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Abstract: Due to the noise accompanied with rolling element bearing fault signal, it can reduce
the accuracy of faulty diagnoses. In order to improve the robustness of a faulty diagnosis, this
study proposed a fault diagnosis model based on modified local linear embedding (M-LLE)
algorithm. Aiming at the characteristics of rolling element bearing fault data, the vibration signal
was first analyzed in time domain and frequency domain to construct high dimension eigenvectors.
Next, the high-dimensional eigenvectors can be reduced to low-dimensional eigenvectors by M-LLE
algorithm. In the M-LLE algorithm, the Mahalanobis distance (MD) metric is adopted to replace
Euclidean distance in traditional neighborhood construction and L1-norm is used to standardize
weight matrix, which can enhance the anti-noise ability of the Local Linear Embedding (LLE)
algorithm. Finally, fault diagnosis results can be obtained when low-dimensional rolling element
bearing fault data is classified by K-Nearest Neighbor (KNN) classifier. By simulating the noisy
artificial data sets in different degrees, the proposed algorithm can get the perfect local structure of
manifolds. The effectiveness of M-LLE algorithm can be proved. In addition, experimental results
of real rolling element bearing data which provided by the University of Cincinnati show that the
accuracies of all kinds of faults can reach 100%. It can be deemed that the proposed fault diagnosis
model can effectively improve the accuracy of fault diagnosis.
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1. Introduction

As the critical component of mechanical equipment, once rolling element bearing malfunctions
in the process of industrial production, it will bring cascading failures and even cause the system to
collapse. So, if the rolling element bearing is broken, it will result in huge economic losses or even
a major security accident [1]. Therefore, accurate fault diagnosis of rolling element bearing is an
important guarantee for the reliability and effectiveness of mechanical equipment. With the complexity
of industrial machinery structure and the diversity of modules, fault signals of rolling element bearing
often show non-stationary, non-linear and high-dimensional characteristics [2], and noise is often
doped among the collected signals.

In recent years, manifold learning has been applied to mechanical fault diagnosis field because
of its good ability in nonlinear dimensionality reduction [3]. The representative methods of
manifold learning are listed as following: the Local Linear Embedding (LLE) algorithm proposed by
S.T. Roweis [4], Isometric Feature Mapping (ISOMAP) algorithm put forward by Tenenbaum et al. [5],
and Local Tangent Space Alignment (LTSA) algorithm advanced by Zhang, Z.Y. et al. [6]. The LLE
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algorithm is a classical and effective nonlinear dimensionality reduction method, which can learn a high
dimensional manifold structure in arbitrary dimension. Furthermore, due to the small computational
complexity of LLE algorithm, it is simple and easy to implement. LLE algorithm defines that each
sample point and its neighborhood points are located in a local linear manifold surface, so each sample
point can be represented by neighborhood points [7]. In fault diagnosis field, LLE algorithm can
effectively extract the sensitive features of sample data and filter redundant information, so it can
reduce the dimension of original feature space. Liu, X. et al. used LLE to reduce the dimension of
observation, the results showed that the precision of fault diagnosis model of rotating machinery
platform was effective [8]. Besides, Li, L. et al. proposed a rolling bearing fault diagnosis method based
on LLE and least squares support vector machine, and it can effectively identify the nonlinear fault
features existing in high dimension space [9]. However, LLE algorithm constructs low dimensional
manifold through the weighted method to keep the local geometric relationship of original manifold.
Since the local linear definition of LLE algorithm, it causes that LLE algorithm is susceptible to
the interference of noise. In the past decade, some algorithms have been proposed to improve the
robustness of LLE algorithm. Hong Chang and Dit-Yan Yeung proposed a robust LLE algorithm
based on the robust PCA algorithm [10], this method reduced the interference of outliers effectively
by adjusting the distribution deviation in the statistical process. Manda Winlaw et al. put forward a
robust LLE algorithm based on penalty function, which combined L1 norm with L2 norm in weight
function to improve the anti-noise ability [11]. Tao, J.W. and Wang, S.T. adopted L1 norm to construct
the weight matrix to improve the ability to resist noise in original LLE algorithm [12]. In order to
improve the stability of LLE algorithm under strong noise, Sun, Y. et al. proposed an improved
algorithm based on sparse constraint. In the calculation process of this method, the L1 norm is added
to penalty constraint, which can make the optimal reconstruction weight matrix become sparser [13].
JAS Rettes et al. constructed reasonable weight by using different neighborhood sizes, thus it can
reduce the effect of interference points in dimensionality reduction [14].

The above methods are only adopted a separate improvement to enhance the robustness of LLE
algorithm, and only use artificial data sets to simulate. Although these methods can basically recover
the low-dimensional manifold in high-dimensional noisy data, the LLE algorithm is not improved
comprehensively and the experiments are not validated by real data in the practical application process.
The principle of LLE algorithm can be roughly summed up into three steps. Firstly, construct the
neighborhood graph of sample data. Then obtain the weight matrix by local linear structure in the
neighborhood. Finally, get low-dimensional embedding of sample data by using the weight matrix.
Currently, LLE algorithm determines the similarity of neighborhood points by measuring Euclidean
distance among sample points [15]. Euclidean distance assumes that all components in the space are
irrelevant. However, as for bearing vibration signal, the recent vibration signals are often correlated.
It is obvious that if it still uses Euclidean distance in actual application of mechanical fault diagnosis,
the true relationship between fault data can be ignored and resulting in unreasonable neighborhood
construction. In addition, due to a variety of complex operating conditions factors in actual sampling
process, it often contains noise pollution. If we cannot improve the noise reduction capability of LLE
algorithm, the mapped structure of low-dimensional data will be distorted and the accuracy of the
fault diagnosis will be seriously reduced.

Therefore, aiming at above two problems, we proposed M-LLE algorithm, which improves the
ability of LLE algorithm to resist noise. As for the non-stationary, non-linear and high-dimensional
characteristics of bearing failure data, MD is used to instead of Euclidean distance in the construction
of neighborhood. In the process of weight acquisition, the L1-norm is adopted to standardize the cost
function which calculates the weight of M-LLE algorithm. We are taking the distance among sample
points and the structural characteristics of manifold into account, so M-LLE algorithm can reduce
interference of noise. In order to verify the effectiveness of M-LLE algorithm, we use artificial data
sets and the actual bearing fault data to simulate the experiment. The experimental results show that
the method proposed in this paper can effectively realize the intrinsic manifold acquisition of noisy
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high-dimensional data, and the algorithm can significantly improve the diagnostic accuracy in the
process of bearing fault diagnosis.

2. LLE Algorithm

LLE algorithm is a local linear algorithm, which is mainly used linear weight coefficient
to represent the contribution of each data point in data reconstruction [16]. With condition of
remaining the geometric relations in neighborhood being invariant, the data in high-dimensional
observation space is mapped to low-dimensional space by linear mapping such as scaling, rotation
and translation [17]. In this way, it can preserve the inherent geometry relationship among data points.
Suppose that Y ⊂ Rd is a low-dimensional manifold embedded in the high-dimensional space RD,
where d � D. There are n data points in the high dimension space: x =

{
xi
∣∣i = 1, . . . , n , xi ∈ RD}.

The details of the LLE algorithm are as following:

1. For each D-dimensional data point xi, k-nearest neighbor criterion is used to filter the

nearest k points Ni =
{

x1
i , x2

i , x3
i , . . . , xk

i

}
. Euclidean distance is adopted to construct the

neighborhood graph G;
2. Each data point can be represented by a weighted linear representation of its surrounding

neighborhood points, and minimizing the following objective functions to get the smallest
reconstruction error:

minϕ(w) = min

 n
∑

i=1

∣∣∣∣∣
∣∣∣∣∣xi −

k
∑

j=1
wijxj

∣∣∣∣∣
∣∣∣∣∣
2


s.t.

{
wij = 0, xij /∈ V

∑j wij = 1, xij ∈ V

(1)

where the weight wij represents the reconstructed contribution of the j-th sample point to the i-th
sample point. V represents a neighborhood which is the number of neighborhood points is k.
If the sample j is the neighborhood of the sample point i, wij is set to 1, otherwise it is set to 0;

3. Use yi to build the d-dimensional embedded space, it is generated by this cost function:

φ(Y) = min∑i

∣∣∣yi −∑j wijyj

∣∣∣2
s.t. YYT = I

(2)

Based on step 2, the cost function is minimized by the optimal weight wij, and it can obtain

the optimized low-dimensional coordinate yi. Where, Y =
{

yi|i = 1, . . . , n , yi ∈ Rd
}

, and I is the
unit matrix of d× d. To minimize the value of cost function, it takes Y as the eigenvectors which are
corresponded to the minimum d nonzero eigenvalues of M = (I −W)(I −W)T .

3. Neighborhood Construction Based on MD

3.1. Introduction of MD

The MD is proposed by the Indian statistician P.C. Mahalanobis, and it represents the covariance
distance of data [18]. A major difference from the Euclidean distance is that it takes interrelationships
among various features into account, and these features are independent of the measurement scale [19].

In fact, two dimensions in the multidimensional space may be linearly related. Thus, MD utilizes
the Joliesky decomposition to eliminate the correlation among different dimensions. Suppose two
vectors X and Y, where n data points are given: X = {Xi|i = 1, . . . , n}, and n data points:
{Yi|i = 1, . . . , n}. The variance matrix can be expressed as:

∑ =
1

n− 1

n

∑
i=1

(
Xi − X

)(
Yi −Y

)T (3)
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where X is the mean of X, and Y is the mean of Y. The MD between the vector X and Y can be
expressed as following:

DM(X, Y) =
√
(X−Y)T ∑−1

(X−Y) (4)

3.2. Neighborhood Construction Based on MD

In this part, we improve the LLE algorithm in neighborhood construction. In order to solve the
problems which bearing failure data has non-stationary, non-linear and high correlation characteristics,
M-LLE algorithm uses MD to replace Euclidean distance to construct the neighborhood map.

An improved neighborhood algorithm based on MD is shown as following:

1. Initialize the relevant parameters: neighborhood size k, and the reduced dimension of the intrinsic
dimension d. Define a starting point xi, which chooses arbitrarily in high-dimensional space,
and the neighborhood of this point is set to U(U = ∅).

2. Calculate the covariance matrix ∑ by (5), so we can determine the relationship between the center
point xi of the neighborhood and the rest of the sample points xj (j = 1, 2, 3, . . . , n− 1).

∑ =
1

n− 1

n

∑
k=1

(
xk

i − xi

)(
xk

j − xj

)T
(5)

3. Using the obtained covariance matrix of sample points and the center point, we can obtain the
MD between the center point xi and the rest of the sample point xj(j = 1, 2, 3, . . . , n− 1):

DM
(

xi, xj
)
=

√(
xi − xj

)T ∑−1(xi − xj
)

(6)

4. Get a descending order of DM
(

xi, xj
)
, and select k nearest points as the neighborhood of the

center point xi. Set this neighborhood as Ui, and update the center point set U = U ∪ {xi}.
5. To determine the next center point, we select any one points of Ui as the next center point of xi,

and this point does not belong to the center point set U.
6. When the new center point is determined, the algorithm turns back to step 2 to repeat all

above operations.
7. Until the number of elements in U is n, it means that all the sample points have been completed

traversal. Finally, output all sample points {x1, x2, x3, . . . , xn} and their neighborhoods
{U1, U2, U3, . . . , Un}.

The flow chart of improved neighborhood construction algorithm which based on MD is shown
in Figure 1.

When using MD to replace the Euclidean distance in the original LLE algorithm, it is guaranteed
that the local linear relationship in the neighborhood is invariant to construct low-dimensional
projection. After we adopt the improved neighborhood construction algorithm, the correlation between
the data can be eliminated. It will play a very important role in the subsequent realization of obtaining
the intrinsic manifold in high-dimensional space.
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Figure 1. The flow diagram of neighborhood selection algorithm in M-Local Linear Embedding
(LLE) algorithm.

4. Weight Construction Based on L1-Norm

4.1. The Effect of Noise on Weight Construction

In the process of dimensionality reduction, except selecting reasonable and effective neighborhood,
an accurate local linear weight construction is also the key factor affecting the dimensionality reduction
effect [20]. The construction of weight matrix is the main basis for getting the mapping from
high-dimensional space to low-dimensional space of the manifold structure. If the weight construction
is not accurate, it will lead to the deviation of dimensionality reduction and even cause distortions.

Due to complex coupling among the modules on industrial production process, the mechanical
fault data can reflect the fault information, but at the same time it often doped with noise. When LLE
algorithm is used to reduce the dimension of fault data, noise points can lead to an inaccuracy of
weight construction, which will affect the dimensionality reduction and reduce the accuracy of fault
diagnosis. There is a detailed analysis of noise effect [21].

Let x0 represents the sample point xi, U(xi) represents the neighborhood of x0.
Suppose x1, x2, . . . , xk ∈ U( x0), and x0 = ∑k

i=1 wixi, ∑k
i=1 wi = 1. We define the data points

which contaminated by noise as x̃i = xi + εi (i = 0, 1, 2, . . . , k), where εi (i = 0, 1, 2, . . . , k) indicates the
noise of each neighborhood point. According to LLE algorithm, after noise pollution, there are data
points x̃0 = ∑k

i=1 w̃i x̃i, ∑k
i=1 w̃i = 1, and x̃i ∈ U(x̃0). w̃i represents the elements in local reconstruction

matrix of the contaminated data points.
Then, when the neighborhood points are without noise pollution, its reconstructed weights can

be expressed as following: {
X0 = ( x1, x2, . . . , xk)

W0 = ( w1, w2, . . . , wk)
T (7)

When the polluted neighborhood points and its reconstructed weights can be expressed
as following: {

X̃0 = (x̃1, x̃2, . . . , x̃k)

W̃0 = (w̃1, w̃2, . . . , w̃k)
T (8)
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Thus, there are {
x0 = X0W0

x̃0 = X̃0W̃0
(9)

There is a theorem: If it is independent of noise points, different dimensions, and each W̃0.
The mean value of each noise point is 0, and they have the same variance [21]. The error of reconstructed
weight matrix for the data point is δW0 = W̃0 −W0. The following estimate is made:

E||δW0||2 ≤
k(k + 1)σ2

λminl
E||W̃0||

2
(10)

Among them, ||·|| is the Euclidean norm, σ2 = ∑D
i=1 σ2

i , σ2
i = Var(εi), (i = 0, 1, 2, . . . , D),

and εi represents the k-th component of ε, l = rank(X0), λmin is the minimum nonzero eigenvalue of
X0

TX0. For detailed proof, please refer to document [20].
It can be seen from the above theorem, the main factors affecting the robustness of LLE

algorithm are: noise distribution σ2, neighborhood selection k, and the energy of weight matrix ||W̃0||.
Therefore, in order to enhance the ability of LLE algorithm to resist noise, besides the improvement of
neighborhood construction, we should also reduce the weight matrix energy. Only by reducing the
error of the local linear reconstruction weight matrix, can we overcome the sensitivity of LLE algorithm
to noise.

4.2. Weight Construction Based on L1-Norm

Traditional LLE algorithm using L2-norm to calculate weight matrix, so it will enlarge the noise
factor and cause the output results being difficult to recover the intrinsic structure. In order to reduce
the error in local linear reconstructed weights, and enhance the robustness of LLE algorithm in the
noisy environment, when dealing with noisy data, Ke et al. [22] derived that the method based on
L1-norm is more robust than based on L2-norm. In addition, when calculating the weight matrix,
traditional algorithm only considers distances among neighborhood points, and it does not consider
the manifold structure in the neighborhood. Therefore, the calculated weight matrix is not stable in
noisy data. Inspired by [23–25], L1-norm is introduced to minimize the local error. At the same time,
we take distance factor and the structure factor into account, so that the M-LLE algorithm can achieve
a better noise immunity.

In traditional LLE algorithm, each sample point can get a weighted linear representation by its
neighborhood points, and the residual of local linear reconstruction is as following [23]:

ξ(x) =
n
∑

i=1

∣∣∣∣∣
∣∣∣∣∣xi −

k
∑

j=1
wijxj

∣∣∣∣∣
∣∣∣∣∣
2

s.t. ∑j wij = 1

(11)

In order to minimize the local linear reconstructed residual, we can adopt Lagrange multiplier
method to obtain the optimal reconstruction weight WS

i . Since the distance weight matrix WS
i depicts the

distance relationship among the center point and each neighborhood point, it does not take structural
factors into consideration. Thus, in the local weight construction, M-LLE algorithm combines the
distance relation with the structural relation in neighborhood and redefines the local weight matrix Wi:

Wi = WS
i ×WD

i (12)
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WS
i represents the distance matrix calculated by LLE algorithm, and WD

i represents the structure
weight matrix considered the local manifold structure. In the process of calculating the structure
weight matrix, L1-norm is used to regulate, and the description is listed as following:

WD
i = exp(−

∣∣∣∣xi − xj
∣∣∣∣2

1
Dm

) (13)

And,

Dm =
1
k

k

∑
j=1

∣∣∣∣xi − xj
∣∣∣∣ (14)

5. Fault Diagnosis Model Based on M-LLE Algorithm

Rolling element bearing is an indispensable component of industrial infrastructure equipment,
its health state directly determines the health status of the mechanical system. The timely detection of
the mechanical system and taking effective measures for bearing failure are indispensable works in real
production process, and also a worthy of the further study of the direction [26]. Because the working
condition is complex and the bearing is susceptible to noise interference, it often causes vibration signals
show the characteristics of high-dimensional nonlinearity. Obviously, it is difficult to directly carry out
effective feature extraction and make fault diagnosis. In this paper, M-LLE algorithm is used to get
an effective dimensionality reduction from the obtained fault signals. Therefore, it is convenient to
carry out effective and accurate fault diagnosis. Based on above method of neighborhood construction
and weight construction, M-LLE algorithm is proposed to improve the robustness and accuracy of the
original LLE algorithm. The details of M-LLE algorithm are shown in Algorithm 1.

Algorithm 1 M-LLE Algorithm

Input: Initialize high-dimensional sample points xi, neighborhood size k, and intrinsic dimension d
Output: Low-dimensional embedded coordinates {y1, y2, y3, . . . , yn}
1: for i := 1 to n do
2: Obtain neighborhood Ui by improved neighborhood construction algorithm
3: Calculate distance weight matrix WS

i by Equation (10)
4: Get structural weight matrix WD

i by combining Equations (12) and (13)
5: Acquire local weight matrix Wi = WS

i ×WD
i

6: According to the Equation (3) to get local embedded coordinates yi
7: end
8: return {y1, y2, y3, . . . , yn}

In the process of rolling element bearing fault diagnosis, we obtain the original vibration signals
by using the same sampling frequency to carry on the data acquisition. The rolling element bearing is
working under a certain load and speed. The collected data is divided into training sample set and
testing sample set, and adopting the frequency domain analysis to get signal feature extraction.

However, the characteristics obtained only by signal feature extraction method may tend to
characteristic redundancy, or result in partial feature conflict. In order to reduce the inaccuracy of
feature extraction, M-LLE algorithm is used to ensure that the dimensionality reduction is under the
same geometric relationship premise. This method can effectively extract key characteristics of fault
data, and avoid the error caused by artificial selection. Subsequently, fault classifier is trained by
training samples which have been reduced to intrinsic dimension, and put low-dimensional testing
samples into the trained classifier. Finally, according to the output of classifier, we can determine the
working condition and fault type of rolling element bearing. The detailed implementation process of
fault diagnosis model based on M-LLE algorithm is shown in Figure 2.



Appl. Sci. 2017, 7, 1178 8 of 16Appl. Sci. 2017, 7, 1178 8 of 16 

 

Figure 2. The fault diagnosis model based on M-LLE algorithm. 

6. Experiments and Analysis 

6.1. Artificial Data Set 

In this paper, we select three kinds of artificial data sets, which are Swiss-roll, S-curve and 
Punctured-sphere, in order to verify the effectiveness of the improved LLE algorithm. In Figure 3, 
the graphs a(1), b(1) and c(1) are the three-dimensional manifolds when the artificial data sets are 
Swiss-roll, S-curve and Punctured-sphere without noise. In order to verify the effectiveness of 
manifold learning from the intuitive and quantitative aspects, the evaluation criteria of residual 
error is introduced in this paper to depict the effect of dimensionality reduction. = ∑ [ ( ) − ( )]− 2  (15)

We measure the embedded quality by using the residual error  between the coordinates ( )  in original higher-dimensional space and the embedded coordinates ( )  in 
low-dimensional space [7]. The smaller residual error, the better effectiveness of dimensionality 
reduction. It is also means the result of dimensionality reduction can preserve the topology of 
original manifold better. For each kind of artificial data set, the number of sample points is 4000, the 
manifold is reduced to two dimensions, and the neighborhood size is 25. 

Figure 2. The fault diagnosis model based on M-LLE algorithm.

6. Experiments and Analysis

6.1. Artificial Data Set

In this paper, we select three kinds of artificial data sets, which are Swiss-roll, S-curve and
Punctured-sphere, in order to verify the effectiveness of the improved LLE algorithm. In Figure 3,
the graphs a(1), b(1) and c(1) are the three-dimensional manifolds when the artificial data sets are
Swiss-roll, S-curve and Punctured-sphere without noise. In order to verify the effectiveness of
manifold learning from the intuitive and quantitative aspects, the evaluation criteria of residual
error is introduced in this paper to depict the effect of dimensionality reduction.

r = ∑n
i=1[DX(i)− DY(i)]

2

n− 2
(15)

We measure the embedded quality by using the residual error r between the coordinates DX(i) in
original higher-dimensional space and the embedded coordinates DY(i) in low-dimensional space [7].
The smaller residual error, the better effectiveness of dimensionality reduction. It is also means the
result of dimensionality reduction can preserve the topology of original manifold better. For each kind
of artificial data set, the number of sample points is 4000, the manifold is reduced to two dimensions,
and the neighborhood size is 25.
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For original artificial data sets, they are shown in Figure 3a(1),b(1),c(1). As is shown in Figure 3a(1),
the Swiss-roll data set is scroll-like in three-dimensional space, where the color on the manifold is
from deep to shallow to represent the data points of the different coordinates in the high dimensional
space. As is shown in Figure 3b(1), the S-curve data set is S-shaped in three-dimensional space.
The effective expansion of Swiss-roll and S-curve manifolds in two-dimensional space is a rectangular
and the sample points of different colors can be separated well. As is shown in Figure 3c(1),
the Punctured-sphere data set is a non-closed sphere in a three-dimensional space. When the dimension
reduction algorithm is valid, its manifold in two-dimensional space is a circle with separated colors.

For these three kinds of artificial data sets with no noise pollution, Figure 3a(2),b(2),c(2) are
shows the embedded results of LLE algorithm. It can be clearly seen that distortion has occurred
on embedded manifold, so they are can’t recover the rectangular state of Swiss-roll and S-curve
in two dimensions. What’s more, at the edge of Figure 3c(2), some data points are stacked.
However, the embedded manifolds which obtained by M-LLE algorithm can get good recoveries
of the rectangular in Figure 3a(3),b(3), and the circle in Figure 3c(3). It is clear that data points of
different colors can be completely separated and expanded. In addition to the intuitive graphical
display, we can also see from the quantitative indicators. The residual errors in Figure 3a(2),b(2) are
0.3292 and 0.2129, but the residual errors of using M-LLE algorithm in Figure 3a(3),b(3) are 0.2612 and
0.1886, which are smaller than using LLE algorithm. It can also be judged by the residual errors in
Figure 3c(2),c(3). When we adopt LLE algorithm in Punctured-sphere data set, the residual error of
dimensionality reduction is 0.1167. There is no doubt that 0.1167 is higher than 0.1092 in Figure 3 c(3).
Therefore, using M-LLE algorithm can effectively preserve the topology of original manifolds, and it is
helpful for dimensionality reduction.

The above simulation results have verified the effectiveness of M-LLE algorithm in the noiseless
data. Next, in order to prove the robustness of M-LLE algorithm, we introduce the noisy artificial data
sets in this study. The settings of the parameters are shown in Table 1.
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Table 1. Parameter settings of the LLE and M-LLE experiments reported in Figure 4.

Parameter Swiss-Roll S-Curve Punctured-Sphere

Dimensionality of data space (D) 3 3 3
Dimensionality of embedding space (d) 2 2 2

The size of nearest neighbor (k) 25 25 25
The number of points 4000 4000 4000

The number of noise points 200 400 600
The percentage of noise 5% 10% 15%

As is shown in Figure 4a(1),b(1),c(1), we add 5% noise to Swiss-roll data set, 10% noise to S-curve
data set and 15% noise to Punctured-sphere data set. The results of dimensionality reduction by LLE
algorithm are shown in Figure 4a(2),b(2),c(2), and Figure 4a(3),b(3),c(3) are the M-LLE embedded
results in two dimensions. There is a large distortion in Figure 4a(2), and the residual error is 0.4377,
which is larger than the residual error in Figure 4a(3). Besides, by comparing Figure 4b(2) with
Figure 4b(3) we can find that M-LLE algorithm is beneficial to restore the manifold structure in the
noisy environment, and the residual error is only 0.2085. Figure 4c(2),c(3) are the two-dimensional
embedded results in noisy Punctured-sphere data set, which use LLE algorithm and M-LLE algorithm
respectively. There are a large number of data points aliasing in the edge of Figure 4c(2), on the contrary,
Figure 4c(3) can effectively separate the data points of different colors. What’s more, the residual error
in Figure 4c(3) is 0.8856, which is smaller than 0.9761 in Figure 4c(2). It means that M-LLE algorithm
can get a better embedded result than LLE algorithm in noisy artificial data sets.
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Through the above simulation, we can find that M-LLE algorithm can effectively preserve
the intrinsic morphology of manifold in different artificial data sets. In addition, regardless of
the degree of noise interference, M-LLE algorithm can get the perfect local structure of manifolds.
Therefore, M-LLE algorithm has strong robustness.

6.2. Rolling Element Bearing Fault Data Set

We use the real rolling element bearing fault data provided by the University of Cincinnati [27]
to verify effectiveness of proposed method in fault diagnosis application. The mechanical device used
in this experiment is shown in Figure 5.
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Four Rexnord ZA-2115 double bearings are mounted on the support frame, and the speed is
maintained at 2000 r/min. We analyze the health of rolling element bearing by collecting the vibration
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data of bearing. Among them, vibration signals are obtained by corresponding acceleration sensor,
and the frequency of data sampling is 20 kHz.

Figure 6 shows the time domain waveform of different bearing states. The states they depicted
are normal state, inner race fault, outer race fault and ball fault. Figure 6a is a diagram of the vibration
signal waveform under the normal state, as can be seen from the Figure 6a, it is covered with a lot of
noise burr. Figure 6b is the inner fault waveform, affected by bearing surface damage, the vibration
signal appeared obvious pulse. Figure 6c is the diagram of outer race fault. Due to the excessive noise,
the pulse signal is submerged. Figure 6d is the time domain waveform when the fault occurred to the
ball. Because of the rotation of the ball, pulse is periodically distributed, and it is also mixed with noise.
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Figure 6. The time-domain diagram in rolling element bearing. The x axis is the time series and y axis
is the data which is collected by the accelerators. (a) The waveform of normal state; (b) the waveform
of inner race fault; (c) the waveform of outer race fault; (d) the waveform of ball fault.

Feature extraction is an important stage of fault diagnosis. It is necessary to extract the
corresponding effective features to determine whether the data is normal or faulty. From the
time-domain waveforms of different states of rolling element bearing, it can be seen that the amplitude
and probability distribution of time-domain signal will change when bearing fails. Besides, frequency
components, energy of the different frequency components, and main energy peak position will also
change [28]. Therefore, when we collect the vibration signal of rolling element bearing, vibration
signal should be extracted from effective features to facilitate the fault identification and diagnosis.
In this paper, the following 10 time-domain characteristic parameters and 10 frequency-domain
characteristic parameters are adopted to extract useful information of rolling element bearing. Table 2 is
the information of extracted features.
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Table 2. Feature extraction in time domain and frequency domain.

Number Characteristic Equation Number Characteristic Equation

1 c1 =
N
∑

n=1
x(n)/N 11 c11 =

K
∑

k=1
s(k)/K

2 c2 =

√
N
∑

n=1
(x(n)− c1)

2/(N − 1) 12 c12 = ∑K
k=1(s(k)−c11)

2

(K−1)

3 c3 =

(
N
∑

n=1

√
|x(n)|/N)

)2
13 c13 = ∑K

k=1(s(k)−c12)
4

Kc2
12

4 c4 =

√
N
∑

n=1
(x(n))2/N 14 c14 = ∑K

k=1 fKs(k)
∑K

k=1 s(k)

5 c5 = max|x(n)| 15 c15 =

√
∑K

k=1( fk−c14)
2s(k)

K

6 c6 =
n
∑

n=1
(x(n)− c1)

4/(N − 1)c2
4 16 c16 c16 =

√
∑K

k=1 f 4
k s(k)

∑K
k=1 f 2

k s(k)

7 c7 = c5/c3 17 c17 = ∑K
k=1 f 2

k s(k)√
∑K

k=1 s(k)∑K
k=1 f 4

k s(k)

8 c8 = c5/c4 18 c18 = c15/c14

9 c9 = c4/
(

1
N

n
∑

n=1
|x(n)|

)
19 c19 = ∑K

k=1( fk−c14)
4s(k)

Kc2
15

10 c10 = c5/
(

1
N

n
∑

n=1
|x(n)|

)
20 c20 = ∑K

k=1( fk−c14)
1/2s(k)

Kc15

In Table 2, x(n) represents the time series of signals, n = 1, 2, . . . , N, N is the number of samples,
s(k) represents the spectrum of x(n), k = 1, 2, . . . , K, K is the number of lines, fk is the frequency of
the k-th line. The time-domain characteristic parameters c1 and c3 ∼ c5 represent the amplitude and
energy of the time-domain signal; c2 and c6 ∼ c10 reflect the time series distribution of the time-domain
signal. The frequency domain characteristic parameter c11 indicates the frequency of vibration energy
in the frequency-domain. c12 ∼ c13, c15 and c18 ∼ c20 represent the dispersion or concentration of the
spectrum. c14 and c16 ∼ c17 reflect the changes in the main band position.

The above 20 characteristic parameters can reflect the information of fault data, but they may
contain redundant features. The existence of these redundant features can not only increase the
complexity of state recognition, but also reduce the accuracy of fault diagnosis. In order to eliminate
redundant information in feature selection, it is necessary to further process these features and
extract the intrinsic features. It is a benefit to get true state of system and perform corresponding
fault diagnosis.

Therefore, we use M-LLE algorithm to reduce the dimension of 20-dimensional fault data,
and obtain the intrinsic characteristic information, which is the fundamental basis for judging the
fault type. In order to verify the effectiveness of M-LLE algorithm, this paper uses four kinds of state
bearing data: normal state, inner race fault, outer race fault and ball fault to make the experiment.
Divide each status of rolling element bearing data into 600 groups, and add labels to them. Detailed
data are shown in Table 3.

Table 3. The details of each state of rolling element bearing data.

Operating Condition Training Samples Testing Samples Label

Normal 400 200 1
Outer race 400 200 2
Inner race 400 200 3

Ball 400 200 4

We reduce the dimensions of the obtained 20-dimensional data by using LLE algorithm and M-LLE
algorithm. Figure 7 shows the different state of the fault data distribution in three-dimensional space.
What’s more, the X axis, Y axis and Z axis represent the three features (K1, K2 and K3) respectively,
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which are obtained by dimensionality reduction. The “*” indicates the normal state data of the rolling
bearing, “∆” indicates the inner ring fault status data of the rolling bearing, “#” indicates the outer ring
fault state data of the rolling bearing, and “�” indicates the ball fault state data of the rolling bearing.
Figure 7a is the result of reducing dimension by using the traditional LLE algorithm. As is shown in
the figure, although four different states of the fault data have clustering effect, there are some data
points aliasing among the bearing inner race failure, outer race failure and ball failure. Figure 7b is the
result of reducing dimension by using M-LLE algorithm. There is obvious clustering phenomenon
in different color bearing state data and there is no aliasing of data comparing with the traditional
LLE algorithm. It will lay a solid foundation for the data classification and fault identification in the
next step.
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According to the fault diagnosis model based on M-LLE algorithm is proposed in the fourth part of
this paper, we can obtain final bearing fault diagnosis results by using the KNN classification algorithm.
In order to verify the classification effect of M-LLE algorithm and traditional LLE algorithm in rolling
element bearing fault diagnosis, we list the comparison results of two methods in Table 4, and also
compare with the reference [29], which adopts the same data set for fault diagnosis. It can be seen
from Table 4 that M-LLE algorithm can effectively improve the accuracy of fault diagnosis of rolling
element bearings. Although traditional LLE algorithm and the method in reference [29] can achieve
100% in one kind of fault classification, the total accuracy is only 92.6% and 94.9%. When using M-LLE
algorithm, the classification accuracy of all kinds of fault can reach 100%.

Table 4. The comparison experimental results in fault diagnosis.

State LLE Reference [29] M-LLE

Normal 100% 98.9% 100%
Outer race 82.5% 91.4% 100%
Inner race 98.5% 100% 100 %

Ball 89.5% 87.7% 100 %
Total 92.6% 94.9% 100 %

7. Conclusions

In this paper, we have proposed a robust version of LLE algorithm, named M-LLE algorithm.
By using MD and the L1-norm to regulate the weight of the manifold structure, the undesirable effect
of the noise on embedded results can be largely reduced. M-LLE algorithm has strong robustness,
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it can make the local structure of manifold remain intact, and can achieve 100% accuracy in real bearing
fault diagnosis. The simulation results on both synthetic and real rolling element bearing data sets
show the efficacy of M-LLE algorithm.
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