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Abstract: Based on the crystal structure analysis, the overlap integral between the frontier molecular
orbitals of adjacent F8CuPcs in the one-dimensional chain is estimated: the overlap integral between
the lowest unoccupied molecular orbitals is 5.4 × 10−3, which is larger than that in a typical n-type
semiconducing material F16CuPc (2.1 × 10−3), whereas that between the highest occupied molecular
orbitals is 2.9 × 10−4. Contrary to previous studies in air, we found that an organic field-effect
transistor (OFET) composed of F8CuPc essentially shows clear n-type semiconducting behavior
in vacuum.
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1. Introduction

Metallophthalocyanines (MPcs) are widely used not only as organic dyes but also as organic
semiconductors, owing to their high air and chemical stabilities. They are being actively studied as
components of organic electronics, in applications such as organic field-effect transistors (OFETs),
organic light-emitting diodes, and organic photovoltaic cells [1–3]. MPcs are used as hole
transport/injection/extraction materials because the energy level of their highest occupied molecular
orbital (HOMO), consisting of the π orbital of the phthalocyanine (Pc), matches well with the
work function of ordinary hole injection/extraction electrodes such as Au or indium-tin-oxide
(ITO) [4–6]. They show p-type semiconducting characteristics, with a field effect hole mobility
of around 10−2 cm2 V−1 s−1 in thin film transistors and around 1 cm2 V−1 s−1 in single crystal
transistors [1,7].

Introduction of electron-withdrawing groups onto the peripheral benzene rings of Pc is a valid
approach for tuning the electronic properties of MPcs. For instance, F16CuPc, a fully fluorinated CuPc
shows n-type characteristics with an electron mobility comparable to its unsubstituted counterpart,
CuPc, a p-type material [8,9]. Therefore, F16CuPc has been widely used as an n-type material in organic
electronics [10–13].

For n-type organic semiconductors, in order to obtain a low energy barrier at the interface, the
position of the lowest unoccupied molecular orbital (LUMO) should be close to the work function
of the electrode. Moreover, a large π–π overlap of the LUMOs between the adjacent molecules in
the crystal is preferred [14], because electron transport in the crystalline state occurs through the
overlapped LUMOs. As for the LUMO level of F8CuPc (Figure 1), the reported value, −3.91 eV [15],
is similar to that of C60 and its derivatives [16,17]. This implies that the LUMO level of F8CuPc is
positioned optimally to enable it to function as an n-type organic semiconductor, and that F8CuPc can
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be potentially used as an electron transport/injection/extraction material in organic electronics, similar
to C60. Indeed, the junction between F8CuPc and p-type MPc has been reported to exhibit a rectification
effect [18,19]. In contrast, the highest occupied molecular orbital (HOMO) level of F8CuPc has been
reported to be −6.06 eV [15]. This value is far from the work function of Au or ITO [5,6]. Therefore,
we expected F8CuPc to be an n-type semiconductor. However, recently, thin film or single crystal
transistors composed of F8CuPc have been reported to show ambipolar characteristics in air [20,21].
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In this study, we grew a single crystal of F8CuPc, and determined its crystal structure to
estimate the π–π overlap between the frontier orbitals of adjacent molecules by the extended Hückel
calculation. We have also examined the charge transport properties of OFETs based on F8CuPc thin
films, and discovered that the transistor is unstable in air, whereas it shows stable n-type transport
properties in vacuum.

2. Materials and Methods

2.1. Synthetic and Crystallisation Procedures

All reagents were used as received without further purifications. 5.1 g (30 mmol) of CuCl2·2H2O
(WAKO) was heated and dried under vacuum, and 5.0 g (30 mmol) of 4,5-difluorophthalonitrile (TCI)
and 10 mL of N,N-dimethylformamide (Super Dehydrated grade, WAKO) were added. The mixture
was refluxed under Ar for 6 h, and filtered. A bluish-purple powder of F8CuPc was obtained, which
was washed several times with acetone to yield 2.3 g (42%) of the product. Single crystals of F8CuPc
were grown from this, by vacuum sublimation at 380 ◦C under a pressure less than 40 Pa.

2.2. X-ray Diffraction (XRD) Measurements

Although single-crystal X-ray diffraction (XRD) measurements were performed and the molecular
arrangement of F8CuPc has been revealed in [21], the atomic coordinates are not available. Therefore,
XRD data was collected for a single crystal of F8CuPc, using an automated Rigaku Rapid system with
the monochromated Cu-Kα radiation (λ = 1.54187 Å). The structure was solved using a direct method,
using SIR2004 [22] and refined by a full-matrix least-squares technique with SHELXL-2014/7 [23] with
anisotropic and isotropic thermal parameters for non-hydrogen and hydrogen atoms, respectively.
The crystallographic data has been deposited at the Cambridge Crystallographic Data Centre (CCDC)
as CCDC-1531473. Crystal data for F8CuPc: Triclinic, P1, a = 3.62740(10) Å, b = 12.7357(4) Å,
c = 13.4538(4) Å, α = 95.079(9)◦, β = 90.529(6)◦, γ = 96.441(6)◦, and V = 615.07(3) Å3, Z = 1, F(000) = 357,
dcal = 1.944 g cm−3, µ (CuKα) = 2.231 mm−1 (λ = 1.54187 Å), R1 = 0.0879, wR2 = 0.2008, GoF = 0.999.

2.3. Fabrication of OFET and Measurement of the Transport Properties

A thin film organic field effect transistor composed of F8CuPc was fabricated by the vacuum
deposition of F8CuPc on a SiO2/n-Si substrate under a pressure less than 1 × 10−2 Pa, where, n-Si and
SiO2 work as gate electrode and gate insulating layers, respectively. The deposition rate was ca.
0.05 nm s−1, and the resulting thickness of the film was ca. 30 nm. Subsequently, 30 nm thick Al
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electrodes were deposited on the F8CuPc film to serve as the source and drain electrodes, under a
pressure less than 1 × 10−3 Pa. Current–voltage characteristics were measured by an ADCMT 8252
electrometer in air or vacuum (~102 Pa and less than 10−2 Pa).

3. Results and Discussion

The lattice constant of the F8CuPc crystal is consistent with those reported in [21]. The crystal
structure is shown in Figure 2. F8CuPc forms a one-dimensional regular chain along the a-axis with
an interplanar distance of 3.30 Å, which is smaller than the sum of the van der Waals radii of sp2

carbons, suggesting a strong π–π intermolecular interaction. As the charge transport in organic
semiconductors occurs via the π–electrons, a strong π–π intermolecular interaction in the crystalline
state is desirable, which can be evaluated by the overlap integral in the conduction path consisting
of π–orbitals. Using an extended Hückel calculation method (The extended Hückel calculation was
performed using CAESAR 2 software developed by PrimeColor Software, Inc. (Raleigh, NC, USA)
Default parameters were used for the calculations), the overlap integral between the π–orbitals of
adjacent F8CuPcs in the one-dimensional chain along the a-axis were estimated: the overlap integral
between the LUMOs was found to be 5.4 × 10−3, which is comparable to that of molecular conductors
consisting of MPcs [24], whereas that the between HOMOs was 2.9 × 10−4. In addition to the optimal
position of the LUMO level, the π–π overlap appears to favor electron transfer over hole transfer.
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Figure 2. One-dimensional molecular arrangement of F8CuPc along the a-axis.

The carrier mobility of an organic thin film depends on the molecular orientation in the film.
Figure 3 shows the X-ray diffraction pattern of the F8CuPc film deposited on a SiO2/n-Si substrate.
A peak at 2θ = 6.56◦, corresponding to (001) plane was observed, indicating that the crystallographic
c-axis of F8CuPc in the as-deposited film is perpendicular to the substrate surface. This orientation
is favorable for charge transport between the source and drain electrodes of an OFET (vide infra),
because the π–π overlap between adjacent F8CuPc molecules in the one-dimensional chain lies on
the substrate.
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Figure 3. X-ray diffraction pattern of an F8CuPc film deposited on a SiO2/n-Si substrate.

An OFET composed of F8CuPc was fabricated using a SiO2/n-Si substrate and Al electrodes.
Figure 4 shows a schematic of the fabricated transistor and its current-voltage characteristics measured
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in air. F8CuPc shows an n-type semiconducting behavior. However, parabolic current-voltage curves
exhibiting a large hysteresis were obtained, although the first half of each measurement was consistent
with the current–voltage characteristics reported previously [20]. Furthermore, the results could
not be reproduced in repeated measurements. Figure 5 shows the current–voltage characteristics
measured in vacuum (~102 Pa). Compared to the measurement in air, it is obvious that the instability
is rather suppressed. These features indicate that the F8CuPc transistor is unstable in air, and therefore,
it is difficult to evaluate the transistor characteristics under air. In fact, we could not observe the
reported ambipolar characteristics under air [20,21] even when Au was used as the source and drain
electrodes. On the other hand, Figure 6 shows the current–voltage characteristics measured under high
vacuum (under a pressure less than 10−2 Pa). F8CuPc shows a typical, stable n-type semiconducting
behavior in vacuum, and the field effect electron mobility in the thin film transistor was calculated to
be 7.9 × 10−4 cm2 V−1 s−1 (on/off ratio being 3.6 × 103). Obviously, the p-type characteristics could
not be found in high vacuum, irrespective of the source and drain electrodes.
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Figure 4. (a) Schematic of an F8CuPc film transistor; (b) current-voltage characteristics of the F8CuPc
film transistor measured in air; and (c) those obtained from repeated measurements; these were
performed immediately after the first.
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Figure 6. Current–voltage characteristics of the F8CuPc n-channel transistor in high vacuum (less than
10−2 Pa).

As for an n-channel F16CuPc transistor, it has been previously shown that the F16CuPc film could
be rendered air-stable by the introduction of F atoms [8]; fluorination renders the organic molecules
resistant to oxidation, because the energy levels of their frontier orbitals are lowered. It has also
been suggested that the conformational orientation of the F16CuPc molecules in the film with the
F-atoms being exposed to air prevents the penetration of moisture into the film [8]. Photoemission
spectroscopies revealed that the energy levels of the frontier orbitals of F8MPc are positioned between
those of MPc and F16MPc [15,25]. Therefore, they are clearly lower than that of MPc, and higher
than that of F16MPc. Consequently, F8CuPc could be more readily oxidized compared to F16CuPc.
Furthermore, the un-substituted H-atoms in the benzene ring of F8CuPc and the attendant changes in
the molecular arrangement in the crystal structure might permit moisture to penetrate through the
thin film. Apparently, these factors are responsible for the air instability of the fabricated n-channel
F8CuPc film transistor.

The field effect electron mobility of 7.9 × 10−4 cm2 V−1 s−1 is almost 10 times lower than that of
the F16CuPc film transistor; Bao et al. reported a field effect electron mobility of 5 × 10−3 cm2 V−1 s−1

for the F16CuPc thin film transistor [8], and we too obtained a similar value with our measurement
system. As for the electron transport, the overlap of the LUMOs is responsible for the transport. In the
case of F16CuPc, the overlap integral between the LUMOs of adjacent F16CuPcs in the one-dimensional
chain could be estimated to be 2.1 × 10−3, according to the crystal data in [26]. Despite the larger
overlap integral between the LUMOs, the F8CuPc film transistor shows smaller electron mobility
compared to that of the F16CuPc film transistor. The lower electron mobility in the F8CuPc film
transistor could be attributed to the relatively low crystallinity in the as-deposited film, as indicated
by the broad diffraction peak observed in Figure 3, whereas sharp diffraction peaks suggesting high
crystallinity were observed in the F16CuPc film [8]. When a single crystal of F16CuPc was used, the
field effect electron mobility of the F16CuPc transistor increased by two orders of magnitude [9].
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This implies that higher field effect electron mobility could be obtained for F8CuPc, if a single crystal is
used. Indeed, a recent study on a single-crystal transistor of F8CuPc demonstrated that the field effect
electron mobility of F8CuPc is comparable to that of F16CuPc [21], even though the measurements
were performed in air.

4. Conclusions

Based on the crystal structure analysis, we have estimated the overlap integral between the
LUMOs of adjacent molecules along the a-axis of the one-dimensional regular chain of F8CuPc,
and discovered that it is larger than that in a typical n-type semiconducting material F16CuPc. The X-ray
diffraction pattern shows a peak attributable to (001) plane, implying that the one-dimensional chain
in the as-deposited F8CuPc film lies on the substrate. A field-effect transistor composed of an F8CuPc
film on a SiO2/n-Si substrate clearly shows n-type semiconducting behavior with the field effect
electron mobility of 7.9 × 10−4 cm2 V−1 s−1 in vacuum, while being unstable in air. The larger overlap
integral between the LUMOs in F8CuPc compared to that in F16CuPc implies that the electron mobility
of F8CuPc could potentially exceed that of F16CuPc. Considering the LUMO level and the electron
transport properties, F8MPcs are good candidates for n-type semiconduction in organic electronics.
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