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Abstract: A reliability-based criterion to estimate strength amplification factors for buildings with
asymmetric yielding located within a seismic region presenting different soil conditions is proposed
and applied. The approach involves the calculation of the mean annual rate of exceedance of
structural demands of systems with different levels of asymmetric yielding. Two simplified
mathematical expressions are developed considering different soil conditions of the valley of
Mexico. The mathematical expressions depend on the ductility of the structural systems, their
level of asymmetric yielding, their fundamental vibration period and the dominant period of the
soil. In addition, the proposed expressions are compared with that recommended by the current
Mexico City Building Code (MCBC). Since the expressions are developed with the help of simplified
structural systems, the validity of such expressions is corroborated by comparing the expected
ductility demand of multi-degree of freedom (MDOF) structural systems with respect to that of their
equivalent simplified systems. Both structural representations are associated with a given annual rate
of exceedance value of an engineering demand parameter. The expressions proposed in this study
will be incorporated in the new version of the MCBC.

Keywords: structural reliability; asymmetric yielding behavior; seismic risk analysis; seismic design;
structural tilting

1. Introduction

Structures built on intermediate or soft soils are those that commonly present structural problems.
One of these complications is that buildings may suffer tilting due to differential settlements, leading
to an uneven load-deformation behavior (hereinafter referred as asymmetric yielding behavior);
this means that such structures exhibit different yield strength in opposite directions. Since symmetric
(without asymmetric yielding) structures tend to oscillate around their un-deformed position, their
plastic deformation demands tend to counteract each other. Otherwise, asymmetric yielding structures
tend to accumulate the plastic deformation demands in the weaker direction (i.e., the direction of tilting)
when they are excited by seismic loading. In other words, originally symmetric structures develop
“strong” and “weak” directions due to tilting. There are several reasons why a structure exhibits
different yield strength in opposite directions, for example: asymmetry in vertical loads, structures
with sloping facades, the presence of mezzanines, tilting, etc. (see Figure 1a–c). This undesirable
behavior may significantly affect the seismic performance of these kinds of structures, particularly,
when they are subjected to long-duration seismic ground motions.
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Figure 1. Some examples of structures with asymmetric yielding: (a) asymmetry in vertical loads; (b) 
structures with sloping facades; (c) tilting. 

As discussed later in this paper, the effect of asymmetric yielding significantly reduces the 
seismic performance of structures, and this, combined with other factors such as constructive 
deficiencies, poor design procedures, among others, may cause the failure of such structures when 
subjected to intense seismic ground motions. Therefore, it is necessary to take action to counteract 
the effect of asymmetric yielding. There are different types of solutions to improve the performance 
of buildings with asymmetric yielding. The best solution will depend on the particular problem 
under consideration. These solutions could be geotechnical, structural or a combination between 
them. The present study is focused exclusively on structural solutions. Using the approach proposed 
in this paper, buildings with asymmetric yielding must be designed for a higher lateral strength than 
symmetric ones, requiring the development of strength amplification factors (AF) of the design 
pseudo-acceleration spectrum in order to take into account the detrimental effect of the yielding 
asymmetry. 

On the other hand, future design codes must be oriented not only to guarantee a satisfactory 
seismic behavior, but also an adequate level of reliability, which will allow engineers to design for a 
certain pre-established risk associated with structures. Over recent years, the development of 
structural reliability methods has provided a more rational basis for the design of earthquake-
resistant structures. Numerous reliability-based code calibrations have been formulated by several 
researchers [1,2] and have also been included in guidelines like MCBC [3], National Building Code 
of Canada (NBCC) [4], Federal Emergency Management Agency (FEMA 445) [5], FEMA P-58 [6], 
among others. 

Hence, in the present study, a reliability-based methodology is proposed and applied to develop 
simplified mathematical expressions to estimate strength amplification factors for existing structures 
exhibiting asymmetric yielding produced by tilting. The structures are supposed to be distributed 
within a seismic region. It is important to emphasize that this methodology can be applied not only 
for existing buildings, but also for new structures with asymmetric yielding caused by other reasons, 
as illustrated in Figure 1. 

The mathematical expressions proposed in this paper are based on the analysis of simplified 
one-story one-bay three-dimensional (3D) structural systems subjected to orthogonal seismic ground 
motions. The methodology is illustrated by applying it to develop strength amplification factors for 
the valley of Mexico. In addition, in order to verify the applicability of the mathematical expressions 
to multi-degree of freedom (MDOF) structural systems, ductility transformation factors (DTF) 
between MDOF asymmetric yielding structural systems and simplified (one-story one-bay) 3D 
asymmetric yielding systems, are estimated. 

There are several studies in the literature in which modification factors of the seismic design 
spectrum are proposed. The factors are intended to reduce linear elastic design spectra due to 

Figure 1. Some examples of structures with asymmetric yielding: (a) asymmetry in vertical loads;
(b) structures with sloping facades; (c) tilting.

As discussed later in this paper, the effect of asymmetric yielding significantly reduces the seismic
performance of structures, and this, combined with other factors such as constructive deficiencies,
poor design procedures, among others, may cause the failure of such structures when subjected to
intense seismic ground motions. Therefore, it is necessary to take action to counteract the effect of
asymmetric yielding. There are different types of solutions to improve the performance of buildings
with asymmetric yielding. The best solution will depend on the particular problem under consideration.
These solutions could be geotechnical, structural or a combination between them. The present study is
focused exclusively on structural solutions. Using the approach proposed in this paper, buildings with
asymmetric yielding must be designed for a higher lateral strength than symmetric ones, requiring
the development of strength amplification factors (AF) of the design pseudo-acceleration spectrum in
order to take into account the detrimental effect of the yielding asymmetry.

On the other hand, future design codes must be oriented not only to guarantee a satisfactory
seismic behavior, but also an adequate level of reliability, which will allow engineers to design for a
certain pre-established risk associated with structures. Over recent years, the development of structural
reliability methods has provided a more rational basis for the design of earthquake-resistant structures.
Numerous reliability-based code calibrations have been formulated by several researchers [1,2] and
have also been included in guidelines like MCBC [3], National Building Code of Canada (NBCC) [4],
Federal Emergency Management Agency (FEMA 445) [5], FEMA P-58 [6], among others.

Hence, in the present study, a reliability-based methodology is proposed and applied to develop
simplified mathematical expressions to estimate strength amplification factors for existing structures
exhibiting asymmetric yielding produced by tilting. The structures are supposed to be distributed
within a seismic region. It is important to emphasize that this methodology can be applied not only
for existing buildings, but also for new structures with asymmetric yielding caused by other reasons,
as illustrated in Figure 1.

The mathematical expressions proposed in this paper are based on the analysis of simplified
one-story one-bay three-dimensional (3D) structural systems subjected to orthogonal seismic ground
motions. The methodology is illustrated by applying it to develop strength amplification factors for
the valley of Mexico. In addition, in order to verify the applicability of the mathematical expressions to
multi-degree of freedom (MDOF) structural systems, ductility transformation factors (DTF) between
MDOF asymmetric yielding structural systems and simplified (one-story one-bay) 3D asymmetric
yielding systems, are estimated.
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There are several studies in the literature in which modification factors of the seismic design
spectrum are proposed. The factors are intended to reduce linear elastic design spectra due to different
reasons. For example, different methods to calculate strength reduction factors that allow estimating
inelastic strength demands from elastic strength demands for structures located in different soil
conditions have been proposed [7–9]. Other authors have proposed factors to reduce elastic seismic
design spectra due to damping [10–15]; however, none of the mentioned studies consider the influence
of asymmetric yielding on the seismic structural response.

Although there are several studies related to strength modification factors of the seismic design
spectra, there are only a few studies in the literature focused on proposing strength amplification
factors of the design spectrum that consider the yielding asymmetry of structural systems. Most of
them analyze asymmetric yielding structural systems located in Mexico City (this is mainly due to
the particular characteristics of the soft soil in this region). Some of these studies are focused on
estimating the increment of the seismic response of systems with asymmetric yielding with respect
to that of symmetric systems, and in developing mathematical expressions for that purpose [16,17].
Other studies are addressed on identifying some of the characteristics of both the structure and the soil
involved in the seismic response of asymmetric yielding structures [18].

There are studies that evaluate the seismic response of tilted structures subjected to different
scenarios. Moon [19] studied the performance of tilted tall buildings designed with different structural
systems such as braced tubes, diagrids, and outrigger systems, identifying several factors that affect
the structural performance of tilted buildings. Carpinteri et al. [20] assessed the behavior of an
eighth-century masonry tower called “Torre Sineo”, located in Italy. The tower has been damaged
due to seismic events during the last few years and presents a deviation from verticality. The study
deals with the possible scenario of an increase in the tilt mechanism of the tower and performs some
numerical simulations to predict the possible damages. The results present a valuable picture of
possible damage evolution and provide some advices for structural monitoring of the tower.

Recent studies regarding the asymmetric yielding behavior propose amplification factors for
the lateral seismic design forces for either reinforcement or design of new structures. Teran-Gilmore
and Arroyo-Espinoza [21] proposed mathematical expressions of strength amplification factors for
structures with asymmetric yielding located on soft and firm soils of Mexico City. They analyzed
single degree of freedom systems (SDOF) with different hysteretic behavior. The obtained expressions
were similar for all the hysteretic rules considered. In general, these expressions came out to be
more conservative than those recommended by the Mexico City Building Code (MCBC-2004) [3].
Valenzuela-Beltrán et al. [22] proposed a reliability-based methodology to estimate strength
amplification factors for structures with asymmetric yielding by means of ductility uniform exceedance
rate spectra corresponding to narrow-band seismic ground motions. They concluded that: (a) the
ductility demand of systems with asymmetric yielding may be much higher than those corresponding
to symmetric systems, particularly for structural systems with vibration periods close to the dominant
period of the soil, (b) the effect of asymmetric yielding is more detrimental for systems with low lateral
strength and with high ductility demand, and (c) the increment in the expected ductility demand of
asymmetric yielding systems with respect to that of symmetric systems is independent of the chosen
value of the mean annual rate of exceedance.

Despite the valuable contributions of the studies discussed above, most of them were limited
to the analysis of single degree of freedom (SDOF) systems subjected to unidirectional analyses,
and the asymmetric yielding was considered by means of an idealized SDOF model. In addition,
several important factors were not incorporated as the explicit consideration of the tilting angle,
the influence of two orthogonal components of the ground motions, and the implicit levels of
reliability in the development of the strength amplification factors were not considered. Some of
these issues are addressed in the present paper. Hence, the specific objectives of this research are: (1) to
apply a reliability-based methodology to estimate the additional strength requirement of structures
with asymmetric yielding, located in sites with different soil conditions, (2) to develop simplified
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mathematical expressions for this purpose, which can be applied to existing structures that exhibit
asymmetric yielding located in a seismic region, considering the influence of two orthogonal horizontal
seismic ground motions, and (3) to estimate ductility transformation factors between the expected
ductility demand of MDOF asymmetric yielding structural systems with respect to that of their
equivalent simplified 3D systems, both associated to a given annual probability of exceedance.

Buildings with Asymmetric Yielding Produced by Tilting in Mexico City

Many buildings located in Mexico City downtown, which is a very populated area, suffer tilting
problems. The main reason associated to structural tilting in this zone is that a considerable part of
the valley of Mexico is located over an ancient lake, this fact indicates that Mexico City downtown is
built on soft and very soft soils. Figure 2 shows the classification of the soil in the valley of Mexico
according to the dominant period, Ts [3]. The Ts values were computed from spectral amplification
functions corresponding to more than 100 free-field strong motion stations complemented with
around 500 micro-tremor measurements [23]. The contour map of soils with equal dominant periods
(iso-periods) is shown in Figure 2. It was constructed by means of a Bayesian spatial interpolation
technique [23]. The firm ground (commonly known as Hill zone) presents relatively small dominant
periods (around 0.5 s); however, the soft soil (commonly known as Lake Bed zone) have large vibration
periods, up to 4 s.
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To illustrate the problem of buildings suffering tilting in the downtown of Mexico City, a small
area (marked with a small red dot in Figure 2) was selected. The tilted buildings located in that area
were classified as shown in Figure 3. The detection of these buildings was based on visual inspection.
It was observed that the main cause of tilting in these buildings was that they are built on very soft
soils, provoking differential settlements. However, there could also be cases in which tilting was due to
the effect of previous intense earthquakes. It was found that exist over 50 buildings that present tilting
problems in such a small area (approximately 1.5 km2). It indicates that there are hundreds of tilted
buildings in the soft soil of the valley of Mexico. Most of the tilted buildings that were identified in this
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zone have 3 to 6 stories; however, there are some that have 8 or more stories. It is important to mention
that most of the buildings presented in Figure 3 are old constructions, and probably, they do not
comply with the current seismic regulations. For example, some of these buildings were designed for
a considerably lower lateral strength than the suggested in the current MCBC, i.e., the recommended
design spectra ordinates are higher nowadays than several years ago. Therefore, the fact that this
kind of buildings present tilting problems and that probably do not comply with the current seismic
regulations may lead to catastrophic seismic structural performance if a high intensity ground motion
occurs in that area. For these reasons, it is important to propose seismic strength amplification factors
for structures exhibiting asymmetric yielding produced by tilting and other reasons with the aim
of incorporating the factors in future reliability-based seismic regulations. It is worth mentioning
that the methodology used in this study can be applied to structural systems with similar problems,
located worldwide.
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In the present study, mathematical expressions are obtained for strength amplification factors
corresponding to structures with asymmetric yielding produced by any of the aforementioned causes
located in the whole area of the valley of Mexico. This area was divided in seven seismic zones (A, B,
C, D, E, F and G) according to its dominant period. Their main characteristics and the ground motions
used for each zone are described in Section 4. After obtaining the mathematical expressions for the
estimation of the strength amplification factors, the authors had the concern about the applicability of
the proposed expressions to actual MDOF buildings; so, it was decided to verify, by means of seismic
risk analyses, that the expressions can be applied to R/C buildings with multiple bays and stories.
Such verification is presented in the Section right before the Conclusions.

2. Simplified Structural Models

The simplified structural systems analyzed in this study are 3D models that present only one
degree of freedom in each horizontal direction (E-W and N-S), and are symmetric in both strength and
geometry, as shown in Figure 4a,b. The mass of the systems is lumped at the center of mass of the
deck. It must be noted that the systems studied in this paper are not essentially SDOF systems since
axial forces can be developed in columns under the seismic excitation. The asymmetric yielding of the
structural systems is characterized by means of the parameter α, which in this case is taken as the tilting
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angle of the model, and resulting from the horizontal displacement (δ) of the system in one direction
(produced by a differential settlement) divided by its height, L (see Figure 4b). The tilting angle is
considered to occur by a differential settlement in only two columns (i.e., columns 2 and 4 in Figure 4a)
producing tilting in only one direction (i.e., the model is tilted as rigid body and, consequently, there
is no damage in the tilted model before the application of the seismic load; the tilting angle can be
associated with a rigid rotation of the structure’s foundation). Because of this reason, the yield strength
of the systems in the direction of tilting becomes smaller than that of the opposite direction, leading to
an asymmetric yielding behavior of its structural members (see Figure 5).
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Moreover, the parameter α that quantifies the level of asymmetric yielding in this study is
equivalent to that defined in other studies [16,18]. Therefore, the results are valid for any reason that
causes an asymmetric yielding behavior (see Figure 1).
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When buildings are subjected to monotonically increasing lateral deformation, the strain
hardening and the gradual yielding of its structural members produce a positive post-elastic slope
when the second order effects (P-∆) are neglected; however, when the analysis takes into account
the secondary moments produced by the gravity loads, such effects tend to counteract the strain
hardening and the gradual yielding, leading to a post-elastic slope close to zero for deformations
in the range of interest [18]. For this reason, the second order effects in this study are implicitly
considered by assigning a post-elastic slope close to zero in the hysteretic behavior of the structural
members (i.e., the hysteretic behavior of the structural members was modeled as bi-linear with 1%
of post-elastic slope). It is important to mention that this assumption is valid only for structures
presenting moderate P-∆ effects. The study of structures with excessive P-∆ effects that may produce
a negative post-elastic slope is out of the scope of this study. The hysteretic model used here does
not consider strength or stiffness degradation; however, as reported by Teran-Gilmore et al. [18] and
Terán-Gilmore and Arroyo-Espinoza [21] the results corresponding to a non- degrading bi-linear
model (like those analyzed here) are more conservative than those corresponding to structures with
structural degradation.

3. General Methodology

3.1. Evaluation of the Structural Reliability

One of the main objectives of Earthquake Engineering is to estimate the levels of reliability in
structures by considering the possible seismic intensities that may occur at a specific site, during a
given time interval. There are several methods in the literature to estimate the reliability of structures.
For example: (a) the semi-probabilistic [24], (b) first order and second moments (FOSM) [25–27],
(c) load and resistance factors design (LRFD) format [28,29], (d) those based on seismic hazard or
risk analysis [30–34], and (e) those based on optimization [35–38]. In the present study, the structural
reliability is evaluated by means of seismic hazard analysis. Using this format, the seismic reliability of
structures can be estimated by combining the relationship between seismic ground motion intensity
and structural response with ground motion hazard models [39–41]. To establish this relationship,
it is common to use scalar intensity measures (IM), like the spectral acceleration at the fundamental
vibration period of the structure (Sa(T1)) [42], and the average spectral acceleration over a range of
vibration periods Saavg [43]. However, there are other approaches that have been proposed to estimate
the structural reliability, which are not based on scalar quantities. Such approaches represent the IM as
a vector [44,45], but they are out of the scope of this study.

The main objective of seismic risk analysis is to estimate conditional probabilities of exceeding a
certain value of an Engineering Demand Parameter (EDP) given a certain value of IM. It is assumed
that the EDP for a certain value of the IM, y, follow a lognormal distribution [2,42,46]. Next, the
conditional probabilities of exceeding a certain value of EDP are combined with the seismic hazard
curve (which is obtained by means of a seismic hazard analysis of the site) associated with the site
and to the fundamental vibration period of the structural system with the objective of estimating
the mean annual rate of exceedance (ν) of a particular EDP value, y, νEDP (y), using the following
equation [39,40]:

νEDP(y) =
∫

IM

∣∣∣∣dνIM(im)

d(im)

∣∣∣∣P(EDP > y|IM = im )dim (1)

where P(EDP > y|IM = im) is the conditional probability that EDP > y, for an IM = im,
∣∣∣dνIM(im)

d(im)

∣∣∣ is
the absolute value of the derivative of the seismic hazard curve associated with the site where the
structure is located, corresponding to its fundamental vibration period (T1). In the present study, the
spectral acceleration at the fundamental vibration period as a fraction of gravity (Sa(g), T1) and the
maximum ductility demand (µ) of the structures are selected as IM, and EDP, respectively.
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3.2. Steps to Follow for the Proposed Methodology

In order to find expressions that allow us to estimate the strength amplification factors such
that asymmetric yielding structures present a seismic reliability similar to that of symmetric yielding
structures, steps (1) to (8) are followed:

(1) Firstly, several nonlinear time history analyses are carried out for simplified structural systems
with different characteristics of base shear coefficient (c), asymmetric level (α), and vibration
period (T1). This is performed with the aim of obtaining the EDP as a function of seismic intensity.
The maximum ductility demand of the systems (µ) is taken here as the EDP of interest. In order
to calculate the maximum ductility demand of the systems, it is necessary to estimate first the
ductility demand in both E-W and N-S directions (µx, µy) considering the simultaneous action
of both horizontal components of the seismic ground motions; µx and µy are calculated by
taking the maximum horizontal displacement of the center of mass of the structural systems
in each direction (dX, dY) divided by their yield displacement, dy, which in turn is estimated
by a nonlinear static analysis). Finally, the maximum ductility demand is defined in this study
as the maximum of the ductility values estimated in each horizontal direction, as indicated in
Equation (2).

µ = max
(
µx,µy

)
(2)

(2) Next, the median (D) and standard deviation (σlnD) of the ductility demand logarithms
are calculated.

(3) Fragility curves for several values of the maximum ductility demand are obtained using
Equation (3):

P(EDP > y|IM = im) = 1−Φ
(

ln(y/D)

σlnD

)
(3)

where all the variables were defined before, and Φ represents the Gaussian cumulative
distribution function.

(4) Ductility demand hazard curves (DDHC, Equation (1)) are obtained for symmetric yielding
systems, and alternatively, for systems with different levels of asymmetric yielding.

(5) Considering the ductility demand hazard curves corresponding to a wide variety of systems
with different characteristics, ductility uniform exceedance rate spectra (µ-UERS) are obtained
for several mean annual rate of exceedance values. To explicitly display the increment in the
expected ductility demand of asymmetric yielding systems with respect to symmetric systems,
ratios of µ-UERS corresponding to asymmetric yielding systems with respect to symmetric ones
are calculated.

(6) The next step is to obtain base shear coefficient spectra (BSCS) for symmetric as well as for
asymmetric yielding systems employing a linear interpolation process. This procedure consists in
selecting a value of the ductility demand and the associated values of T1 and c, corresponding to
a given µ-UERS. The process is repeated several times in order to obtain a data set T1 vs c for each
value of the ductility demand considered. More details about this process can be found in [22].
Ratios between BSCS of systems with different levels of asymmetric yielding with respect to
symmetric systems, RBSCS, are calculated with the objective of quantifying the additional lateral
strength requirement of systems with asymmetric yielding to achieve a seismic performance
equivalent to their symmetric counterparts. These ratios can be expressed as:

RBSCS =
c[BSCS(T1,ν,µ,α)]

c[BSCS(T1,ν,µ,α = 0)]
(4)

(7) A simplified mathematical expression is fitted to the ratios of the base shear coefficient spectra
obtained in step 6. The proposed expression is a function of the asymmetry level (α) of the
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structural system, the ratio between the fundamental vibration period of the system and the
dominant period of the soil, and the maximum ductility demand of the system.

(8) Steps (1) to (7) are repeated for the seismic zones of interest (having different soil dominant
periods, from firm ground to very soft soil). The resulting mathematical expressions for each
zone will be compared between them to evaluate the influence of the dominant period of the soil
on the strength amplification factors. Hence, general rules for the seismic region under study can
be proposed.

Finally, the validity of the mathematical expressions proposed in this study is corroborated by
estimating the expected ductility demand of actual MDOF systems and comparing it with that of the
simplified systems associated to the same value of the mean annual rate of exceedance. In the end,
ductility transformation factors will be calculated in order to consider the possible differences between
the responses of the two structural configurations.

4. Seismic Zones Analyzed

With the aim of proposing simplified mathematical expressions for different soil conditions of
the valley of Mexico, the area was divided into seven seismic zones according to its dominant period,
Ts (see Table 1). To address this concern, several seismic ground motions recorded in different stations
were selected, their main characteristics can be consulted in [15]. The seismic records correspond to
subduction events with moment magnitude greater than or equal to 6.9 (M ≥ 6.9), and approximately
similar epicentral distances. It can be observed in Table 1 that the dominant period of the selected
seismic zones varies from approximately 0.5 s for Zone A (firm ground) to approximately 3.5–4 s for
Zone G (very soft soil).

The dominant period of each seismic record is defined as the period where the pseudo-acceleration
elastic response spectrum reaches its maximum value, and the dominant period of a given seismic
zone is taken as the period where the arithmetic average spectrum reaches its maximum value.
The dominant periods of the seven seismic zones are shown in the third column of Table 1. Here, both
horizontal components of the seismic ground motions are scaled in terms of the pseudo-acceleration in
the fundamental vibration period of the structure, using the quadratic mean format, as follows:

Sa =

√
S2

aEW + S2
aNS

2
(5)

where SaEW and SaNS are the pseudo-acceleration elastic response spectra ordinates associated to
the fundamental vibration period of the system under consideration, for 5% of critical damping,
corresponding to E-W and N-S ground motions components, respectively. The seismic ground motions
were scaled for Sa/g values from 0.1 to 1.4. The scaling of the seismic records consists of multiplying
the ordinates of the accelerograms using some factors in order to achieve that all the records present
the same value of Sa at the fundamental vibration period of the structure under consideration [42].
Figure 6 shows the pseudo-acceleration elastic response spectra for 5% of critical damping for the
E-W component of the selected ground motions, along with their corresponding arithmetic average
spectrum, which is represented by a bold black line.

It can be observed in Figure 6 that for the Zones A and B the spectral shapes are not clearly
defined around a single vibration period; however, it is observed that for zones C to G, the spectral
peaks are grouped around the dominant period of the soil. The change in the spectral shapes may be
attributed to seismic source effects like magnitude and frequency content, as well as to the dominant
period of the soil.
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Table 1. Characterization of the valley of Mexico according to the dominant period of the soil.

Zone Range of Period (s) Average Dominant Period, Ts (s)

A Ts ≤ 0.5 0.62
B 0.5 < Ts ≤ 1.0 0.96
C 1.0 < Ts ≤ 1.5 1.41
D 1.5 < Ts ≤ 2.0 1.98
E 2.0 < Ts ≤ 2.5 2.55
F 2.5 < Ts ≤ 3.0 3.03
G 3.0 < Ts ≤ 4.0 3.61
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5. Mathematical Expressions of Strength Amplification Factors Corresponding to the Seismic
Region of Interest

The methodology to estimate the strength amplification factors for structures with asymmetric
yielding mentioned in Section 3.2 was applied here to the valley of Mexico. Figure 7a–g show the ratios
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RBSCS (defined in Equation (4)) for zones A to G corresponding to a ductility demand of 2 (µ = 2) and
annual rate of exceedance ν = 0.008 (corresponding to a return period, Tr = 125 years). The horizontal
axis represents the ratio of the fundamental vibration period of the structural systems to that of the
dominant period of the soil corresponding to the seismic zone under consideration; while the vertical
axis shows the parameter RBSCS which represents the additional strength required for asymmetric
yielding systems to achieve a seismic performance and structural reliability, in terms of the ductility
demand, equivalent to their symmetric yielding counterparts.Appl. Sci. 2017, 7, 1146 11 of 20 
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Even though the results are presented for a single value of ductility demand and mean annual
rate of exceedance, the main observations are valid for all the ductility values considered in this
study. Besides, as reported by [22], the increment in the ductility demand of asymmetric yielding
systems with respect to symmetric systems is sensibly independent of the selected mean annual rate of
exceedance (return period). It is worth mentioning that in Zones A and B (firm ground) there is no
a dominant period of the soil; however, it is considered in the same way as the other zones with the
objective of standardizing the results presented in this study.

It is observed in Figure 7 that the RBSCS parameter is smaller for firm ground (Zones A and B)
than for intermediate and soft soils (Zones C, D, E, F, and G) in the zone where the effect of asymmetric
yielding is more important (i.e., T1/Ts ≈ 1). This indicates that the detrimental effect of asymmetric
yielding is, generally, higher on soft soil than on firm ground; however, this is not always true,
particularly for T1/Ts ratios away from unity. In contrast, it is observed that for Zones A and B the
shapes of the graphs are almost constant for T1/Ts greater than 1. However, for the other seismic zones,
the strength requirement reaches its maximum where the vibration period of the system is close to
the dominant period of the soil and decreases as the T1/Ts ratio moves away from unity. In summary,
Figure 7 demonstrates that the effect of asymmetric yielding is more detrimental for structural systems
located on soft soils and whose vibration period is close to the dominant period of the soil where
is located.

Once the information was grouped into these seven categories, simplified mathematical
expressions were fitted to the results using the least square method. It must be noticed that the
shape of the graphs corresponding to firm ground is different from that associated with intermediate
and soft soils (see Figure 7). The resulting expressions are in function of the parameters that influence
the seismic performance of structures with asymmetric yielding such as: the level of asymmetric
yielding (α), the ductility demand (µ), the fundamental vibration period of the structure (T1) and the
dominant period of the soil (Ts). The general forms of the mathematical expressions proposed here are
an extension of those proposed by Teran-Gilmore and Arroyo-Espinoza [21], which are based on a
statistical analysis of the response of SDOF systems, under one-directional ground motions, where
the SDOF systems are idealized with asymmetric force-deformation relationship (Figure 5), and in
accordance with a constant damage criterion using the Park and Ang damage index [47]. On the other
hand, the expressions proposed in this paper are based on a reliability analysis, which estimates mean
annual rates of exceedance of an EDP for a given return period. In addition, the structural ductility
demand and the level of asymmetric yielding are explicitly considered.

The mathematical expressions for the estimation of the strength amplification factors (AF) that
were fitted to the RBSCS ratios (as those in Figure 7) are:

AF =
a
(

T1
Ts

)b

c +
(

T1
Ts

)b + d (firm ground) (6)

AF =
a
(

T1
Ts

)b

c +
∣∣∣T1

Ts
− 1
∣∣∣ + d (intermediate and soft soils) (7)

The values of a, b, c, and d are presented in Table 2 for the seven seismic zones in which the valley
of Mexico was classified. Equations (6) and (7) were developed to be applied to structural systems
with levels of asymmetric yielding up to 0.04 and ductility demands of 2, 3 and 4; they are not valid to
estimate strength amplification factors for structures that exceed those values. However, most of the
structures susceptible to present asymmetric yielding produced by tilting, fall into these ranges. It is
noticed that a level of asymmetry larger than 0.03 has a very small probability to occur.
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Table 2. Parameters involved in Equations (6) and (7), corresponding to seismic zones A to G.

Zone Dominant Period (s) a b c d

A Ts ≤ 0.5 (3.5µ − 1.5) α 13.4 0.1 1.6α + 1
B 0.5 < Ts ≤ 1.0 (4.8µ − 3) α 8.8 0.1 4.1α + 1
C 1.0 < Ts ≤ 1.5 (1.5µ − 1.4) α 0.7 0.08 1
D 1.5 < Ts ≤ 2.0 (2µ − 1.6) α 0.5 0.1 1
E 2.0 < Ts ≤ 2.5 (1.5µ + 0.8) α 0.9 0.12 1
F 2.5 < Ts ≤ 3.0 (1.5µ + 1.1) α 0.7 0.13 1
G 3.0 < Ts ≤ 4.0 (1.9µ − 0.05) α 0.1 0.12 1

Figure 8 compares the results obtained with Equations (6) and (7) with those shown in Figure 7,
corresponding to RBSCS associated with a ductility demand of 2. It can be seen in Figure 8 that
Equations (6) and (7) fit appropriately to the RBSCS data.Appl. Sci. 2017, 7, 1146 13 of 20 
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It is important to mention that the values of the parameters presented in Table 2 do not correspond
strictly to the least square method results, since their values could be more complex by introducing a
larger number of parameters, and consequently, represent better the data obtained from the analyses;
however, the authors consider that the proposed mathematical expressions (Equations (6) and (7)) can
be used in a practical seismic design context, providing sufficiently accurate results.
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Comparison of the Proposed Mathematical Expressions with that Recommended in the Current Mexico City
Building Code

Figure 9a,b compare the strength amplification factors obtained according to the mathematical
expressions proposed in this study (Equations (6) and (7), and Table 2) with those recommended by the
MCBC-2004. The MCBC-2004 recommends amplifying the design base shear coefficient of structures
that exhibit asymmetric yielding produced by tilting by the following factor:

AFMCBC−2004 = 1 + 5Qf (8)

where Q is the seismic behavior coefficient, that is related to the ductility of the structure, and f is
the level of asymmetry of the structure (which is equivalent to the parameter α used in this study).
The comparison is made for a ductility demand of 2 and considering a level of asymmetric yielding
α = 0.02. The general observations made are valid for other values of µ and α. As shown in Figure 9a,b,
for firm ground, the expression given by the MCBC-2004 is more conservative than the expressions
proposed in this study for all the T1/Ts ratios considered. On the other hand, for intermediate and soft
soils, the expression recommended by MCBC-2004 leads to conservative results only for T1/Ts ratios
away from unity; nevertheless, there is an important underestimation of the strength amplification
factors for structures whose fundamental vibration period is close to the dominant period of the soil
(i.e., T1/Ts ≈ 1). Results indicate that this underestimation may be higher than 100% (depending
on the level of asymmetric yielding and on the ductility value). It is noticed that the MCBC-2004
recommends factors that are constant for all T1/Ts values. This is an important limitation considering
that the results presented in this study demonstrated that the effect of the effect of asymmetric yielding
is more important for structural systems with vibration period close to the dominant period of the soil.
The differences between the curves obtained in this study with respect to the MCBC-2004 are due to
the fact that the former were obtained from a reliability-based analysis, while the latter were derived
from a brief deterministic constant ductility criterion and engineering judgment.
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6. Ductility Transformation Factors between Simplified and MDOF Systems

The above analyses regarding the estimation of the strength amplification factors for the design or
reinforcement of structures with asymmetric yielding were performed considering simplified systems
(SS); however, the ductility demand of asymmetric yielding MDOF structural systems may be different
from that of its equivalent SS. Because of this reason, it is necessary to consider such difference by
finding ductility transformation factors between the ductility demands of both structural systems
(MDOF and SS).
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There are some studies related to transformation factors of the dynamic response of conventional
MDOF and SDOF structural systems. For example, Bojorquez et al. [48] proposed equations to
obtain probabilistic response transformation factors for maximum ductility and inter-story drift
using artificial neural networks; they concluded that an artificial neural network is a useful tool
for reliability-based seismic design procedures of framed buildings. Similarly, Bojorquez et al. [49]
estimated probabilistic and deterministic response transformation factors in order to evaluate the
response in terms of maximum ductility and maximum interstory drifts of MDOF systems based on the
response of equivalent SDOF systems. They analyzed five steel buildings designed in accordance with
the MCBC-2004, and concluded that in both approaches, the structural demand of steel frames can be
obtained with good accuracy by means of equivalent SDOF systems; however, the results documented
in the above studies are not valid for asymmetric yielding reinforced concrete buildings. In the present
study ductility transformation factors (DTF) for reinforced concrete structures exhibiting asymmetric
yielding produced by tilting are calculated using Equation (9) as:

DTF =
µSS(ν)

µMDOF(ν)
(9)

where µMDOF(ν) represents the maximum ductility demand estimated for buildings modeled as
MDOF systems associated to an annual rate of exceedance value (ν), and µSS(ν) is the maximum
ductility demand calculated for an equivalent simplified system associated with the same value of ν.
To estimate the expected ductility demand of the structural systems, associated with an annual rate of
exceedance value, the corresponding ductility demand hazard curves (DDHC) need to be obtained
using Equation (1). Figure 10 illustrates schematically the calculation of the DTF from the ratio of
DDHC corresponding to MDOF and to SS systems, associated with a given ν value.
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Figure 10. Schematic representation related to the estimation of the ductility transformation factors (DTF).

DTF were estimated for five reinforced concrete structures (8-, 9-, 10-, 11-, and 12-story buildings
designed according to MCBC-2004) and their corresponding equivalent simplified structural systems,
considering several values of α (0.0–0.03). Regarding the number of buildings analyzed, it is worth
mentioning that this study is based on the analysis of asymmetric yielding produced by differential
settlements, which is more likely to occur in buildings built on soft soil and having shallow foundations,
which are often used in medium-rise buildings. Conversely, taller buildings are usually supported
on deep foundations, which reach the firm ground, and consequently, the tilting is not a common
problem. To incorporate the influence of the annual rate of exceedance value in the results, DTF were
calculated for ν values between 0.01 and 0.001 (which correspond to return intervals between 100 and
1000 years).
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6.1. Characteristics of the Buildings Analyzed

The buildings analyzed in this study were designed in a conventional way, following the
recommendations of the MCBC-2004. The plan and elevation of the buildings are illustrated in
Figure 11. The occupancy of the buildings is considered to be residential. The nominal design
compression stress is f’c = 29.4 MPa for concrete, and fy = 411.9 MPa in tension and compression for
the reinforcing steel. The design of the buildings was carried out by using the software ETABS (2016,
Computers and Structures Inc., Berkeley, CA, USA) [50]. The buildings are assumed to be located in a
zone in the valley of Mexico with a soil dominant period Ts = 1.8 s (which falls in the intermediate
zone as considered in the present study), with a seismic behavior coefficient, Q = 3 (which implies
that the detailing requirements for their structural members are similar to those established by the
Uniform Building Code [51] for reinforced concrete special moment-resisting frames). The design of
the buildings was based on a modal spectral dynamic analysis. The lateral stiffness was selected so
that the maximum inter-story drift does not exceed 0.030, which is the limit specified by MCBC-2004
for the design of ductile moment-resisting concrete frames.
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Figure 11. Plan, elevation, and characterization of asymmetric yielding of the buildings. (a) plan;
(b) elevation; (c) asymmetric yielding building.

The nonlinear idealization of the buildings was carried out with the Ruaumoko3D (2007,
Athol Carr., Canterbury, Christchurch, New Zealand) [52] software. The modeling of the buildings
includes the nonlinear behavior of their structural members. In this study, the modeling of the
beams considers a plastic hinge length equal to half of their height, to estimate the rotational capacity.
The yield moment in each of the principal axes of the beams is obtained from the corresponding
moment-curvature diagram of the cross sections located at their ends, and it is associated with the
smallest of the curvatures corresponding to: (1) fracture of the tension longitudinal steel, (2) buckling of
the compression longitudinal steel, and (3) crushing of the compression concrete block. An interaction
diagram is developed for each column. The rigid end-block lengths of the beams and columns are
taken equal to half of the height of the members with which they intersect. Rigid diaphragms are
considered in all building levels, and the corresponding mass of a given story is considered to be
lumped in its center of mass. The Tangent Stiffness Rayleigh Damping model was used in the analysis.
The hysteretic behavior of the structural members is idealized as bi-linear, with 1% of post-elastic
stiffness (to be consistent with the results presented before for simplified models), and therefore, P-∆
effects are implicitly considered.
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Table 3 summarizes the main dynamic characteristics of the buildings such as their fundamental
vibration period (T1), the resistant base shear (Vb), the resistant base shear coefficient (c), the yield
displacement (dy), and the ultimate displacement (du), the latter two were obtained through nonlinear
static (pushover) analyses.

Table 3. Dynamic characteristics of the buildings analyzed.

Building
T1 Vb W

c
dy du

(s) (Ton) (Ton) (m) (m)

8-story 1.2 1332.45 3807 0.35 0.168 0.63
9-story 1.22 1498.2 4540 0.33 0.181 0.65
10-story 1.33 1563.02 5042 0.31 0.195 0.69
11-story 1.4 1721.1 5737 0.3 0.223 0.74
12-story 1.48 1772.68 6331 0.28 0.246 0.78

6.2. Ductility Transformation Factors (DTF)

Figure 12 shows the DTF estimated for the five reinforced concrete buildings of interest (see Table 3)
and their corresponding equivalent SS, corresponding to different values of asymmetric yielding (α).
It can be observed that the DTF estimated for the five buildings are very close to unity. In addition,
it is shown that the DTF do not present any trend regarding the annual rate of exceedance, the level of
asymmetric yielding, nor the number of stories of the buildings.
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The results were fitted to a linear function, and it is observed that the expected ductility demand
of the SS is, on an average basis, only 4% higher than that of MDOF systems, for any value of the
annual rate of exceedance. These results indicate that the use of simplified structural systems for
the calculation of strength amplification factors for MDOF structures with asymmetric yielding is
slightly conservative. Thus, the expressions proposed in Equations (6) and (7) may be considered
as appropriated.

7. Conclusions

A reliability-based methodology to estimate the additional strength requirement for structures
exhibiting asymmetric yielding caused by different reasons was proposed and properly applied.
Simplified mathematical expressions to estimate strength amplification factors were obtained for
different soil conditions, and the methodology was applied to the valley of Mexico; however, the
proposed steps can be applied to structural systems located in other seismic regions. The objective of
amplifying the lateral strength of structures with asymmetric yielding with the expressions proposed
in this study is that they achieve a seismic performance, in terms of the expected ductility demand,
equivalent to that of their symmetric yielding counterparts; that is, they have similar reliability levels.
The resulting expressions were compared with that recommended in the current Mexico City Building
Code (MCBC-2004) and their advantages and disadvantages were discussed. The main conclusions of
this study are listed as follows:

1. Results indicate that the additional lateral strength requirement of structures with asymmetric
yielding is higher for those with fundamental vibration periods close to the dominant period of
the soil where they are located; this requirement is even higher for structures located on soft soils.

2. Simplified mathematical expressions were proposed for the estimation of strength amplification
factors for structures with asymmetric yielding, considering different soil conditions.
The expressions correspond to the valley of Mexico and depend on factors such as the ductility of
the structure, the level of asymmetric yielding, and the ratio between the fundamental vibration
period of the structure and that of the dominant period of the soil.

3. The proposed mathematical expressions are more conservative than that recommended in the
current Mexico City Building Code (MCBC-2004) for intermediate and soft soils, especially for
structures whose vibration period is close to the dominant period of the soil where they are
located. Although the expression proposed in the MCBC-2004 leads to conservative results for
firm ground, results indicate that the effect of asymmetric yielding is much more detrimental
on intermediate and soft soils than on firm ground. The expressions developed in this study
have been approved by the Technical Committee for Seismic Design of the MCBC, and will be
incorporated in the new version of the Mexico City Building Code.

4. It was verified that the value of the expected ductility demand of asymmetric yielding MDOF
systems, associated with a given return period, is almost equal to that corresponding to their
equivalent simplified systems. The implication of this is that the use of simplified structural
systems to estimate strength amplification factors for MDOF structures with asymmetric yielding
is appropriate.
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