of 11 
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4. Conclusions

New anthracene-based blue-host materials 1–3 were synthesized and characterized in this study.
The anthracene derivatives possessed high thermal stability and proper frontier-energy levels suitable
as novel host materials for blue OLEDs. Relevant further studies using various anthracene derivatives
to enhance the device performance are in progress.
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