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Abstract: Openings are frequently introduced in plates for the purpose of inspection, maintenance,
service, etc. The presence of openings reduces the buckling and ultimate capacity significantly,
and pasting fiber-reinforced polymers (FRP) is an ideal technique for postponing the buckling and
increasing the ultimate capacity of the plates. In this paper, the finite element (FE) method has
been employed to study the buckling stress of the perforated plates strengthened with FRP under
uniaxial compression, and several parameters are considered: material’s geometrical and mechanical
properties, boundary conditions, plate aspect ratio, hole sizes, and hole position. Then a method
of calculating the buckling stress is proposed and modified based on the theory of composite plate
and the numerical results. The study shows that, the stiffness modified factor αD, which considers
the orthotropic properties of FRP are a function of the reinforcement index ω and hole size d/b for
Boundary conditions (BCs) of 4S and 3S1F. And it is recommended to place the big hole close to the
middle area of the plate in x-axis. It also shows that for a small hole size, there is little effect of the
hole position ey/b on buckling coefficient Ku regardless of the BCs, and that effect becomes more
pronounced as d/b increases, so it is recommended to put the holes near the middle of the plate for
4S and the simple support edge for 3S1F in y-axis.
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1. Introduction

Thin steel plate elements are the main structural components of decks and platforms on ships,
webs and flanges of plate and box girder bridges, platforms of offshore structures, and architecture
structure [1]. Openings are frequently introduced in plates for the purpose of inspection, maintenance,
service, etc. [2]. In such cases, the presence of openings redistributes the membrane stresses in the
plates and reduces their buckling and compression capacity significantly [3–5]. The reduced buckling
strength of the perforated plate may be insufficient to meet the requirements of normal structural
serviceability and safety. In this situation, it is necessary and important to develop a method to improve
the buckling and ultimate strength of perforated steel plates.

Fiber-reinforced polymer (FRP) has large strength to weight ratios, excellent resistance to corrosion
and environmental degradation. It is also very flexible to be formed into any desired shape and easy to
be handled during construction. Therefore, FRP has been widely used in strengthening steel structures.
In recent years, there have been a number of studies on strengthening steel structures, particularly
compressed thin-walled structures. Shaat and Fam [6–9] tested hollow structural steel (HSS) specimens
strengthened with carbon fiber-reinforced polymers (CFRP) to study the influence on local and global
buckling behavior and column strength. The test indicated that the transverse CFRP layers can help
restrain outward directed local buckling of two opposite sides for short columns. Harris [10] employed
the strengthening technique of externally bonding FRP sheets to selected sides of steel T-sections in
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order to improve global and local buckling behavior, and the results show that FRP material provides
“bracing” against the local buckling. Haedir and Zhao [11] tested ten short cold-formed steel circular
hollow section (CHS) columns with externally bonded hoop and longitudinal CFRP, the results show
that the reinforcing hoop fibers provide better restraining force to postpone the steel skin buckling
when the local slenderness ratio is higher, it also shows that the use of a combination of hoop and
longitudinal CFRP in a slender tube can promote the attainment of the yield capacity of the bare tube.
Bambach [12–14] tests a CFRP wrapped square hollow sections (SHS) columns with width-to-thickness
ratio varying from 12.5 to 120. The experimental results show that the axial capacity of the wrapped
SHS is up to twice of that without wrapping the CFRP, due to the restraining on the development
of elastic buckling deflections from the wrapping CFRP. The critical stress is up to four times of that
of the steel section due to this restraining effect. Moreover, a design method is developed whereby
the theoretical elastic critical stress of the composite steel–CFRP sections developed by Pister and
Dong [15] is used to determine the buckling load and the ultimate load.

The previous description shows that openings are frequently introduced in plates and the
application of FRP is an ideal technique for postponing the local buckling and increasing the ultimate
capacity of the steel structure. However, the researches on pasting FRP sheets for improving the
degraded buckling of perforated plates are not investigated in the published literatures. Therefore,
the objective of the present paper is to investigate the material’s geometrical and mechanical properties,
boundary conditions, a plate aspect ratio, hole sizes, and hole position on elastic buckling of perforated
plates strengthened with FRP under uniaxial compression. And a calculation method of buckling
stress is proposed and modified based on the theory of composite plate and the numerical results.

2. Problem Definition

2.1. Basic Information

The problem of elastic buckling of perforated plates strengthened with FRP under uniaxial
compression (Figure 1) is investigated in this study. The lengths of the plate in the longitudinal and
transverse directions are a and b (in this paper, equal to 240 mm), respectively. The thicknesses of
the steel plate and FRP sheet are ts and tf (single layer of FRP sheet’s thickness tf0 = 0.167 mm and
FRP Layers’ number is nf), respectively. The hole has a diameter d, and ex (ey) is the distance along
x-axis (y-axis) from the center of the hole to the left (bottom) edge. The elastic modulus of steel and
FRP is Ef and Es, respectively. The Poisson ratio of FRP and steel is νf (equal to 0.25) and νs (equal to
0.3), respectively.
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Figure 1. Geometry and Boundary conditions (BCs) of the perforated plates strengthened with
fiber-reinforced polymers (FRP).

2.2. Boundary Conditions (BCs) of the Plate

The buckling performances of the plate are significantly affected by the BCs. Rectangle, T and
L sections are the common cross section types used in practical, see in Figure 2. It is noted that
mechanical properties of compressed members are derived from the behaviors of the individual plate
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elements that make up the section [14], so the edges between two individual plates are in a state
between rotatable and fixed constraint, and the edges are free when the edges have no adjacent edges.
The critical case of simply supported edge is selected for conservative calculation for the edges in
a state between rotatable and fixed constraint in this paper. Therefore, the columns with rectangle
section (Figure 2a) can be seen as four plates with all four edges simple support (4S), the columns
with L and T sections (Figure 2b,c) can be seen as two or three plates with three edges simple support
and one edge free (3S1F), and both the BCs of 4S and 3S1F are considered in this paper, as shown in
Figure 1.
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Figure 2. The common cross sections and deformations under compression. (a) Rectangle section;
(b) L section; (c) T section.

2.3. Load Case

In the present study, only longitudinal uniform uniaxial compression in the x direction is
considered, as shown in Figure 1. Other load cases such as biaxial compression and edge shear
loading will be discussed in the authors’ subsequent research papers. The critical stress fcr is defined
by the average stress that is equal to the uniformly applied compressive load divided by the full
cross-sectional area assuming no opening within the plate.

2.4. Parameters Considered in This Study

The object of the present study is to investigate the buckling of the perforated plates strengthened
with FRP under uniaxial compression. The geometric dimensions (such as tf, ts), and the elastic
modulus of FRP Ef, the BCs of 4S and 3S1F, the effect of plate aspect ratio β (i.e., a/b), hole size d/b,
hole position ex/b and ey/b have been considered:

• The parameters of geometrical and mechanical properties such as tf, ts, Ef, Es appear in the
form ω = E f t f /Ests = E f n f t f 0/(Ests). In this equation, Ef = 1.6 × 105 MPa, 2.4 × 105 MPa
and 4.4 × 105 MPa, Es = 2.0 × 105 MPa, nf varies between 0 and 3 with an increment of 1,
tf0 = 0.167 mm, ts = 2 mm, 3 mm and 4 mm.

• The BCs: 4S and 3S1F.
• Plate aspect ratio β: varies between 1 and 4 with increment of 1.
• Hole size d/b: varies between 0 and 0.7 with an increment of 0.1, in some case refines to 0.05.
• Hole position ex/b and ey/b. ex/b varies between 0.05 and 0.5β with an increment of 0.0625. ey/b

varies between 0.5 and 0.9 with an increment of 0.025 for BCs of 4S and between 0.05 and 0.95 with
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an increment of 0.025 for BCs of 3S1F. In all conditions, the distance between hole’s edge and
plate’s edge is no less than 0.05b.

3. The Theory of Composite Plate without Holes

The buckling problem of rectangular plate subjected to uniaxial compression, was first studied by
Timoshenko [16] in 1961 and modified by Gerstle [17] in 1967. Only first order terms in the governing
equations were considered, the critical stress fcr at buckling can be written as

fcr = k
π2

tb2 D (1)

where k is a dimensionless buckling coefficient of the plate. t and b are the thickness and width of the
plate, respectively. D is the flexural rigidity of the plate, and for the steel plate, it can be written as:

D =
Est3

s
12(1− υ2

s )
(2)

3.1. The Transformed Flexural Rigidity Dt

In 1959, Pister [15] proposed a solution for the transformed flexural rigidity Dt of the perfectly
bonded layered plate where each layer is assumed to be isotropic, a plate element with the associated
coordinate system is shown in Figure 3, and the calculation formulas of Dt are in Equations (3)–(6).
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Dt = C− B2
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k
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To a pure steel plate, the flexural rigidity of D0 can be calculated by Equations (4)–(6), and the
rigidity D0 can be expressed as Equation (7), which is the same with Equation (2), so the method
proposed by Pister can also be used to calculate the flexural rigidity of the pure steel plate.

D0 = C0 −
B2

0
A0

=
Est3

s
12(1− υ2

s )
(7)
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Considering that the steel and CFRP are perfectly bonded up to the ultimate load [18] and the
Young’s modulus of the adhesive layers is about 1/10 of those of steel and FRP, the effect of adhesive
layers is not taken into account for conservative design in this paper. Therefore, a plate strengthened
with FRP can be seen as FRP-steel layered plates. Two reinforcement index α, γ are introduced as
given by Equations (8) and (9).

α =
E f

1− υ2
f

/
Es

1− υ2
s

(8)

γ =
t f

ts
(9)

Substitution of Equations (8) and (9) into Equations (4)~(6) and then substitution of Equations (4)~(6)
into (3) leads to Equation (10), where Dt is the flexural rigidity of plate strengthened with FRP. Therefore,
Dt/D0 can be expressed as Equation (10), and shown in Figure 4. Equation (10) can be approximate
simplified as Equation (11) for calculation convenient, and shown in Figure 5.

Dt/D0 = 1 + 3αγ

(
1 +

4
3

γ2 + 2γ− αγ(γ + 1)2

1 + αγ

)
(10)

Dt/D0 =



1 + 3αγ , γ ≤ 0.2

min

(
1 + 3αγ,

(α + 2)(γ + 1)3

3

)
, between

(α + 2)(γ + 1)3

3
, 0.3 ≤ γ ≤ 1

(11)

From the equations, figures and discussion above, the following can be concluded:

• The method proposed by Pister to calculate the transformed flexural rigidity of the perfectly
bonded layered plate is available to calculate the flexural rigidity of the pure steel plate.

• When γ is in a range of 0 to 0.2 and α is in a range of 0.8 to 2.4, Dt/D0 almost had a linearly related
with α and γ. For γ = 0.2, Dt/D0 will increase from 1.48 to 2.44 as α enlarges from 0.8 to 2.4.

• Dt/D0 will have a non-linear increase as γ is enlarged from 0.2 to 0.3.
• When γ is in a range of 0.3 to 1 and α is in a range of 0.8 to 2.4: for a fixed α, Dt/D0 will had a

cubic curvilinear increase as γ is enlarged from 0.3 to 1.0, and for a fixed γ, Dt/D0 will have a
linear change as α enlarges from 0.8 to 2.4. When α = 0.8, Dt/D0 will increase from 2.05 to 7.47 as
γ enlarges from 0.3 to 1, when α = 2.4, Dt/D0 will increase from 3.22 to 11.73 as γ enlarges from
0.3 to 1.
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3.2. The Buckling Coefficient k

The buckling coefficient k is a dimensionless number factor which depends on the type of loading,
BCs, the plate aspect ratio β and the openings; and it has nothing to do with whether pasting FRP or
not. When the plate aspect ratio is a integer, k is equal to 4 and 0.456 + (b/a)2 for plates with BCs of 4S
and 3S1F, respectively [16].

3.3. Comparison with the Experimental Results

In order to verify the theoretical method’s results, a comparison with the authors’ experimental
results on the critical stress of perforated plates strengthened with FRP has been performed. As shown
in Figure 6, a test rig capable of applying uniaxial compression on the plate was fabricated
in the laboratory. And a classic perforated plate strengthened with FRP is shown in Figure 7.
The unidirectional FRP has been used. The plates were constructed as following: Firstly, holes
are drilled in plates if needed, then a single-layer of FRP is installed directly on the steel surface in the
load direction and then another single-layer of FRP is installed in the direction of vertical load. The aim
of this paper is to study the buckling of the plate, and when buckling, no delimitation of FRP has been
found, so in the finite element (FE) models, the delimitation of FRP and the influence of manufacturing
technology is not taken into account, and the FRP are considered an orthotropic material. The values
of the basic geometry and material parameters are in Table 1, and the details of the experiments are in
literature [19]. The elastic buckling loads PcrExp are determined from the experiments by two methods,
and averaged; These two methods are the load–axial displacement curve and the load–transverse
displacement squared method [14,20]. The experimental critical stress fcrExp can be calculated by
PcrExp/(btt), where tt represents the total thickness of the plate. The comparison of experimental and
theoretical results are in Table 2. From this table, it can be found that experimental and theoretical
results are consistent when d/b and γ are equal to 0. It should be noted that the theoretical method
cannot consider the influence of hole, which is a very important parameter to the elastic stability of
perforated plates strengthened with FRP under uniaxial compression; so in calculating fcrEq.10 and
fcrEq.11, k is taken as Ku, which is obtained by the numerical results in the following section. The values
calculated by fcrEq.10 and fcrEq.11 are very closed, it proves the feasibility of Equation (11) in Calculating
Dt. It also can be seen that when β 6= 0, the theoretical results of fcrEq.10 and fcrEq.11 are basically larger
than experimental results fcrExp. The reason is that the theory method cannot consider the orthotropic
properties of FRP, the effect of FRP’s orthotropic properties is more obvious in the following numerical
analysis, especially when pasting a lot of FRP.
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Table 2. The comparison of experimental, theoretical, finite element (FE) models and Calculation method in this paper.

NO. d/b α γ(×10-2) D0 (×105) DtEq.10 (×105) DtEq.11 (×105) PcrExp fcrExp. fcrEq.17 fcrEq.23 fcrFEM αD Ku fcrCal PuExp PuCal

1 0 1.225 0 3.35 3.35 3.35 55.83 89.13 88.08 88.08 87.79 1.000 4.00 88.08 94.02 87.59
2 0.1 1.225 0 3.35 3.35 3.35 53.78 85.85 83.08 * 83.08 * 83.06 1.000 3.77 83.08 90.11 85.41
3 0.3 1.225 0 3.35 3.35 3.35 47.89 76.45 72.95 * 72.95 * 72.93 1.000 3.31 72.95 79.66 80.71
4 0.5 1.225 0 3.35 3.35 3.35 45.12 72.03 71.62 * 71.62 * 71.60 1.000 3.25 71.62 74.44 80.06
5 0 1.225 6.4 3.35 4.18 4.14 64.88 97.34 103.24 102.25 95.66 0.946 4.00 96.76 101.86 97.03
6 0.1 1.225 6.4 3.35 4.18 4.14 61.90 92.87 97.39 * 96.45 * 89.84 0.934 3.77 90.13 96.64 94.13
7 0.3 1.225 6.4 3.35 4.18 4.14 58.28 87.45 85.51 * 84.68 * 76.08 0.910 3.31 77.13 92.72 87.99
8 0.5 1.225 6.4 3.35 4.18 4.14 50.54 75.83 83.95 * 83.15 * 72.44 0.887 3.25 73.77 78.35 86.30

* k is taken as Ku, which is obtained by the numerical results in the following section.
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3.4. The Proposed of Formula Correction

From the above comparison and analysis, we know that the stiffness obtained by theoretical
calculation is too large due to not consider the orthotropic properties of FRP , so a modified factor of
stiffness αD is proposed, we consider αD is a function of ω, β and d/b. It also can be seen from above
analysis that the theory method cannot consider the influence of hole on buckling, so the buckling
coefficient k needs to be modified as Ku which considers the change of d/b, β and the hole position ex

(and ey). Therefore, the critical stress of perforated plates strengthened with FRP at buckling can be
written as Equation (12). The values and change rules of αD and Ku are the focuses of the following
numerical simulation studies.

fcr = Ku
π2

ttb2 (αDDt) = αDKu
π2

ttb2 Dt (12)

4. Finite Element Model and Verification

4.1. Method of Analysis

The buckling problem of the plate is to solve the eigenvalue, the lowest eigenvalue corresponds
to the critical stress while the eigenvector defines the deformed shape at buckling. A general-purpose
finite element program, ABAQUS (Version: 6.11, Dassault Systemes S.A, Concord, MA, USA, 2011),
has been utilized in the investigation to determine the elastic buckling loads of the perforated plates
strengthened with FRP under uniaxial compression.

After performing the eigenvalue analysis, the lowest eigenvalue, λ1, can be expressed as
Equation (13), so (αDKu) can be expressed as Equation (14). It should be noted that αD is equal
to 1 as ω = 0 regardless of other parameters, so we let ω = 0 to study the variation of Ku as d/b, β, ex/b,
ey/b and BCs change. We can change the form of αD into Equation (15) to study the variation of αD,
where both the molecule and the denominator can be calculated by Equation (14) using numerical
simulation results.

λ1 = αDKu
π2

ttb2 Dt (13)

αD(ω, β, d/b, BCs)Ku
(
d/b, β, ex/b, ey/b, BCs

)
= λ1

ttb2

π2Dt
(14)

αD(ω, β, d/b, BCs) =
αD(ω, β, d/b, BCs)Ku

(
d/b, β, ex/b, ey/b, BCs

)
αD(0, β, d/b, BCs)Ku

(
d/b, β, ex/b, ey/b, BCs

) (15)

4.2. Model Description

Four typical perforated plate models with β = 1, 2, 3 and 4 are shown in Figure 8. The plates have
dimensions a and b, and circular hole with diameter d. The plate was discretized into a mesh consisting
of S4R element, each node of the S4R element has six active degrees of freedom (DOF), including three
translational DOFs and three rotational DOFs. The mesh size are dependent on the hole sizes and the
extensive convergence studies in the following section.

The classical elastic-plastic material and lamina material are used to model the steel and FRP,
respectively. The steel-FRP composite section can be easily created by increasing the number of layers
and changing the material properties of each layer.

The BCs of the plates considered in this paper are 4S and 3S1F. For simple support edge, there will
be no lateral edge displacements perpendicular to the plate’s plane but rotations about the axis of each
edge are allowed. And a uniform load of magnitude tt per unit width is applied perpendicular to the
width edges.
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β = 3; (d) case of β = 4.

4.3. Model Verification

A mesh study is conducted to observe the convergence of buckling stress as the mesh size
increases. Take plate with No. 8 in Table 2 for example, the Eigenvalues with respect to element
numbers depended on mesh size, as shown in Figure 9. It can be seen that the curves starts to converge
after an element number of 400, which with the general mesh sizes of b/10 and with mesh sizes in hole
edge of πd/40. In order to reduce computational time, those meshes are adopted in the subsequent
buckling analysis.

In order to verify FE models used in this study, a comparison with the authors’ experimental
results [19] on the critical stress of perforated plates strengthened with FRP has been performed,
and the results are in Table 2. It can be seen that the FE models have a very limited relative absolute
error in fcr, in the consider cases, the errors are 13.0% on maximum, 4.05% on average, and 0.108 on the
coefficient of variation. Therefore, the FE models are very accurate and enough for the studies in the
next section.
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Figure 9. Finite element (FE) models converge using mesh refinement.

5. Discussion of the Results

5.1. Buckling Mode Shapes

Figures 10–13 show the buckling mode shapes of perforated plates strengthened with FRP under
uniaxial compression with different ex/b, β, d/b and BCs. The following are found:

When the hole center is in the middle of the plate, the buckling mode shapes transform from
two half-waves to three half-waves as d/b is enlarged from 0 to 0.7 (seen from Figure 10), a similar
phenomenon occurs in all plates with ex/b = 1 and 2.

• From Figures 10a and 11a, it can be seen that when d/b = 0.1, the buckling mode shapes are very
close to plates without hole; and as d/b is enlarged, the max deformations of the plate are firstly
centered near the hole then gradually transferred between hole and loading edge for 4S (seen
from Figures 10b–d and 11b–d).

• From Figure 12, it can be seen that as β increases, the deformations of the existing part have been
basically unchanged, and the deformations of the adding part are very small.

• From Figure 13, it can be seen that the mode shapes are essentially unchanged as d/b is enlarged
for plates with BCs of 3S1F.
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5.2. The Stiffness Modified Factor αD

Due to the orthotropic properties of FRP, a modified factor of stiffness αD has been proposed.
And a reinforcement index of FRP has been defined as:

ω =
E f t f

Ests
=

n f E f t f 0

Ests
(16)

In order to study the variation of αD, a large number of parametric analysis have been performed
in this section, the parameters include reinforcement index ω, plate aspect ratio β, hole size d/b,
and BCs. The parametric analysis’ results are handled by the above approach in Equations (14) and (15),
and plotted in Figures 14 and 15 for BCs of 4S and 3S1F, respectively.

Figure 14 shows the variation of αD as the reinforcement index ω increases from 0 to 0.8 for
different d/b from 0 to 0.7 and different plate aspect ratios β from 1 to 4 with the BCs of 4S. It can be
seen that the curves in Figure 14 with the same d/b and different β are almost the same and the values
in Figure 14a are slightly smaller. Therefore, αD of a perforated rectangular plate strengthened by FRP
with an integer aspect ratio could be conservatively taken as that of a perforated square plate, so only
plates with β = 1 are analyzed in the following. From Figure 14a, it can be seen that αD decreases
as ω is enlarged and the curves can be coupled by Equation (17), where m, n are the undetermined
second-order and first-order coefficients. For different d/b, m and n are calculated in Table 3, and R2 is
the correlation coefficient.

αD = mω2 + nω + 1 (17)
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Table 3. The relationship d/b with m and n.

d/b 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

m 0.69 0.76 0.92 1.09 1.23 1.34 1.40 1.47
n −0.74 −0.83 −1.04 −1.25 −1.44 −1.59 −1.69 −1.79

R2 0.91 0.92 0.93 0.94 0.94 0.95 0.95 0.95

In Table 3, m and n can be approximate expressed as Equations (18) and (19), so αD with BCs of 4S
can be calculated by Equation (20)

m = 1.2(d/b) + 0.7 (18)

n = −1.6(d/b)− 0.74 (19)

αD = (1.2d/b + 0.7)ω2 − (1.6d/b + 0.74)ω + 1 (20)

For the plates with BCs of 3S in Figure 15, the same method can be used to study the variation in
αD as the reinforcement index ω increases from 0 to 0.8 for different plate aspect ratios β from 1 to 4.
It also can be seen that αD decreases as ω is enlarged. It is noted that αD is independent of d/b when
β = 2, 3 and 4, so αD with BCs of 3S1F can be calculated by Equation (21).

αD =


(0.28d/b + 0.56)ω2 − (0.33d/b + 0.69)ω + 1, β = 1

1.18ω2 − 1.45ω + 1, β = 2
1.42ω2 − 1.73ω + 1, β = 3
1.51ω2 − 1.84ω + 1, β = 4

(21)
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5.3. The Buckling Coefficient Ku

5.3.1. Hole Position Varying Along x-Axis

Figure 16a~d show the change in Ku as hole position parameter ex/b is enlarged with the BCs
of 4S, for different d/b from 0 to 0.7 and different plate aspect ratios β from 1 to 4. It can be seen that
hole position parameter ex/b has a little effect on Ku for d/b = 0.1, especially as the plate aspect ratios β

enlarged. It also can be seen that all the curves are very similar in trends and values with the same
d/b when ex/b is less than 0.5. It means that when β is an integer greater than 1 and ex/b is less than
0.5, the buckling coefficient Ku can be taken as a square plate with the same width b, the same hole
d/b, and the same FRP pasting. It also can be seen from the figures that as ex/b is enlarged from 0 to
0.5, Ku decreases but gradual slow for d/b is 0.1, and first increases and then decrease for d/b is 0.2
and 0.3, and drastically increases for d/b is from 0.4 to 0.7. It means that when d/b is bigger than 0.4
and ex/b is less than 0.5, the buckling coefficient Ku is very unstable, so it should be avoided to place
big hole too close to the loading edge. For ex/b is bigger than 0.5, Ku shows little variation with d/b
and ex/b, except when β = 2 and d/b is bigger than 0.4. Figure 16b shows that for β = 2 and ex/b = 1,
Ku increases from 4.48 to 5.99 as d/b is enlarged from 0.4 to 0.7, this also proves the necessity of placing
the big hole in the middle area of the plate.

Figure 17a~d show the change in Ku as hole position parameter ex/b is enlarged with the BCs
of 3S1F , for different d/b from 0 to 0.7 and different plate aspect ratios β from 1 to 4. In general,
Ku of plates with BCs of 3S1F is very small, and the curves shows that Ku keeps almost constant
irrespective of ex/b when β = 1, 2, and β = 3 (or 4) with d/b less than 0.3. When β = 3 (or 4) and
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d/b ≥ 0.3, Ku increases as the hole moves away from the loading edge towards its center along x-axis.
Take β = 3 and d/b = 0.7 for example, as ex/b is enlarged from 0.375 to 1.5, Ku increases from 0.41 to
0.47. Therefore, it is also recommended to place the big hole close to the middle area of the plate in
x-axis with the BCs of 3S1F when β is bigger than 3.
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severe. The curves with ex/b = 1 in Figure 18e~g are also very similar, and the law of changes are 

similar to curves with ex/b = 0.5 (Figure 18a~d). What’s different is that for curves in Figure 18e~g, 
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5.3.2. Hole Position Varying Along y-Axis

Figure 18 shows the change in Ku as hole position parameter ey/b is enlarged from 0.5 to 0.9 with
the BCs of 4S, for different d/b from 0 to 0.7, different plate aspect ratios β from 1 to 4, and different
ex/b = 0.5, 1.0, 1.5, and 2.0. The center of the hole is halfway between nodal cross lines when ex/b = 0.5
and 1.5, and the center of the hole is at the nodal cross line when ex/b = 1 and 2. It could be noticed
that for a small hole d/b (e.g., d/b = 0.1 and 0.2), there are little effect of the hole location ey/b on Ku,
and the effect becomes more pronounced as hole size d/b increases. When d/b ≥ 0.2 in Figure 18a~d,
it can be seen that the curves are very similar irrespective of β, that is: with the increasing of ey/b,
Ku will decrease dramatically as ey/b is enlarged, especially when d/b ≥ 0.4. Take β = 3, ex/b = 0.5 and
d/b = 0.6 for example, as ey/b is enlarged from 0.5 to 0.65, Ku decreases from 3.28 to 2.20, this decline is
very severe. The curves with ex/b = 1 in Figure 18e~g are also very similar, and the law of changes are
similar to curves with ex/b = 0.5 (Figure 18a~d). What’s different is that for curves in Figure 18e~g,
when ey/b is less than 0.575, Ku is bigger than 4 which is the Ku of plate without a hole. The law of
changes in Figure 18h~j are between figures discussed above.

Figure 19 shows the change in Ku as hole position parameter ey/b is enlarged from 0.05 to 0.95
with the BCs of 3S1F, for different d/b from 0 to 0.7 and different plate aspect ratios β from 1 to 4.
It can be seen that the Ku of plates with BCs of 3S1F is much less than those with BCs of 4S, especially
when β is bigger than 1. The figure also shows that when the hole size d/b is smaller than a specific
value (for β = 1: 0.1; β = 2: 0.1; β = 3: 0.3; β = 4: 0.4 ), there is a little effect of the hole position ey/b on
buckling coefficient Ku and the d/b effect becomes more pronounced as d/b increases.

Over all, for a small hole size, there is little effect of the hole position ey/b on buckling coefficient
Ku regardless of the BCs (4S or 3S1F), and becomes more pronounced as d/b increases. The plate’s
stability improves as the hole places near the middle of the plate for 4S and the simple support edge
for 3S1F in y-axis.
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Figure 19. Ku vs. ey/b for perforated rectangular plate (β = 1, 2, 3, 4) with the BCs of 3S1F. 

5.3.3. Hole Size d/b 

Figure 20 show the change in Ku as d/b is enlarged from 0 to 0.7 with the BCs of 4S. When ex/b is 

1 or 2, the center of opening is in the node point. And when ex/b is 0.5 or 1.5, the center of opening is 

in the middle of the node points. As shown Figure 20, two different behaviors can be seen depending 

on the hole in the node point or in the middle of the node points. When the hole is at the node 

point(ex/b is 1 or 2), it is evident from the figure that Ku show an increasing trend as d/b is enlarged, 

for β = 2, Ku will increase from 4.02 to 5.99 as d/b is enlarged from 0 to 0.7, it is much better than that 

of all other cases. It also can be seen some discontinuities in the curves. Such discontinuities can be 

explained by the buckling mode shapes changing of the plate under compression, take β = 2 and ex/b 

= 1 for example, when d/b increases from 0 to 0.7, the buckling mode has changed from 2 half-waves 

to 3 half-waves (seen from Figure 10). On the other hand, when the hole is in the middle of the node 

points (ex/b is 0.5 or 1.5), Ku of plates with ex/b = 1.5 first decrease slowly and then increase as d/b is 

enlarged, and decreases gradually as d/b is enlarged for plates with ex/b = 0.5. At the same time, we 

found that the Ku of plates with ex/b = 1.5 are always bigger than those of plates with ex/b = 0.5. For a 

plate under uniaxial compression, the nodal cross-lines (the dotted line in the figures) act as 
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5.3.3. Hole Size d/b

Figure 20 show the change in Ku as d/b is enlarged from 0 to 0.7 with the BCs of 4S. When ex/b is
1 or 2, the center of opening is in the node point. And when ex/b is 0.5 or 1.5, the center of opening is in
the middle of the node points. As shown Figure 20, two different behaviors can be seen depending on
the hole in the node point or in the middle of the node points. When the hole is at the node point (ex/b
is 1 or 2), it is evident from the figure that Ku show an increasing trend as d/b is enlarged, for β = 2,
Ku will increase from 4.02 to 5.99 as d/b is enlarged from 0 to 0.7, it is much better than that of all other
cases. It also can be seen some discontinuities in the curves. Such discontinuities can be explained
by the buckling mode shapes changing of the plate under compression, take β = 2 and ex/b = 1 for
example, when d/b increases from 0 to 0.7, the buckling mode has changed from 2 half-waves to 3
half-waves (seen from Figure 10). On the other hand, when the hole is in the middle of the node points
(ex/b is 0.5 or 1.5), Ku of plates with ex/b = 1.5 first decrease slowly and then increase as d/b is enlarged,
and decreases gradually as d/b is enlarged for plates with ex/b = 0.5. At the same time, we found that
the Ku of plates with ex/b = 1.5 are always bigger than those of plates with ex/b = 0.5. For a plate under
uniaxial compression, the nodal cross-lines (the dotted line in the figures) act as imaginary supports
for the plate in the lateral direction and the resistance to buckling is provided by the bending stiffness
of the plate parts between these nodal cross lines, when the center of opening is in the node point,
the bending stiffness will show little reduction, and when the hole is in the middle of the node points,
it will reduce its bending stiffness and then reduce its buckling load and buckling coefficient, and Ku

will further reduce as d/b increases, this can explain the phenomenon of Ku with ex/b = 1 and 2 are
bigger than those of plates with ex/b = 0.5 and 1.5. Therefore, it is recommend to put the hole in the
node point in design.

Figure 21 show the change in Ku as d/b is enlarged from 0 to 0.7 with the BCs of 3S1F. It is
obviously that the buckling coefficient Ku of all the plates decrease as d/b is enlarged, especially for
ex/b = 0.5 and β = 1, Ku decreases from 1.42 to 0.55 as d/b is enlarged from 0 to 0.7. Unlike the BCs of
4S, where the change rules of Ku relies on β and ex/b, Ku decreases rapidly as d/b increases irrespective
of β and ex/b for plates with BCs of 3S1F, This phenomenon also can be explained as the buckling
mode shapes are the same in all cases (seen from Figure 13). Meanwhile, by comparing Figure 21 with
Figure 20, it is clear that Ku of plates with BCs of 3S1F are far less than those of 4S.
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6. An Example for the Usage of the Proposed Method

Example calculation for the ultimate capacity of a perforated plate strengthened with FRP under
uniaxial compression, according to the winter equations in (22)~(24), where ρ is a slenderness reduction
factor, λ is the plate slenderness, fy is the yield stress of the steel, and fcr is the critical stress. fcr can be
calculated using this method of this paper.

ρ =
λ− 0.22

λ2 ≤ 1 (22)

λ =

√
fy

fcr
(23)

Pu = ρ fybtt (24)

The basic parameters of the example (Table 2, No. 7):
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a = b = 240 mm, d/b = 0.1, ex/b = 0.5, ex/b = 0.5, ts = 2.61 mm, tf0 = 0.167 mm, nf = 1, Es = 2.0 × 105

MPa, Ef = 2.6 × 105 MPa, υs = 0.3, υf = 0.25, fy = 287.8 MPa, BCs: 4S.

The critical stress fcrCal:

tt = 2.61 + 0.167 = 2.777 (mm), α =
E f /(1−υ2

f )

Es/(1−υ2
s )

= 1.225, β =
t f
ts

= 0.064 < 0.2,

D0 = C0 − B2
0/A0 = Est3

s /12
(
1− υ2

s
)
= 3.35E5, Dt/D0 = 1 + 3αβ = 1.24, Dt = 4.14E5,

ex/b = 0.5, β = 1, d/b = 0.1 from Figure 20, Ku = 3.77,

ω =
n f E f t f 0

Ests
= 0.0784, from Equation (20), αD = (1.2d/b + 0.7)ω2 − (1.6d/b + 0.74)ω +

1 = 0.947,
fcrCal = αDKu

π2

ttb2 Dt = 90.13 (MPa).

The ultimate capacity PuCal:

fy = 287.8MPa, λ =

√
fy
fcr

= 1.79,

ρ = λ−0.22
λ2 = 0.491 ≤ 1,

PuCal = ρ fybtt = 94.12 (KN).

The experimental values of critical stress fcrExp and ultimate load PuExp are 92.87 MPa and 96.64 KN,
it is obvious that the values of fcrCal and PuCal are very close to fcrExp and PuExp, respectively. Other plates
are also calculated using this method and plotted in Table 2.

7. Conclusions and Recommendations

In order to study the elastic stability and propose a calculation method of perforated plates
strengthened with FRP under uniaxial compression, series of FE models are built and several
parameters are considered in the study: material’s geometrical and mechanical properties, boundary
conditions, plate aspect ratio, hole sizes, and hole position. A calculation method of buckling stress is
proposed and modified based on the theory of composite plate and the numerical results. In addition
to the detailed discussion and conclusions given in the previous section, some general conclusions and
recommendations can be summarized as follows:

• The theory of composite plate proposed by Pister is available to calculate the flexural rigidity
of the pure steel plate and the perfectly bonded layered plate, but it should be modified when
calculating the flexural rigidity of the perfectly bonded layered plate due to not considered the
orthotropic properties of FRP.

• The buckling coefficient k needs to be modified as Ku which considers the change of plate aspect
ratio β, hole sizes d/b and the hole position ex (or ey).

• For BCs of 4S, when ex/b is an integer, the buckling mode shapes change as d/b is enlarged,
which cause some discontinuities in Ku vs. d/b curves (Figure 20). And for BCs of 3S1F,
the buckling mode shapes is unchanged irrespective of d/b.

• For BCs of 4S, as ex/b is enlarged from 0 to 0.5, Ku decreases but gradual slow for d/b is 0.1,
and first increases and then decrease for d/b is 0.2 and 0.3, and drastically increases for d/b is
enlarged from 0.4 to 0.7. It means that when d/b is bigger than 0.4 and ex/b is less than 0.5,
the buckling coefficient Ku is very unstable, so it should be avoided to place big hole too close to
the loading edge in x-axis, especially when d/b is bigger than 0.4.

• For BCs of 3S1F, Ku is very small and stable irrespective of ex/b when β = 1, 2, and β = 3 (or 4) with
d/b less than 0.4. When β = 3 or 4 and d/b is bigger than 0.4, Ku increases as the hole moves away
from the loading edge towards its center along x-axis. Therefore, it is recommended to place the
big hole (d/b ≥ 0.4) close to the middle area of the plate in x-axis, especially when d/b is bigger
than 0.4.
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• For a small hole size, there is little effect of the hole position ey/b on buckling coefficient Ku

regardless of the BCs (4S or 3S1F), and that effect becomes more pronounced as d/b increases.
So it is recommended to put the holes near the middle of the plate for 4S and the simple support
edge for 3S1F in y-axis.

• As shown in Table 2, the buckling stresses and ultimate loads calculated by the proposed method
of this paper combining with the winter equation are very close to the experimental values.
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Glossary/Nomenclature/Abbreviations

a,b the lengths in the longitudinal (transverse) directions
ts the thicknesses of the steel plate
tf the total thicknesses of FRP sheet
nf FRP Layers’ number
tf 0 single layer of FRP sheet’s thickness
d diameter of the hole
ex(y) the distance along x(y)-axis from the center of the hole to the left(bottom) edge
ES,Ef the elastic modulus of steel and FRP
νs,νf the Poisson ratio of steel and FRP
β Plate aspect ratio, equal to b/a
k the buckling coefficient
D0, Dt the flexural rigidity of plate without FRP and strengthened with FRP
fcr the critical stress of the plate
Pcr the critical load of the plate
Pu the ultimate load of the plate
α reinforcement index of FRP, calculated by Equation (8)
γ reinforcement index of FRP, calculated by Equation (9)
ω reinforcement index of FRP, calculated by Equation (16)
Ku the modified buckling coefficient
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