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Abstract: The uncertainty of wind power results in wind power forecasting errors (WPFE) which
lead to difficulties in formulating dispatching strategies to maintain the power balance. Demand
response (DR) is a promising tool to balance power by alleviating the impact of WPFE. This paper
offers a control method of combining DR and automatic generation control (AGC) units to smooth
the system’s imbalance, considering the real-time DR potential (DRP) and security constraints.
A schematic diagram is proposed from the perspective of a dispatching center that manages smart
appliances including air conditioner (AC), water heater (WH), electric vehicle (EV) loads, and AGC
units to maximize the wind accommodation. The presented model schedules the AC, WH, and EV
loads without compromising the consumers’ comfort preferences. Meanwhile, the ramp constraint
of generators and power flow transmission constraint are considered to guarantee the safety and
stability of the power system. To demonstrate the performance of the proposed approach, simulations
are performed in an IEEE 24-node system. The results indicate that considerable benefits can be
realized by coordinating the DR and AGC units to mitigate the WPFE impacts.

Keywords: wind power forecasting error (WPFE); demand response (DR); DR potential (DRP);
wind accommodation

1. Introduction

As intermittent renewable energies continue to enter the power grid, more and more operational
and regulatory challenges emerge. Wind power is one of the most mature renewable energies around
the world [1], but the wind power forecasting error (WPFE) can be up to 10–15% with a look-ahead
time of 1 h. The variability and unpredictability of wind power generation increase the amplitude and
occurrence rate of power imbalance in the power system [2–4], which is mainly regulated by automatic
generation control (AGC) units in real-time. At present, the base output of AGC units is confirmed in
the process of formulating the dispatching plan based on the forecasting information of load and wind,
which is optimized every 15 min. If the WPFE is large, then AGC units are limited in their ability to
alleviate its impacts on the generator’s active power ramp rate and the spinning reserve [5,6].

To cope with the abovementioned challenges, additional flexible resources are required in smart
grids. Supplemental energy resources such as storage devices [7], pumped-storage hydro plants [8],
gas turbines, and compressed air energy storage [9] are feasible solutions proposed to reduce the
variability and uncertainty of wind power. Although storage can reduce the imbalance that stems
from wind power fluctuations, the current high investment cost of storage makes it an uneconomical
solution. In recent years, it has been suggested to utilize the flexibility potential available from
residential demand-side resources. Compared with traditional generation resources, DR resources
have some advantages [10,11] in terms of operational control in the power system. Firstly, according to
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a report by the Federal Utility Regulatory Commission, demand response (DR) is capable of offsetting
20% of the peak demand in the US [12]. Secondly, without the regulating inertia, the DR resources can
respond to the control order rapidly. In addition to the two mentioned advantages, the DR resources
can also cope with emergency conditions because of their geographical decentralization. Hence,
coordinating the AGC units and DR is a reasonable consideration to mitigate the WPFE impacts in
real-time to maximize the wind accommodation.

In general, the loads are classified into three types: residential load, commercial load,
and industrial load [13]. In this paper, we focus on the residential loads. Among the various residential
load types, thermostatic loads such as air conditioner (AC) and water heater (WH) loads, and deferrable
loads such as electric vehicle (EV) loads are placed at the top of the merit list of DR appliances due to
their greater load shifting potential and larger daily energy demand share [14–16]. Recently, the load
management benefits of controlled appliances for the increased deployment of intermittent renewable
generation have been investigated [17–21]. A stochastic unit commitment model is presented for
assessing the reserve requirements resulting from the integration of renewable sources in [17], where
alternative DR paradigms for assessing the benefits of demand-side flexibility on absorbing the
variability and uncertainty of renewable supply are investigated. Aghaei et al. [18] considered flexible
loads as a storage device in a hybrid power plant of a wind farm to compensate for wind power
imbalances and proposed a procedure to derive the strategic offer for a hybrid power plant selling
energy in the pool-based market. The joint operation of wind farms and DR producer is demonstrated,
and DR is effective in coping with the wind power uncertainties in the intraday market. Pourmousavi
et al. [19] evaluates thermostat set point control of aggregate electric water heaters (EWHs) for load
shifting and providing a desired balancing reserve for the utility at the presence of wind generation.
Çiçek et al. [20] developed a DR model that offers optimal levels for both production and consumption
in a smart grid that consists of a wind farm along with conventional sources.

Although these studies have studied the DR role in power systems with wind generation, they lack
the considerations of the demand side’s DRP and security constraints. To the best of the authors’
knowledge, until now, few studies have thoroughly investigated the optimization of DR and AGC units
to smooth the power imbalance considering the real-time DR potential (DRP) and security constraints.

The major contribution of this paper is to develop a mathematical model to mitigate the WPFE
impacts through the collaboration of DR and AGC units. It is necessary to evaluate how much power
smart appliances including ACs, WHs, and EVs can respond, which is regarded as DRP. The DRP
varies with different working conditions of the smart appliances. The operational status has features
of continuity and accumulation as a result of their operating characteristics. If the smart appliances
respond, the subsequent operational power would change. Therefore, this paper proposes a method of
evaluating the DRP quantitatively in real-time. Combining the DR and AGC units, the framework
is presented to take advantage of their potential for balancing supply and demand considering the
security constraints.

The rest of the paper is organized as follows. Section 2 covers the model formulation for wind
power and its forecasting error. The proposed computational method of aggregated DRP is presented,
and the preliminary basics are discussed in Section 3. Section 4 presents the framework for wind
forecasting error balancing via DR and AGC units. The case studies and their subsequent results are
outlined in Section 5. Finally, the paper is concluded in Section 6.

2. Wind and WPFE Model

In this paper, the actual wind power is the summation of the wind forecasting power and its error
∆Pw. The actual wind power is modelled in Equation (1):

Pw = Pwind + ∆Pw (1)
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where Pw is the actual wind power; Pwind is the wind forecasting power; and ∆Pw is the difference
between actual power and forecasting power, namely the wind forecasting error.

It is assumed that the wind forecasting error obeys a normal distribution with a certain
deviation [22]. Assuming that the wind prediction was made 24 h prior to the first hour of the
schedule for an ensemble of wind farms contained in a region with a diameter of 140 km, the standard
deviation of the wind forecasting error can be approximated by:

σw =
1
5

Pwind +
1
50

Wz (2)

where σw is the standard deviation, and Wz is the installed wind capacity.

3. DR and AGC Unit Capabilities

In this section, the models of smart appliances, including ACs, WHs, and EVs, are built. Based
on their operating characteristics, the DRP which can respond to both load reduction and increment
signals is quantified considering the consumers’ comfort. Finally, the AGC units’ regulating capability
is illustrated.

3.1. Modeling of Residential Smart Appliances

The residential appliances include heating, ventilation, AC, WH, clothes dryer, clothes washer,
dishwasher, range, refrigerator, light, plug load, and EV. AC and WH have the characteristics of a
thermal storage such that homeowners can control their power consumption by adjusting the room/hot
water temperature set points. Usage of EV can be deferred based on homeowner preference. All other
loads (e.g., cooking appliances and TVs) are not controlled.

3.1.1. AC Model

An AC system with a thermostat works in an “on–off” manner and the AC will simply run at its
rated power when turned on. In general, a thermostat control is set so that the room temperature will
fluctuate around the thermostat set point Ts

AC within the dead band of ±Td
AC/2.

Controlling the AC load is carried out by adjusting cooling set points. The AC status is related to
the current room temperature, cooling set point, and the thermostat dead band. The relationship is
presented in Equation (3):

pAC(t) =


PAC, TAC(t) ≥ Ts

AC(t) + Td
AC/2

0, TAC(t) ≤ Ts
AC(t)− Td

AC/2

pAC(t− 1), Ts
AC(t)− Td

AC/2 ≤ TAC(t) ≤ Ts
AC(t) + Td

AC/2

(3)

where pAC(t) is the working power of the air conditioner in time interval t (kW); PAC is the rated
power of AC (kW); TAC(t) is the room temperature in time interval t (◦F); Ts

AC(t) is the cooling set
point in time interval t (◦F); and Td

AC is the thermostat dead band (◦F).
The AC is controlled by changing the cooling set point Ts

AC(t). Increasing the cooling set point to
some value can stop the AC working. The controlled formula is presented in Equation (4):

Ts
AC(t) = sAC(t) · Tset

AC (4)

where sAC(t) is the DR control signal which is received from the in-home controller, and Tset
AC is the

cooling set point (◦F).
For each time interval t, the room temperature is calculated in Equation (5):

TAC(t + 1) = TAC(t)− ∆t · G(t)
∆c

+ ∆t · CAC

∆c
· pAC(t)

PAC
(5)
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where ∆t is the length of time interval t (hour); G(t) is the heat gain rate of the house during time
interval t, positive for heat gain and negative for heat loss (Bth/h); CAC is the cooling capacity (Bth/h);
and ∆c is the energy needed to change the temperature of the air in the room by 1 ◦F (Bth/◦F).

3.1.2. WH Model

The water heater model is a temperature-based model rather than an energy-based one.
This means that the duration of the ON period of the heating coils depends on the temperature
set point and the current water temperature. The WH working power is presented in Equation (6):

pWH(t) =


0, TWH(t) ≥ Ts

WH + Td
WH/2

PWH, TWH(t) ≤ Ts
WH − Td

WH/2

pWH(t− 1), Ts
WH − Td

WH/2 ≤ TWH(t) ≤ Ts
WH + Td

WH/2

(6)

where pWH(t) is the working power of water heater in time interval t (kW); PWH is the rated power of
WH (kW); TWH(t) is the water temperature in time interval t (◦F); Ts

WH(t) is the desired temperature
set point in time interval t (◦F); Td

WH is the thermostat dead band (◦F).
The WH is controlled by changing the water set point Ts

WH(t). Decreasing the water set point to
some value can stop the WH from working. The controlled formula is presented in Equation (7):

Ts
WH(t) = sWH(t) · Tset

WH (7)

where sWH(t) is the DR control signal which is received from the in-home controller, and Tset
WH is the

water set point (◦F).
The water temperature in the tank is calculated as shown in [23].

3.1.3. EV Model

Here, an on–off strategy is used for EV response, which means that each EV is charged by a
constant and maximum power. The benefits of charging with an on–off strategy instead of adjustable
power are as follows: First of all, it was suggested that charging the EV with a constant power could
prolong the battery’s service time. Secondly, smaller communication overhead is required to contact a
small subset of EVs, and hence it is more practical to turn charging on or off rather than adjusting the
charging rate when a large amount of EV charging is scheduled. Finally, it is expected that using an
on–off strategy can fully charge the EVs in a shorter timeframe [24].

To model EV charging profiles, three parameters are essential: the rated charging power,
the plug-in time, and the battery state-of-charge (SOC). The plug-in time is related to the time of
vehicle arrival at home and arrival at work.

The calculation of the EV charging profile is described in Equation (8):

pEV(t) = PEV · NEV(t) · wEV(t) · sEV(t) (8)

where pEV(t) is the EV charge power in time interval t (kW); PEV is the EV rated power (kW); NEV(t) is
the EV connectivity status in time interval t (“1” if EV is connected to the plug and “0” if EV is not
connected); wEV(t) is the EV charging status without control in time interval t, which depends on the
battery SOC as shown in (9) (“0” if EV is not being charged and “1” if EV is being charged); and sEV(t)
is the DR control signal for EV in time interval t, 0 = OFF, 1 = ON.

wEV(t) =

{
0, SOC(t) ≥ SOCmin

1, SOC(t) < SOCmin
(9)

where SOC(t) is the state of charge in time interval t, and SOCmin is the minimum SOC limit of EV at
the desired finish time.
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The battery SOC after EV charging completes should fulfill customers’ demand, which is
determined by:

SOC0 ≥ 1− L
EEV ·QEV

(10)

where SOC0 is the initial SOC of EV; L is the travel distance of EV (mile); EEV is the efficiency of driving
(mile/kWh); and QEV is the full capacity of battery (kWh).

The EV battery charging model is as follows:

SOC(t + 1) = SOC(t) +
pEV(t) · ∆t

QEV
· η (11)

where QEV is the full battery capacity (kWh), and η is the coefficient of charging.

3.2. Aggregated Model

The AC load parameter values obey a certain probability distribution [25]. The initial room
temperature obeys a discrete uniform distribution Tin ~ U (19,24). Suppose that the ACs are distributed
in a close geographic area so the thermostat set point and its dead band are the same for all the ACs.

The parameters of the aggregated WHs are set randomly within specific ranges. Each WH has
a different demand flow rate, tank insulation thermal resistance, tank volume, and different initial
water temperature. For the aggregated WH model, the demand flow rate is randomly obtained
from [26], which includes 18 kinds of demand flow rate for one day. The thermal resistance of the
tank insulation obeys a random uniform distribution R ~ U (10,20). The tank volume obeys a random
normal distribution V ~ N (40,6.272), whose range is approximately 20 to 65 gallons. The initial water
temperature is randomly distributed from 45 ◦C to 50 ◦C [19].

Each EV has different initial SOC, plug-in time, and travel mileage. Based on the report of
the US Department of Transportation for all American private cars in 2009 [27], when an EV starts
charging in a residence, it is assumed that it will not travel any more in a day. The initial SOC obeys a
uniform distribution SOC0 ~ U (0,0.1). On account of the driving pattern data in [27], the statistical
data is normalized, and it is obtained that the EV plug-in time approximately meets the Gaussian
distribution [28], which can be described as:

fp(x) =


1

σs
√

2π
exp

[
− (x−µs)

2

2σ2
s

]
17 ≤ x ≤ 20

0 else
(12)

where σs = 3.4, µs = 19.
The daily travel mileage obeys a Gaussian distribution, and the density function can be

described as:

fl(x) =
1

xσl
√

2π
exp

[
− (ln(x)− µl)

2

2σ2
l

]
(13)

where σl = 0.88 and µl = 3.66.

3.3. Aggregated DRP

Responsive loads are controlled to satisfy the demand requirements, which include load increment
and load reduction. DRP is defined that the smart appliances can switch their working status in
response to the DR signal without affecting the consumer’s comfort. This section discusses the
condition when there is a DR signal which needs smart appliances to stop working or continue to work.
Figure 1 shows the DRP of AC and WH in different conditions in response to a load reduction signal.
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Figure 1. Demand response potential (DRP) of air conditioner (AC) and water heater (WH) in 
response to a load reduction signal. 
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Figure 1. Demand response potential (DRP) of air conditioner (AC) and water heater (WH) in response
to a load reduction signal.

For the AC, when the room temperature is between Tset
AC − Td

AC/2 and Tset
AC + Td

AC/2, the AC has
DRP if the room temperature has a downward tendency, and has no DRP if it has an upward tendency.
In order to guarantee the comfort of consumers, the comfort range is set previously. In general,
the range of thermostat set point Tset

AC within the dead band of ±Td
AC/2 is between TAC

com f ort_lower and

TAC
com f ort_upper, except the condition of AC responding. When the room temperature goes above the

Tset
AC + Td

AC/2 which is below TAC
com f ort_upper, the AC has DRP until the room temperature is higher than

the maximum temperature of comfort range. Similar logic is suitable for WH. For the EV, when it is
connected to the charging station and can charge to the minimum SOC before the desired finish time,
it has DRP [29].

The DRP index of the three appliances in time interval t + 1 are obtained based on the parameters
of time interval t, “1” if the appliance has DRP and “0” if the appliance has no DRP, which are described
in Equations (14)–(16):

DPAC(t + 1) =


1,

(TAC(t + 1) < TAC(t)&&TAC(t + 1) ∈ (Tset
AC − Td

AC/2, Tset
AC + Td

AC/2))

||TAC(t + 1) ∈ (Tset
AC + Td

AC/2, TAC
com f ort_upper)

0, others

(14)

DPWH(t + 1) =


1,

(TWH(t + 1) > TWH(t)&&TWH(t + 1) ∈ (Tset
WH − Td

WH/2, Tset
WH + Td

WH/2))

||TWH(t + 1) ∈ (TWH
com f ort_lower, Tset

WH − Td
WH/2)

0, others

(15)

DPEV(t + 1) =

{
1, NEV(t) = 1&&SOC(t + 1) + PEV·(T−t−1)

QEV
· η ≥ SOCmin

0, others
(16)

where DPAC(t + 1), DPWH(t + 1), and DPEV(t + 1) are the DRP statuses of the AC, WH, and EV in
time interval t + 1, respectively.

In the condition of the DR requirement which requires more loads work, it is assumed that only
the WHs and EVs respond to the increment signal. The reason is that when the WHs and EVs respond
to the increment signal, the water temperature increases and then decreases slightly because of its
high heat preservation, and the EV’s SOC increases and then stays constant in the condition of no
charging or discharging because of its storage capacity. These characteristics are beneficial to the later
DR actions responding to the reduction signal. The DRP index of these three kinds of appliances in
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time interval t + 1 are obtained based on the parameters in time interval t, “1” if the appliance has DRP
and “0” if the appliance has no DRP, which are described Equations (17)–(19):

DPAC(t + 1) = 0 (17)

DPWH(t + 1) =


1,

(TWH(t + 1) < TWH(t)&&TWH(t + 1) ∈ (Tset
WH − Td

WH/2, Tset
WH + Td

WH/2))

||TWH(t + 1) ∈ (Tset
WH + Td

WH/2, TWH
com f ort_upper)

0, others

(18)

DPEV(t + 1) =

{
1, NEV(t) = 1&&SOC(t + 1) ≥ SOCmin

0, others
(19)

where DPAC(t + 1), DPWH(t + 1), and DPEV(t + 1) are the DRP statuses of the AC, WH, and EV in
time interval t + 1, respectively.

The aggregated DRP of each agent is presented in Equation (20).

DRPtotal(t + 1) =
N1

∑
i=1

Pi
AC · DPi

AC(t) +
N2

∑
j=1

Pj
WH · DPj

WH(t) +
Nk

∑
k=1

Pk
EV · DPk

EV(t) (20)

where DRPtotal(t + 1) is the DRP of all the appliances in one agent in time interval t + 1 (kW); N1 is the
total number of ACs; Pi

AC is the rated power of the ith AC (kW); DPi
AC(t) is the DRP index of the ith

AC in time interval t; N2 is the total number of WHs; Pj
WH is the rated power of jth WH (kW); DPj

WH(t)
is the DRP index of the jth WH in time interval t; N3 is the total number of EVs; Pk

EV is the rated power
of kth EV (kW); DPk

EV(t) is the DRP index of the kth EV in time interval t.

3.4. AGC Units Regulating Capability

Coal-fired generating units have a response delay, slow regulation speed, and are difficult to
change the regulating direction. Normally, the adjustable range of a coal-fired generating AGC unit
is 50–100% Pe (Pe is the rated capacity of unit), whose response delay time is 1–2.5 min. The load
regulation speed of most coal-fired generating units can reach 1.5 Pe/min. However, the maximum
allowable is generally 3% Pe/min.

4. Proposed Methodology

This section presents a sequential procedure to maximize the joint benefits of coordinating DR and
AGC units for balancing wind power fluctuations. In doing so, it is considered that there is a power
system with high wind power fluctuation and a large population of smart appliances. The optimization
routine is performed in real-time, and the schematic diagram is illustrated in Figure 2. The output of
an AGC unit is controlled by two signals, which contains area control error ∆PACE updated by seconds
and a base value updated every 15 min. Although the dispatching center can already update the
base value of AGC units in real-time, the control algorithm relies on the prediction of the load every
15 min. As a result of the regularity of load variation, the prediction of the load becomes more accurate.
With the wind penetration increasing, the high forecasting error of wind power would lead to the
actual output of AGC units deviating from economical operating point, which increases the operating
cost. Meanwhile, the large fluctuation of wind power requires more reserve, so the AGC units have
less regulating capacity. Therefore, this paper proposes a real-time control method by coordinating DR
and AGC units to alleviate the WPFE impacts.

In Figure 2, the output of the AGC units, wind farm, and smart appliances are controlled by
the combination of dispatching order (DO) and real-time control order (RTCO). The actual power of
AGC units are restricted by the ramp and transmission constraints. The dispatching center collects
information from the wind forecasters and sends the WPFE to the sublocal controllers of the AGC units.
The local controller obtains information from all the sublocal controllers and makes control decisions.
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Figure 2. Schematic diagram of coordinated real-time control of DR and automatic generation control 
(AGC) units. DO: dispatching order; RTCO: real-time control order; WPFE: wind power forecasting 
error. 
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Figure 2. Schematic diagram of coordinated real-time control of DR and automatic generation
control (AGC) units. DO: dispatching order; RTCO: real-time control order; WPFE: wind power
forecasting error.

4.1. Optimization Model

(1) Objective Function

Considering the wind power forecasting error and smart appliances’ DRP, this paper focuses on
both the supply side and demand-side strategies to maximize the wind accommodation. The formula
is as follows:

max F =
T

∑
t=1

Nw

∑
i=1

Pt
wi∆T (21)

where T is the number of time intervals; Nw is the number of wind farms; Pt
wi is the wind output in the

time interval t; and ∆T is the time interval.

(2) Active Power Balance Constraint

Once the smart appliances participate in the DR program and response, the total load energy
varies. Meanwhile, the forecasting error on load prediction can also lead to the variation of total
load. Therefore, there is load fluctuation as a result of DR actions and load forecasting error, which is
as follows:

∆Pl j = Pl j − Pl j0 + Paj − Pf j (22)

where ∆Plj is the load fluctuation of the jth household; Plj is the total power after DR of smart appliances
in the jth household; Plj0 is the prediction load power of smart appliances in the jth household; Paj is
the actual power of non-smart appliances in the jth household; and Pfj is the forecasting power of
non-smart appliances in the jth household.

The active power balance constraint is shown in Equation (23).

Ng

∑
i=1

Pgi + Pwind + ∆Pw =
NL

∑
j=1

Pl j (23)

where Ng is the number of generators; NL is the number of households; Pgi is the output power of the
ith generator; Pwind is the wind forecasting power; ∆Pw is the fluctuation of the wind power; and Pl j is
the output power of the jth household’s total loads.

(3) Generator Capacity Constraint

Pgi,min ≤ Pgi ≤ Pgi,max (24)

where Pgi,min and Pgi,max are the minimum and maximum capacities of the ith generator, respectively.
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(4) Generator Ramp Constraints {
Pgi,t − Pgi,t−1 ≤ Ru,i · ∆T
Pgi,t−1 − Pgi,t ≤ Rd,i · ∆T

(25)

where Pgi,t is the output power of the ith generator in time interval t; ∆T is the time interval; and Ru,i
and Rd,i are the ascending and descending ramp, respectively, whose units are MW/min.

(5) Power Flow Transmission Constraint

− Pl
line,max

≤ Pl
line
≤ Pl

line,max
(26)

where Pl
line

is the power flow at the lth line, and Pl
line,max is the maximum limit at line l.

(6) Demand Response Capacity Constraint

When the loads increase:
Pj0 ≤ Pl j ≤ Pj0 + DRPj (27)

When the loads decrease:
Pj0 − DRPj ≤ Pl j ≤ Pj0 (28)

where Pj0 is the initial power of the jth household’s total loads, and DRPj is the DRP of the jth
household’s responsive loads.

(7) Consumers’ Comfort Constraints

0 ≤ CAC(t) =
TAC

com f ort_upper − TAC(t)

TAC
com f ort_upper − TAC

com f ort_lower
≤ 1 (29)

0 ≤ CWH(t) =
TWH(t)− TWH

com f ort_lower

TWH
com f ort_upper − TWH

com f ort_lower
≤ 1 (30)

0 ≤ CEV(t) =

{
1− α · N(t) SOC(t) ≥ SOCmin

0 SOC(t) < SOCmin
≤ 1 (31)

where CAC(t), CWH(t), and CEV(t) are the comfort indices of the air conditioner, water heater,
and electric vehicle in time interval t, respectively; TAC

com f ort_upper and TWH
com f ort_upper are the upper

limit of room temperature and water temperature, respectively; TAC
com f ort_lower and TWH

com f ort_lower are the
lower limits of room temperature and water temperature, respectively; TAC(t) is the room temperature
in time interval t and TWH(t) is the water temperature in time interval t; N(t) is the total charging
times during the t period, SOC(t) is the SOC of EV in time interval t; and SOCmin is the minimum
SOC limit of EV at the desired finish time.

4.2. Solution Method

The way of determining the optimal combination of AGC units and DR reserve power for
maximizing the wind accommodation is presented as the following flowchart (see Figure 3). First,
the wind power and load curve are forecasted and the output power of thermal units is scheduled
using the direct current optimal power flow (DCOPF) method in Matpower [30]. Based on the wind
model described in Section 2, the wind power fluctuation ∆Pw is calculated. Considering the operating
characteristics of smart appliances, including ACs, WHs, and EVs, it is obvious that their working
status are the accumulated results of previous operation, and there is a load fluctuation ∆Pl calculated
in Equation (22). The wind and load fluctuations result in the system imbalance, and the wind
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accommodation is maximized with the combination function of the supply-side and demand-side
considering the constraints in Section 4.1.
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Figure 3. Solution method’s flowchart. DCOPF: direct current optimal power flow.

When the AGC units regulating capability and DRP are not large enough to smooth the power
imbalance, there would be wind energy curtailment with a negative fluctuation or load shedding
with a positive fluctuation. In the condition of positive fluctuation, the comfort range is expanded to
increase the DRP within the consumers’ acceptable limits.

5. Case Study

The proposed model was tested on a modified IEEE 24-node system over a daily time horizon
whose data was taken from Reference [31]. The system comprises 34 transmission lines, illustrated in
Figure 4. The wind farm is located at bus 20. The load profile used for testing was obtained as given
in Figure 5. The 24-node system includes 17 loads. Both the nodal location of these loads and their
contribution in percentage to the total system demand are listed in Table 1. It was assumed that there
were smart appliances in 10 nodes, including nodes 3, 4, 5, 6, 8, 9, 10, 14, 19, and 20. The time interval
was 1 min.
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Table 1. The 24-node system: node location and distribution of the total system load.

Load Node Percentage Load Node Percentage

1 1 3.8 10 10 6.8
2 2 3.4 11 13 9.3
3 3 6.3 12 14 6.8
4 4 2.6 13 15 11.1
5 5 2.5 14 16 3.5
6 6 4.8 15 18 11.7
7 7 4.4 16 19 6.4
8 8 6.0 17 20 4.5
9 9 6.1

An ensemble of wind farms with a total installed capacity of Wz = 600 MW is connected to the base
system as an example. The wind forecast power data is taken based on [32], and its forecasting error is
distributed normally as shown in Section 2. Figure 6 shows the actual and prediction wind power.
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Figure 6. The actual and prediction wind power.

To showcase the benefits offered from the proposed methodology, four distinct case studies were
conducted as follows, in which the wind installed capacity was 600 MW and the DR percentage was
15%. The operator maximizes the wind accommodation for which, in Case 1, generating units provide
energy and reserve and there is no DR participation to absorb as much wind power, but in Case 2,
in addition to generators, smart houses can also participate in balancing the wind prediction error.
The generator ramp constraint is not considered in Case 3, and the power flow transmission constraint
is not taken into account in Case 4 in the condition of a wind percentage of 20% and DR percentage of
15%. The simulations were conducted in Matpower and Matlab [33]. The observations are reported in
the following subsection.

5.1. Simulation Results

Figure 7 shows the generator’s ability to smooth the wind fluctuation in Case 1. It is clear
that the generator capability deviated from the imbalanced power. The generator capability varies
owing to the wind fluctuation, negative or positive, and the different generator output for every time
interval. The generator capability was smaller than the imbalanced power most of the time, which
indicates that the AGC units cannot smooth the wind prediction error, and hence the curtailment of
renewable generation, or even load shedding, are inevitable during large fluctuations. The estimated
load shedding was 130.77 kWh. It can be obviously anticipated that additional balancing reserves are
required in order to accommodate the wind output as much as possible.

As discussed earlier, the smart appliances—including AC, WH, and EV loads—are highly flexible,
and the shifting of the smart appliances in time to smooth the wind power fluctuation will bring
greater benefits. The questions of how the smart appliances respond and how much DRP supports the
balancing of wind power forecasting error are now explored.
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Figure 8 indicates the DRP and AGC unit capabilities and the unbalanced power. The red line
represents the AGC unit capability, which is assumed negative when it provides reserve, and vice versa.
The green line expresses the summation of DRP and AGC unit capability. The DRP is unlocked thanks
to the domestic thermal storages that enable load shifting in order to smooth the wind forecast error.
It is worth stating that the customers’ comfort—including the temperature preferences, travel distance
,and charging times—are respected at all times. However, as has been discussed in an earlier part of
this paper, the DR strategy is not restricted to some specific method. The DR strategy could affect the
following DRP, which varies at different time intervals. The DRP may not likely be large enough to
smooth the wind forecast error. This phenomenon is observed during 01:50–02:44 a.m. The load-supply
matching is disturbed because of large wind forecast error and little DRP. Consequently, the utilization
of wind power could be enhanced if the system had more allowed DRP. It is worth revealing that
the mismatching, wind power curtailment, and load shedding are a result of large fluctuations and
DRP uncertainty.
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Figure 9 shows the smart appliance results with and without the proposed method. In the process
of optimization, the smart appliances provide up and down reserve based on the time-varying DR
potential. It is obvious from the upper figure that the smart appliance power before DR is different from
the power with no DR, which means the DR potential under these two conditions are also different.
The difference between smart appliance power after DR and before DR is within the DR potential
value. When the DR potential is not sufficient with negative unbalanced power, some other loads
would be shed, like the green line of the lower figure.
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The conventional DRP is calculated in advance, such that the DRP is constant. It is assumed that
the upward DRP is 100 MW and the downward DRP is 45 MW. Figure 10 shows the comparative
results between the proposed time-varying DRP and constant DRP. During 00:00–01:20 a.m., the total
fluctuation is positive and the smart appliances respond to the increment signal. The lower figure
depicts that the green shadow is the wind curtailment energy because the DRP is lower than the
required response capacity of the load side. During 01:29–03:00 a.m., the total fluctuation is negative
and the smart appliances respond to the reduction signal. The purple shadow is the load shedding
energy. The amount of load shedding is greater with constant DRP than with the time-varying DRP.
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Figure 10. Comparative results: (a) load response results with time-varying DRP; and (b) load response
results with constant DRP.

When the wind forecast error is large, there should be DR participation because of the AGC units’
output restrict. If the generator ramp constraint is not considered, the AGC units can provide an
adequate up and down reserve, which is not correct in reality. The results are indicated in Figure 11
compared with taking the ramp constraint into account.

After the wind accommodation is maximized with the combination of generators and smart
appliances, the line power varies and may be beyond the limit. Table 2 shows the line active
power without and with power flow transmission constraint at a given time. As shown in Figure 4,
the branches 15–21, 18–21, 19–20, and 20–23 are double circuit lines. Therefore, their power limit and
line active power are depicted as the corresponding parameter of the single line multiplied by two in
Table 2. It can be seen that the active power of branch 14–16 shown in red frame exceeds the power
limit in the condition of not considering the power flow transmission constraint.
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11–13 400 −115.47 −115.36 
11–14 400 −231.40 −227.30 
12–13 400 −101.29 −100.09 
12–23 400 −261.67 −259.90 
13–23 400 −236.49 −235.17 
14–16 400 −405.49 −400 
15–16 400 88.09 86.98 
15–21 400 × 2 −237.51 × 2 −235.28 × 2 
15–24 400 257.13 253.79 
16–17 400 −347.17 −342.54 
16–19 400 77.30 71.17 
17–18 400 −205.58 −200.99 
17–22 400 −141.59 −141.55 
18–21 400 × 2 −46.70 × 2 −48.94 × 2 
19–20 400 × 2 −43.92 × 2 −46.20 × 2 
20–23 400 × 2 −25.60 × 2 −27.15 × 2 
21–22 400 −158.41 −158.45 

The wind forecasting power and its error are 225.78 MW and −74.06 MW, respectively. The load 
forecasting power is 2545.45 MW. Table 3 shows the results with and without considering power 
flow transmission constraint. In the condition of with power flow transmission constraint, even 
though the line power is lower because of less load fluctuation, the smart appliances respond to the 
4.06 MW load reduction signal in order to keep the line power within the limitation. The DR power 
is 0 without considering the power flow transmission constraint, in which the generator regulating 
capability is abundant to balance the fluctuation. Therefore, it is indispensable to consider the power 
flow transmission constraint in the process of optimizing the utilization of DR. 

Table 3. Results without/with transmission constraint. 

Transmission Constraint Generator Power (MW) Load Fluctuation (MW) DR Power (MW)
with 2390.58 0.92 −4.06 

without 2405.53 11.81 0 

5.2. Wind and Smart House Penetration Level 

In the basic simulation, it was supposed that the wind penetration percentage is 20% and the DR 
percentage is 15%. However, this may not be considerate in practice. Therefore, it is imperative to 
evaluate the impact of the wind penetration and smart houses enrollment level on the wind energy 
curtailment and load shedding. There are several assumptions for the wind percentage and DR 
percentage, which are shown as follows. 

(1) The wind penetration percentage equals the installed capacity of wind generation divided by 
the maximum total load. 

(2) The maximum power of a house in one day is 12 kW. The total number of houses is maximum 
total load divided by 12 kW. 

The wind forecasting power and its error are 225.78 MW and −74.06 MW, respectively. The load
forecasting power is 2545.45 MW. Table 3 shows the results with and without considering power flow
transmission constraint. In the condition of with power flow transmission constraint, even though
the line power is lower because of less load fluctuation, the smart appliances respond to the 4.06 MW
load reduction signal in order to keep the line power within the limitation. The DR power is 0 without
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considering the power flow transmission constraint, in which the generator regulating capability
is abundant to balance the fluctuation. Therefore, it is indispensable to consider the power flow
transmission constraint in the process of optimizing the utilization of DR.

Table 3. Results without/with transmission constraint.

Transmission Constraint Generator Power (MW) Load Fluctuation (MW) DR Power (MW)

with 2390.58 0.92 −4.06
without 2405.53 11.81 0

5.2. Wind and Smart House Penetration Level

In the basic simulation, it was supposed that the wind penetration percentage is 20% and the DR
percentage is 15%. However, this may not be considerate in practice. Therefore, it is imperative to
evaluate the impact of the wind penetration and smart houses enrollment level on the wind energy
curtailment and load shedding. There are several assumptions for the wind percentage and DR
percentage, which are shown as follows:

(1) The wind penetration percentage equals the installed capacity of wind generation divided by the
maximum total load.

(2) The maximum power of a house in one day is 12 kW. The total number of houses is maximum
total load divided by 12 kW.

(3) All the smart houses contain three kinds of smart appliances, whose working parameters are
indicated in Table 4.

(4) The DR percentage is a number of smart houses expressed as a fraction of all houses.

Table 4. Parameters of smart appliances. EV: electric vehicle.

Parameter Value Unit

Cooling set point 22 ◦C
AC thermostat dead band 1 ◦C
AC power consumption 3 kW

WH temperature set point 47 ◦C
WH thermostat dead band 6 ◦C
WH power consumption 4 kW
EV power consumption 3.3 kW
EV efficiency of driving 3.846 mile/kWh
EV charging efficiency 0.9 -

Quite a few simulations have been performed by changing the wind and smart house penetration
percentages. Based on the mentioned assumptions, the simulation data are shown as follows: If the
maximum load is 2658 MW, then the installed wind capacities are approximately 265 MW, 530 MW,
and 795 MW when the wind penetration percentages are 10%, 20%, and 30%, respectively, and the
total number of smart houses in the studied system are roughly 11,050, 22,100, 33,150, and 44,200 when
the DR percentages are 5%, 10%, 15%, and 20%.

The wind generation curtailment and load shedding are listed in Table 5 with different wind and
DR percentages. Here, the comfort ranges of smart appliances are fixed. The wind energy curtailment
decreases from 645.71 MW to 158.4 MW when the wind percentage is 30% and the DR percentage is
from 0% to 20%. From the relation between DR percentage and wind energy curtailment with 10%
and 20% wind percentage, it is easily derived that the wind curtailment could reduce to 0 with the DR
percentage increasing as the wind percentage is 30%. There is a similar variation tendency for load
shedding as the wind and DR percentage change.
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Table 5. Wind energy curtailment and load shedding energy with different wind and DR percentage.

Wind Percentage DR Percentage Wind Energy Curtailment (MWh) Load Shedding (MWh)

10%

0% 29.50 95.85
5% 0 42.30
10% 0 23.21
15% 0 7.52
20% 0 0.29

20%

0% 148.74 262.28
5% 41.87 175.20
10% 3.26 148.36
15% 0 130.77
20% 0 108.21

30%

0% 645.71 385.38
5% 443.40 318.88
10% 329.52 290.79
15% 224.10 264.24
20% 158.40 239.70

This result will serve as a strong motivation to provide an incentive to distribution companies to
utilize more DR. Figure 12 shows the impact of DR and wind percentage on wind curtailment and
load shedding using the interpolation method based on the information in Table 5.
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Figure 12. Impact of DR and wind percentage on wind curtailment and load shedding.

Figure 12 shows the correlation among wind percentage, DR percentage, and wind power
curtailment/load shedding. The wind curtailment or load shedding reduce as the number of enrolled
smart houses increases and wind power decreases.
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6. Conclusions

This paper proposes a real-time optimal method to mitigate the WPFE impacts by the coordination
of AGC units and residential DR. Consequently, a comprehensive model is proposed that enables
AGC units and DR to function to mitigate the effect of wind power forecasting error. The model
is applicable no matter what kind of DR load control method is used. Since the wind forecasting
error may not be offset by employing conventional generation resources and further leads to wind
curtailment or load shedding, the smart appliances’ loads—including AC, WH, and EV—are applied
in the optimal scheduling to alleviate the WPFE impacts. Furthermore, the quantifying DR potential
method is presented considering consumers’ comfort and smart appliances’ dynamic characteristics,
which reflect the time-scale variability of DRP. To ensure the safety and stability of the power system,
the generator ramp constraint and power flow transmission constraint are necessarily considered.
The proposed method could reveal the correlation among the wind percentage, DR percentage,
and wind curtailment/load shedding, which can provide ancillary decisions under diverse operational
conditions. The obtained results confirmed that the collaboration of residential DR and AGC units can
improve the ability of wind accommodation and reduce load shedding. Other DR categories, such as
the industrial DR and commercial DR, should be considered in future studies.
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AC Air Conditioner
AGC Automatic Generation Control
DCOPF Direct Current Optimal Power Flow
DO Dispatching Order
DR Demand Response
DRP Demand Response Potential
EV Electric Vehicle
EWH Electric Water Heater
SOC State-of-Charge
RTCO Real Time Control Order
WH Water Heater
WPFE Wind Power Forecasting Error
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