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Abstract: In this paper, a scheme based on the time reversal technique is proposed to improve the
detection performance for detecting a cylindrical object bottoming at the seafloor in shallow water.
When the time reversal technique is applied to the response of the clutter with the strong time-varying
characteristic of shallow water, it is difficult to obtain a high peak response. However, in the case
where a cylindrical object is placed on the seafloor because the time-invariant property of the target
response is stronger than the time-varying property of the reverberation by the clutters, the time
reversal technique can be applied to enhance the target signal. In this paper, it is demonstrated
that the peak due to the target that is contacted at the seabed becomes higher when applying the
time reversal technique. The performance is investigated by using numerical computation of the
probability of detection for various probabilities of false alarm and computer simulation.

Keywords: underwater target detection; time reversal; active sonar; shallow water

1. Introduction

Detection of objects bottoming at the sea floor in shallow water is a very important problem.
It is also essential in underwater exploration for protecting the underwater environment, and is
a critical technology in the field of military detection.

A side scan sonar is mainly applied in conventional methods to obtain images within detection
fields, and studies have been performed to recognize cylindrical targets by using image signal
processing [1–5]. The sonar images used in this process are composed of the intensities of sound
waves scattered on the seabed surface or on the target. The resolution of these images is very low,
and owing to severe noise it is impossible to detect objects during real-time processing. In addition,
since frequencies higher than 100 kHz are used, the detection distance is very short, and the sonar
sensors must be towed at very low speed to obtain clean images in which the detection field is relatively
narrow. Meanwhile, mid-frequencies are currently used to detect sea mines at the bottom of the seabed
in shallow seas. The Applied Physics Lab (APL) at the University of Washington in the United States
of America conducted research on the scattering of sound waves from a 1∼2 m-long target [6,7].
In the study, frequencies of 1∼30 kHz are used to conduct comparative research between actual test
data and simulation data on the scattering of sound waves in various cylindrical objects. Research
is performed on the signal intensity reflected from the target rather than the images of the target,
and characteristics on the seabed in contact with the target are modeled.

In shallow water environments with fast current such as the Yellow Sea in Korea, the detection
problem is more difficult. Note that the average speed of 74.0 cm/s with the maximum speed
of 172.6 cm/s has been observed near the Taean Peninsula in the Yellow Sea [8], and its sediment
consists of 85% gravel and 15% sand on average [9]. This is a very complicated area that includes
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coastal fronts and swirls, substantial tides and currents, abundant sea life, and high ship traffic.
These factors are changing temporally and/or spatially, and combine to create a difficult detection
problem [10,11]. When detecting a target via active sonar, the received signal includes not only the
target response but also the clutter response due to surrounding objects. Furthermore, the effect of
clutter becomes stronger in the shallow water environment. It is not easy to model the channels of the
clutters because of their time-varying characteristics. Studies on channel modeling in shallow water
have been actively conducted [12]. Clutter is the factor that interferes with the detection of targets [13].
Intensive studies on reducing the influence of clutter or identifying objects and clutter have been
done in various ways [14]. In the sonar system, as the complexity of the channel structure increases,
detection performance deteriorates exponentially.

Since M. Fink and his group proposed the time reversal techniques in acoustics [15–17],
research has been carried out in a variety of fields, from electromagnetism to underwater acoustics.
Significant theoretical and experimental efforts have been made to improve the detection and imaging
algorithms in a considerable scattering environment [18–21]. The time reversal technique requires that
targets are in uniform background media [22] in order to obtain clean images. In terms of detection, the
target signal is usually covered or disturbed by the clutter signal. By capturing the received wave which
radiated from the source and retransmitting the time-reversed waveform of the captured signal to the
channel for reception, the energy of the wave can be focused at a specific position [23,24]. Note that
retransmitting the time reversal signal from the received signal is a kind of matched filtering for the
time-invariant components, while it is a kind of energy spreading for the time-varying components [25].
The time domain correlation analysis according to distance and frequency shows that the time-varying
characteristics of the shallow water channel become stronger as the distance becomes longer and as the
frequency increases [26]. For this reason, the time reversal technique can achieve good performance
even if the scattering environment is complicated. As the time-varying property of the clutter signal
becomes stronger, the detection performance improves because the time coherence of the clutter signal
is decreasing while the target signal is time-invariant.

In this paper, a method is proposed to improve the detection performance using the time
reversal technique in the situation where the clutter is mixed in the shallow water. By using the wave
focusing effect of the time reversal technique, the peak response of the target can appear prominently.
In this work, it is considered that the cylindrical object is resting on the sea floor. In this case the sea
floor consists of soft sediment and there are gravel, sand, and seaweed in the current, whose scattering
can cover target scattering to mask detection via active sonar. It is assumed that these clutters are
time-varying and K-distributed. Therefore, when the time reversal technique is applied to the received
signal from the clutter with time-varying characteristics, it is difficult to obtain a high peak response.
However, for the scattering waveform of the cylindrical object considered in this work, because the
time-varying characteristic of the target response is weaker than that of the reverberation by the clutter,
the time reversal technique can increase the peak of the target signal.

The paper is organized as follows. The peak enhancement using the time reversal technique
and the proposed method are described and the probability of detection is numerically evaluated in
Section 2. Section 3 presents the cylindrical target model and the clutter model. Section 4 presents the
performance evaluation through computer simulation. Finally, Section 5 concludes the paper.

2. Target Peak Enhancement Using Time Reversal Processing

2.1. Concept of the Time Reversal Scheme

In this section, the idea of the time reversal processing is introduced under the time-varying
channel h(t, τ). This channel represents the signal traveling path from the source to resolution cell of
the sonar and back to the receiver of the sonar. This channel can be assumed to be time-varying since
the channel is affected by the clutter in the resolution cell. Furthermore, for the case where the target is
placed in the resolution cell, the channel is a superposition of the time-varying component due to the
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clutter and the time-invariant one from the target. Time reversal processing has the spatial-temporal
focusing property by retransmitting a time-reversed waveform of the received signal [27]. This process
can be conceptually described as follows.

The Fourier transform R(t, ω) of the received signal r(t, τ) through the channel with its impulse
response h(t, τ) = F−1{H(t, ω)} at time t is given by

R(t, ω) = H(t, ω)S(ω) , (1)

where S(ω) is the Fourier transform of a transmission signal s(τ). Then, the time-reversed transmission
signal Str(t, ω) at time t is given by

Str(t, ω) = [R(t, ω)S∗(ω)]∗ = R∗(t, ω)S(ω) , (2)

where the superscript ∗ denotes complex conjugation. The received signal Rtr(to, ω) for the
time-reversed transmission signal Str(t, ω) at time to 6= t is as follows:

Rtr(to, ω) = H(to, ω)Str(t, ω) = H(to, ω)R∗(t, ω)S(ω)

= H(to, ω)H∗(t, ω)S∗(ω)S(ω) = H(to, ω)H∗(t, ω)|S(ω)|2 .
(3)

This shows that the waveform Rtr(to, ω) contains the time varying spectrum of H(to, ω)H∗(t, ω).
When the channel is time-invariant H(to, ω) = H(t, ω), the received signal Rtr(to, ω) contains the
power spectrum |H(t, ω)|2, ∀t = to, which means a peak.

Figure 1. Schematic diagram of the implementation of the time-reversed retransmission signal.

In this work, the case of detecting a cylindrical object bottoming at seafloor in shallow water is
considered as shown in Figure 1. A test of two hypotheses can be applied to this investigation. In the
null hypothesis, H0, the channel of shallow water is characterized only by clutter. In the alternative
hypothesis H1, a cylindrical target is also present. This problem can be written as follows:

H0 : H(t, ω) = Hc(t, ω)

H1 : H(t, ω) = Hc(t, ω) + Htg(t, ω)
, (4)
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where Hc(t, ω) represents the time-varying component due to the clutter while Htg(t, ω) represents
the component due to the target. Note that the time-varying characteristics of the clutter and target
channels are different in shallow water since the target is bottoming at the seabed. The reverberation by
clutter in shallow water has the time-varying power level [12], but the scattering by a cylindrical object
is dependent on the size of the cylinder and its angles with respect to the source because the target is
stationary. Therefore, the target channel Htg(t, ω) is independent of time t. That is, Htg(t, ω) = Htg(ω),
which allows the hypotheses in Equation (4) to be rewritten as follows:

H0 : Rtr(to, ω) = Hc(to, ω)H∗c (t, ω)|S(ω)|2
H1 : Rtr(to, ω) = {Hc(to, ω) + Htg(ω)}{Hc(t, ω) + Htg(ω)}∗|S(ω)|2 . (5)

According to the time-varying property of the clutter channel, that is, Hc(to, ω) 6= Hc(t, ω)

for to 6= t, in case of H0, the expectation of Rtr(to, ω) may be a small value, while in case of H1,
the expectation of Rtr(to, ω) may have a high value due to the time-invariance of the target channel.
When the time reversal technique is applied to the signal scattered by the clutter, the focusing of the
waveform does not perform well due to the time-varying characteristics. However, in the case that the
time reversal technique is applied to the section where the target exists, the pulse can be focused at the
target position and it has a higher value than that without the time reversal technique.

2.2. Time-Reversed Signal Implementation

The sampled signal m[n] is given by matched filtering the received signal r(t, τ) at time t.
The time-reversed retransmitted signal sk

tr[n], k = 0, . . . , K− 1, n = 0, . . . , N − 1 is given by

sk
tr[n] = mk[N − 1− n]

mk[n] = m[n]{u[n− kL]− u[n− kL− N + 1]} , (6)

where N is pulse length, L is sample interval, and u[n] is the unit step function. Thus, a total of K time
reversed transmission signals are used. Figure 1 describes this implementation in Equation (6).

2.3. Detection Performance Comparison

In this section, the proposed method is compared to the conventional matched filtering with
a threshold in terms of detection probability. Since the detection problem is a binary hypothesis testing
problem, the likelihood ratio test is employed. For this, the probability density function of the received
signal is required. In this development, the clutter signal has the K-distribution while the target signal
has a constant intensity Pt. A sketch of the derivation for the following probability density function
(pdf) is presented in the Appendix.

2.3.1. Conventional Matched Filtering

After matched filtering, the clutter signal intensity x has the K-distribution. Thus, the conditional
pdf (probability density function) under the null hypothesis H0 is given by

p(x |H0 ) =
4√

λΓ(α)

(
x√
λ

)α

Kα−1

(
2x√

λ

)
, (7)

while the pdf under the alternative hypothesis H1 is

p(x |H1 ) =
4√

λΓ(α)

(
(x− Pt)√

λ

)α

Kα−1

(
2(x− Pt)√

λ

)
, (8)

where λ and α are the scale and shape parameters, which are dependent on the average size of the
clutter and the number of the scatter in the resolution cell of the sonar, respectively. Γ(·) represents the
gamma function.
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The likelihood ratio test with threshold γ can be expressed as follows:

Select H1 if
p(x |H1 )

p(x |H0 )
=

(
1− Pt

x

)α Kα−1

(
2(x−Pt)√

λ

)
Kα−1

(
2x√

λ

) > γ . (9)

Then, the corresponding probability of detection is described by

PD =
∫ ∞

γ

4√
λΓ(α)

(
(x− Pt)√

λ

)α

Kα−1

(
2(x− Pt)√

λ

)
dx , (10)

with the false alarm probability

∫ ∞

γ

4√
λΓ(α)

(
x√
λ

)α

Kα−1

(
2x√

λ

)
dx = PFA . (11)

2.3.2. Time Reversal-Based Detection

It is difficult to obtain the pdf of the received signal for the retransmitted time-reversed signal in
closed form. Thus, the probability of detection and the probability of false alarm are obtained by using
the numerical method.

As mentioned in the earlier section, the initial return signal has the K-distributed intensity after
matched filtering. Therefore, the retransmitted signal sk

tr has the K-distribution. If the time-varying
property of the channel is weak, passing the retransmitted signal through the channel results in
the autocorrelation of the channel. However, the real channel is time-varying while the properties
do not change suddenly compared to the previous channel [12,28]. This deviation is modeled by
Gaussian noise. Therefore, the pdf of the current channel becomes the convolution between the
previous channel’s K-distributed pdf fK1(x) and the Gaussian pdf fG(x), where RV K1 represents
the intensity of the previously received signal (i.e., the previous clutter channel) and RV G is the
deviation. Thus, the intensity of the received signal R2 for the retransmitted signal is the correlation
of K2 = K1 + G and K1, that is, R2 = K2K∗1 , which implies the case that there is no target, the null
hypothesis H0. For the case that a target exists, the alternative hypothesis H1, the intensity of the
received signal includes the target signal intensity Pt.

Figure 2 shows the probabilities of detection for the conventional and proposed schemes for
various false alarm probabilities when the target-to-clutter ratio (TCR) varies from −15 dB to 10 dB.
Note that the shape parameter α = 1 and the scale parameter λ = 1. As observed in the figure,
the proposed method is better than the conventional one by about 5 dB at a probability of detection
of 0.9. TCR is measured by power spectral densities of the clutter and target signals, and is defined
as follows:

TCR =

∑
BW

∣∣Htg(ω)
∣∣2

∑
BW
|Hc(ω)|2

, (12)

where BW represents the band width that contains significant power.
In order to investigate the effect of the shape parameter α on the probability of detection,

the probability of detection is numerically estimated as a function of the normalized target signal
power with respect to the scale parameter; that is, S0 = Pt/λ for the probability of false alarm
PFA = 0.005. The shape parameter α is set to 1, 5, 10 and 20 while λ = 1. Figure 3a,b demonstrate
the probabilities of detection for the time reversal-based detection and the conventional detection,
respectively. As observed in the figures, the probability of detection becomes worse as the shape
parameter becomes larger (α = 20), which converges to the Rayleigh distribution.
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Figure 2. Probabilities of detection numerically obtained by the proposed and conventional methods
for PFA = 0.1, 0.05, 0.01, and 0.005 with α = 1 and λ = 1. (a) PFA = 0.1; (b) PFA = 0.05; (c) PFA = 0.01;
(d) PFA = 0.005. PFA: false alarm probability ; TCR: target-to-clutter ratio.
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Figure 3. Numerically obtained probabilities of detection for α = 1, 5, 10, and 20 when λ = 1 and
PFA = 0.005. (a) Time-reversal-based detection; (b) Conventional detection.
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3. Target and Clutter Channel Modeling

The objective of this study is to detect a cylindrical object that is bottoming at the seabed as shown
in Figure 1. For computer simulation and analysis, the target and clutter channel models are required,
and the models employed in this study are presented in this section.

3.1. Cylindrical Target Channel Modeling

A model for the scattering of the cylindrical object in this study is based on the model proposed
by Z. Ye [29]. This model assumes a closed cylinder with finite length and computes the scattering
of body and end parts of the cylinder. This is developed by applying Kirchhoff’s scalar scattering
theory to the problem of finite cylinders. The model describes the body and end scatterings of the
object separately by dividing the surface area of the object into the cylindrical body and the flat end,
respectively. In this study, the scattering of a cylinder of enclosed finite length is induced by combining
the scattering of the body part and scattering from its ends [30,31].

3.2. Clutter Channel Modeling

Since the clutters, where scattering occurs, are randomly distributed underwater, the Rayleigh
distribution is applied based on the central limit theorem (CLT), assuming that there are sufficient
scatters in the resolution cell. However, recent advances in technology have made it possible for
high-resolution active sonar systems to reduce the number of reverberant components that affect the
given resolution cell. Therefore, if there are not many scatters in the resolution cell, the CLT cannot
be applied, and non-Rayleigh distribution is applied. Furthermore, since the simulation in this paper
assumes a shallow water environment of 100 m depth, the width of the resolution cell is not large,
and non-Rayleigh distribution is applied considering finite scatters. D. A. Abraham and A. P. Lyons
derived the reverberation signal using the K-distribution instead of the Rayleigh distribution under
this assumption [28]. A time-varying finite impulse response filter was developed for the clutter
channel in shallow water [12].

4. Simulation

The envelope of the received signal from the finite scatters forms the K-distribution, the shape
parameter of the K-distribution is related to the number of scatters, and the scale parameter is
determined by the average size of scatters. The K-distribution can be a good approximation because it
is easy to apply to various environments and situations depending on shape parameters and scale
parameters. Therefore, since the two parameters of the K-distribution can be a physical model of the
submarine environment, a clutter channel with a K-distribution is applied by setting shape parameters
and scale parameters according to the simulation environment.

4.1. Simulation Condition

In order to verify the performance of the proposed scheme by simulation, the target and clutter
channels were modeled and Gaussian signals were added to the existing channel every time to simulate
the time-varying characteristics of the shallow water acoustic channel. As the initial transmission signal,
an LFM (linear frequency modulated) waveform having a bandwidth of 6–20 kHz was employed,
and the sampling frequency was set to 44 kHz. An 18 degree beam covering a bottom distance
of 100–200 m with a depth of 100 m below the sea surface was employed. The target signal was
generated by Ye’s model with a length of 20 m and a radius of 2 m.

4.2. Simulation Results

4.2.1. Target Peak Enhancement

Figure 4 shows the 2D plot of the outputs obtained by matched filtering the received signals
after radiating time-reversed signals while changing a transmission waveform section. Even with
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the time-varying characteristics, it is observed that the energy was focused weakly according to the
transmission waveform section since the structural characteristics of the seabed itself are maintained
with a small degree. The section with a target shows a relatively strong peak.

Figures 5 and 6 display the matched filtering outputs obtained by using the time-reversal
techniques without and with a target, respectively. For the sections where only the seabed scattering
exists, each matched filtered output was not focused well because of the time-varying characteristics
of the channel. In contrast, for the section where the target exists, the pulse was well focused and the
peak is easily observed. The results using matched filtering alone without the time reversal technique
are shown in Figure 7. In this figure, it is difficult to determine the peak due to the target signal.
In Figures 4–7, the shape parameter α is 1 and the scale parameter λ is 1.

Figure 4. 2D plot obtained by matched filtering the received signals after radiating time reversed
signals while changing a transmission waveform section. The target peak is marked with the red circle.
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Figure 5. Matched filtering outputs when the time reversal technique is applied to the section where
only the seabed scattering exists.

100 110 120 130 140 150 160 170 180 190 200
0

5

10

15

bottom distance [m]

in
te

ns
ity

Figure 6. Matched filtering outputs when the time reversal technique is applied to the section with a target.
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Figure 7. Matched filtering outputs obtained by the conventional approach without applying the time
reversal technique.

4.2.2. Parameters of the K-Distribution

Figure 8 shows the probabilities of detection according to the normalized target signal power S0,
which are measured by using the proposed and conventional methods with Monte Carlo simulation.
Note that the conventional method just uses matched filtering and threshold detection. For 5 dB
signal-to-noise ratio (SNR) Gaussian noise, simulation was carried out 1000 times while changing the
normalized target power S0 from−15 dB to 20 dB with 1 dB interval. In this simulation, it was assumed
that a target is randomly located in the range of 100 m to 200 m with uniform distribution. The threshold
was fixed to a constant to observe the performance difference between the conventional and proposed
methods under the same simulation environment. In this simulation, the shape parameters α = 1
and 10 were applied. It is observed that the proposed one improved the detection performance by
about 3 dB compared to the conventional one. However, this is smaller than that of the numerical
comparison in Figure 2 because the threshold is not optimized. The performance improvement was
achieved because the energy was focused on the target by using the time reversal technique and the
peak was raised as shown in Figure 6. Furthermore, as observed in Figure 3, the larger shape parameter
deteriorated the performance in Figure 8.
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Figure 8. The probability of detection by computer simulation for the proposed and conventional
methods with the same threshold for α = 1 and 10 with λ = 1.
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4.2.3. Temporal Coherence

This simulation investigated the relationship between the coherence of the clutter channel [26] and
the detection probability of the proposed approach for TCR varying from −20 dB to 20 dB. The false
alarm probability PFA was set to 10−4 and the threshold was adjusted according to the coherence
values. The results were obtained by 1000 simulations for each TCR according to coherence values
ρ = 0.05, 0.22, 0.49, 0.79, 1, which are depicted in Figure 9. Note that ρ = 1 means that the clutter
channel is time-invariant while it becomes more decorrelated as ρ goes to zero. As observed in the
figure, for ρ = 1, the clutter signal is also enhanced by the time reversal; therefore, the detection
probability degrades while for ρ = 0.05, indicating that the time-variance of the clutter is relatively
high, the approach achieves a better performance.
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Figure 9. The probability of detection of the proposed approach for several coherence values when
PFA = 10−4 and α = 1.

5. Conclusions

When seabed clutter exists in the received signal, the scattering signal by the target is buried
in the clutter signals, which makes accurate detection difficult. In this paper, a method using the
time reversal technique is proposed to improve detection performance when the clutter environment
is in shallow water. Using the wave focusing effect of the time reversal technique, the peak of the
target signal can be enhanced. It is confirmed that the peak of the target buried in the clutter becomes
higher when applying the time reversal technique by exploiting the time-varying characteristics of
the seabed clutter. The numerical computation of the probability of detection and the false alarm
probability demonstrates the improvement of the proposed method over the conventional approach.
Furthermore, Monte Carlo simulation results also indicated that the proposed approach is better
than the conventional one. In addition, the performance of the proposed approach was investigated
in terms of the parameter of the K-distribution and the temporal coherence of the clutter channel.
For a strong K-distributed channel and for a highly time-varying channel, the proposed approach
shows a better probability of detection. In this study, it was observed that the time-reversal technique
can improve the observability of the target peak in shallow water. Note that the kinds of time-varying
clutter considered in this study were gravel, sand, and seaweed in the high-speed current. For further
study, the strategy for reducing the computational complexity should be investigated for successful
real-time applications.
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Appendix A

For the complex reverberation from j scatters, the distribution of the signal is obtained by the
exponential and normal distributions [28,32].

K =
√

ZY (A1)

Z =
j

∑
i=1

Xi (A2)

where random variable (RV) Xi has the exponential distribution and is independent of Xk for all k 6= i
while RV Y is normal distributed. The pdf of RV Z can be computed by the convolution of pdf’s while
the pdf of RV K is obtained by using the following relationship [33] for independent RV’s A and B

fC(y) =
∫ ∞

0

1
x

fA(x/y) fB(x)dx, with C = AB (A3)

Then the pdf of the magnitude R =
√
(Re{K})2 + (Im{K})2 = |K| can be computed using this

relationship fR(z) = (2πz) fRe{K},Im{K}(z, 0) with the circularly symmetry condition [33]. For the case
that there is no target in the resolution cell, the distribution becomes the K-distribution. When a target
exists, the pdf of the complex reverberation can be determined by shifting the pdf of the complex
reverberation by the target signal power.
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