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Abstract: With the development of Microgrids (MG) in distribution networks, how to coordinate
the reconfiguration of distribution networks with the energy sharing of Direct Current (DC)-linked
multi-MG is an unsolved problem. In this paper, a multi-party optimization framework is proposed,
the involving parties include the Distribution Network Operator (DNO), the Multi-MG Coalition
Operator (MCO), and the MG operator. For the DC-linked MGs, the MCO is obligated to coordinate
the energy sharing, a stochastic optimal scheduling model for the MG coalition is formulated,
considering the uncertainties of Photovoltaic (PV), Wind Turbines (WT), and load power. Moreover,
a billing mechanism is designed to distribute the cost of each MG participated in the energy
sharing. For the distribution network, an event triggered dynamic reconfiguration model is proposed.
Based on the scheduling results of MCO, the decisions of switch operations are finally co-decided by
the expected exchanging power of the MGs and the real-time errors caused by uncertainty factors.
Finally, a modified IEEE-33 nodes distribution system are used to test and verify the effectiveness of
the method.
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1. Introduction

With the increasing penetration of renewable energy resources (RES) in distribution networks,
how to utilize the random and volatile power has become a critical part of emerging smart grid
designs [1]. In order to eliminate the negative impact of RES, the microgrid (MG) is considered to be
a possible solution. Generally, the MG can be regarded as an integrated system with distributed energy
resources (DERs) and loads, which can be operated both on grid-tied and isolated mode [2,3]. With the
increasing of MGs in community level, the interconnected multi-MG has shown greater advantages
on lower the operation cost and enhance the reliability [4], by coordinated energy sharing [5,6] and
provision of urgent supply [7].

Until recently, a new type of direct current (DC)-link based on voltage source convertor (VSC) is
proposed. DC-linkage is preferred over existing alternating current (AC)-linkage for the following
two aspects. In isolated mode, DC-linked MGs can operate at different voltages and frequencies,
if necessary, backup active power in an underloaded MG can be transferred to an overloaded MG
to improve the supply reliability of the whole network [7]. Such DC-link can then be turned off
to reduce its operating losses when both MGs do not need additional generation or do not have
extra generating capacities for sharing [8]. In grid-connected mode, DC-link equipped at the end
feeder, which is also named soft open points (SOP), improves the power handling capacity, voltage
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profile of AC distribution feeder and reduces the power loss [9,10]. Furthermore, it can achieve
rapid recovery of non-fault areas in the case of failure, and thus improve the reliability of the whole
network [11]. Therefore, the DC-links can be deployed by the MG’s owners between the adjacent
MGs in community level, and then the energy trading within the multi-MG can be mutually decided
by themselves, without paying network tariffs to the Distribution Network Operator (DNO). In this
regard, the cooperative DC-linked multi-MG would change the power flows of the distribution system,
and then make the reconfiguration decisions of distribution network less efficient, which is generally
operated by DNO to minimize the power losses. Consequently, how to integrate the reconfiguration
model with optimal operations of DC-linked MGs is an essential problem to be addressed.

Many efforts have been devoted to solving the optimal operations of multi-MG, which can be
roughly classified into two types by the operation goals: (1) reduce their operation cost (or increase the
operation profit); (2) improve the system reliability. For the first type, the operation goal is generally set
as minimize the overall operation cost of multi-MG [12–14]. The involving DERs may include diesel
generations, microturbines, Photovoltaic (PV) panels, Wind Turbines (WT), and battery energy storages.
Considering that the participated MGs may have different types of DERs, the operation cost could be
reduced by maximizing the renewable energy sharing. During the operation, centralized or distributed
optimization algorithms can be used, according to the different scenarios [15,16]. The second type
of multi-MG operation can be activated when the utility grid is outage (i.e., power system faults,
unexpected disaster events, etc.). In this scenario, the operation goal could be maximize the load
restore ability for important end users. The operation frameworks can be concluded as the hierarchical
structure (i.e., DNO and MG operators) [17] and horizontal structure (i.e., only MG operators) [18].
In aforementioned studies, if the multi-MG is isolated from the utility grid, they only need to consider
the energy trading between them. Otherwise, if the multi-MG is grid-connected, they still need to
trade the energy with the AC distribution network. However, the conditions are changed with the
introducing of DC-linked MGs in distribution networks: (i) the MG operators use the private DC-links
as the first priority for energy sharing; (ii) they exchange the energy with the distribution network only
when the aggregated energy is surplus or deficient.

Meanwhile, the reconfiguration of distribution network is a traditional operation problem, which
is a process of shifting the state of sectionalizing switches and tie switches to achieve the goal such as
minimizing the network loss [19,20], improving the reliability [21], maximizing the renewable energy
penetration [22,23], and relieving overload in the network [24,25]. In the distribution network with
a number of DC-linked MGs, the traditional reconfiguration framework may not be used, due to the
uncontrolled impact from the private energy trading between MGs. As the MGs are operated by
independent entities, they can actively change the scheduling and trading scheme, and finally lead to
uncontrolled impact on the distribution network. In this regard, the reconfiguration decisions would
be more difficult, which are required to be coordinated with the scheduling of DC-linked MGs.

As several entities are involved in the operation, the optimization problem should be implemented
by multiply parties with different time scales. From the viewpoint of DNO, reconfiguration of
distribution network could be a possible way to reduce the network power losses. However, with the
connection of DC-linked MGs, the reconfiguration results could be seriously influenced by the
dynamical changes of private energy trading and uncertainties of RES. From the viewpoint of MG
owners, as the network tariff can be ignored, it is more economic for the MGs to work as a coalition via
DC-links. In this regard, it is important to achieve the optimal operation and fair cost allocation for the
coalition, which can be seen as a local market in the community level [26,27].

To this end, in order to solve the aforementioned problems, this paper proposes a cooperative
operation method for distribution networks with DC-linked MGs, which has integrated the
reconfiguration problem of distribution network and the optimal scheduling problem of multi-MG
in a unified framework. As the two parts are operated by different parties with hybrid time scales,
this is a new problem which has not been addressed in the literature of smart grid, to the best of our
knowledge. The detailed contributions are listed as follows.
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(1) A multi-party optimization framework is designed, which includes the reconfiguration of the
distribution network and scheduling of the DC-linked MGs.

(2) For the DC-linked MGs, a stochastic optimal scheduling model for the coalition is formulated,
considering the uncertainties of PV, WT, and load power. Moreover, a billing mechanism is
designed to distribute the cost the coalitional operations.

(3) For the distribution network, an event triggered dynamic reconfiguration model is proposed.
The decisions of switch operations are finally co-decided by the expected exchanging power of
the MGs and the real-time errors caused by uncertainty factors.

2. Framework

In the framework, there are three entities involved. First, the DNO, it is responsible to make
the decisions of distribution network reconfigurations, aims to keeping the network power loss
within a low level. Second, the MG operators, they are responsible for controlling their own DERs,
and providing electricity services to the end customers. Third, a new entity, namely as Multi-MG
Coalition Operator (MCO), who is responsible to act as a bridge between DNO and MG operators.

The interactions among DNO, MCO, and MG operators are shown in Figure 1. Briefly, the overall
process can be classified into three different stages: (i) The MCO collects basic information from the
MG operators and price information (i.e., importing and exporting energy prices between DNO and
MGs) from the DNO, and makes optimal scheduling in a rolling horizon manner for all the controllable
DERs in the coalition, considering the uncertainties of PV, wind and load power; (ii) After receiving
the expected exchange power and real-time exchange power between MGs and distribution network,
the DNO decides the reconfiguration scheme using an event triggered dynamic reconfiguration model;
(iii) After each day’s operation, the MCO distributes the operation cost based on the billing mechanism
and metering data.

DNO MCO MGi (i=1, 2, , M)
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Load Data

Electricity 

Cost of MG

Exchanging 

Power  between 

DNO and MGs

Scheduling Results 

in Rolling Horizon

Basic Data

Optimal Scheduling 

Model

 Billing Mechanism 

Model

Random Various

Network 

Structure 

Exchanging Power on DC-

link and Power of DERs

 Billing   Results

Real-time Operation

Figure 1. Schematic diagram of interactions between different parties.
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3. Stochastic Scheduling Model of DC-Linked MGs

3.1. Basic Model

Load, RES and synchronous generator are typically integrated to constitute a MG. Generally,
there are stochastic errors in the day-ahead prediction values of load demand and RES.

3.1.1. Load

Load can be denoted as a form of forecasted value and errors

Pl(t) = Pl(t) + ∆Pl(t) (1)

where Pl(t) is the actual value of load demand at time t, Pl(t) is the predicted value of load demand at
time t, ∆Pl(t) is the prediction error at time t which obeys normal distribution with the mead of 0 and
standard deviation of σl [28].

3.1.2. RES

In the MG, the RES is uncontrolled DERs, which should be consumed as much as possible.
Considering the forecasting errors, the power of PV and WT generations can be denoted as follows:

PPV(t) = PPV(t) + ∆PPV(t) (2)

PWT(t) = PWT(t) + ∆PWT(t) (3)

where PPV(t), PPV(t) and ∆PPV(t) are the actual value, predicted value, and prediction error of PV at
time t, respectively; PWT(t), PWT(t) and ∆PWT(t) are the actual value, predicted value and prediction
error of WT at time t, respectively. Generally, the prediction errors can be assumed that obey normal
distributions with the mead of 0 and standard deviation of σPV and σWT [29].

3.1.3. Synchronous Generator

Synchronous generators are controlled DERs in the MG, i.e., diesel generator, microturbine, etc.
Generally, the operation cost can be defined as:

Cg(t) = aPg(t)2 + bPg(t) + c (4)

where Cg(t) is the operation cost of the gth synchronous generator at time t; Pg(t) is the output power
of synchronous generator at time t; a, b, c are the cost coefficients [30].

3.2. Objective Function

The objective function of scheduling cost of DC-linked multi-MGs is formulated as:

min
T
∑

t=1
Cd(

V
∑

v=1
PPV(t) +

W
∑

w=1
PWT(t)) +

T
∑

t=1

G
∑

g=1
Cg(t)

+
T
∑

t=1

M
∑

m=1
(η1 ·max(Pm(t), 0) + η2 ·min(Pm(t), 0))

(5)

where Cd is the unit generation cost of RES; η1 and η2 are the prices of purchasing electricity from
DNO and selling to DNO, respectively; Pm(t) is the exchanging power between MG and DNO at time
t (positive for purchasing and negative for selling); T is the scheduling time horizon; V, W, G and M
are the numbers of PVs, WTs, synchronous generators and MGs, respectively.
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In order to deal with the uncertainties, the output powers of PV, WT and load demand are
modeled as random variables PPVω(t), PWTω(t) and Plω(t). In stochastic programming, PPVω(t),
PWTω(t) and Plω(t) are denoted using a finite set of scenarios ω ∈ Ω. Each scenario ω consists of
a vector of PV, WT, and load:

Scenario ω =
{

PPVω(t), PWTω(t), Plω(t)
}

t∈T (6)

where PPVω(t), PWTω(t) and Plω(t) are the power values of PV, WT and load in scenario ω at
time t, respectively.

Each scenario ω has a probability of occurrence p(ω), in such a way that the sum of the

probabilities over all scenarios is equal to 1, i.e.,
Ω
∑

ω=1
p(ω) = 1.

Using the stochastic programming, the objective function can be reformulated by adding random
variables and conditional value-at-risk (CVaR):

min Cert + βCVaR (7)

where Cert is the expected cost of scheduling, and the βCVaR is CVaR multiply a risk coefficient β.
Due to the cost of the scheduling is related to the value of β, the system operator can make reasonable
operating scheduling decision according to the risk preference degree.

Cert =
Ω
∑

ω=1
p(ω)

[ T
∑

t=1
Cd(

V
∑

v=1
PPVω(t) +

W
∑

w=1
PWTω(t)) +

T
∑

t=1

G
∑

g=1
Cg(t)

+
T
∑

t=1

M
∑

m=1
(η1 ·max(Pm(t), 0) + η2 ·min(Pm(t)), 0))

] (8)

CVaR = Min
ζ

{
ζ +

1
1− α

Ω

∑
ω=1

(Cert − ζ)p(ω)
}

(9)

where ζ is an auxiliary variable; α is the confidence level.

3.3. Constraints

3.3.1. Power Balance

At any time, the power generation and consumption, as well as the exchanging power with
distributed network in scenario ω should be balanced:

G

∑
g=1

Pg(t)+
V

∑
v=1

PPVω(t)+
W

∑
w=1

PWTω(t)+
M

∑
m=1

Pm(t) =
L

∑
l=1

Plω(t) (10)

3.3.2. Power Constraints of Generators

The output of synchronous generators and RESs have their own feasible range:
PPVmin ≤ PPVω(t) ≤ PPVmax
PWTmin ≤ PWTω(t) ≤ PWTmax
Pg min ≤ Pg(t) ≤ Pg max(1− γ)

(11)

where PPVmin, PPVmax and PWTmin, PWTmax are the highest and lowest output of PV and WT,
respectively; the output of synchronous generator ranges from Pg min to Pg max; γ is the reserve capacity.
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3.3.3. Exchanging Power Constraints

Considering the power line capacity Pm max, the exchanging power between MGs and DNO is
limited by

Pm(t) ≤ Pm max (12)

Considering the capacities of DC-line and converters, the exchanging power on DC-link is
limited by

PT(t) ≤ PTmax (13)

where PTmax is the maximum DC power.

3.3.4. CVaR Constraints

CVaR constraint is used to measure risk of scheduling cost caused by the uncertainties such
as the prediction errors of RESs and load demands. CVaR constraints can be transformed into the
following expression

Cert − ζ ≥ 0 (14)

3.4. Solution

Based on the distribution of random variables, we can generate a vector of random various
including PV, WT and load demand in scenario ω as the input data. Decision variables for
Function (7) include:

{Pg(t), Pm(t), ζ}

As (7) is the nonlinear function with nonlinear constraints, it’s suitable to use Sequential Quadratic
Programming (SQP) [31] to solve the non-linear multivariate optimization problem.

4. Dynamic Reconfiguration of Distribution Network

4.1. Power Loss Model

The reconfiguration of distribution network is a traditional operation problem, which is a process
of shifting the state of sectionalizing switches and tie switches to minimize the power losses.
Power flows in a distribution network are computed by the following equations and the related
topology are shown in the blue dashed box of Figure 2.

Pi(t) = ∑
j∈Ci

[
Pj(t) + rjlj(t)

]
+ Pli(t) (15)

Qi(t) = ∑
j∈Ci

[
Qj(t) + xjlj(t)

]
+ Qli(t) (16)

Uk(t)
2=Ui(t)2+2 [riPi(t) + xiQi(t)] + (ri

2 + xi
2)li (17)

where Pi(t) and Qi(t) are the injection active and reactive power of upstream branch of node i; Ci is
the set of subnode of node i; Pli(t) and Qli(t) are the active power and reactive power of load of node
i, respectively; rj, xj and lj are the unit resistance, unit reactance and length of branch j, respectively.

Thus, the power loss at time t can be expressed as follows

min Ploss(t) =
N

∑
i=1

ri
Pi(t)

2 + Qi(t)
2

Ui(t)
2 (18)

where N is the total number of branches.
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Figure 2. Distribution network with Direct Current (DC)-linked Microgrids (MGs).

4.2. Power Loss Model Considering the DC-Linked MGs

As shown in Figure 2, DC-link placed between two MGs can serve as additional sources of active
and reactive powers. Active power is transferred from an exporting MG to an importing MG to serve
as an extra generator [7]. In order to control the exchanging energy, the voltage regulation method can
be applied to control the active and reactive power of the AC-DC-AC convertor [9]. Therefore, DC-link
within a MG coalition does not have impact on the open loop operation of distribution network,
and the MGs can be equivalent to a PQ node with constant power factor in the power flow calculation.

Thus, the power flow of the distribution network containing DC-linked MGs can be reformulated
as follows.

Pi
′(t) = ∑

j∈Ci

[
Pj(t) + rjlj(t)

]
+ Pli(t)− Pmi(t) (19)

Qi
′(t) = ∑

j∈Ci

[
Qj(t) + xjlj(t)

]
+ Qli(t)−Qmi(t) (20)

U′k(t)
2=U′i(t)

2+2
[
riPi
′(t) + xiQi

′(t)
]
+ (ri

2 + xi
2)li (21)

where Pmi(t) and Qmi(t) is the active and reactive power exchanging between MGs and
DNO, respectively.
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Thus, the power loss at time t is:

Ploss
′(t) =

N

∑
i=1

ri
Pi
′(t)2 + Qi

′(t)2

Ui
′(t)2 (22)

4.3. Event Triggered Dynamic Reconfiguration Model

Aiming at minimizing the power losses of a certain time period in the future, the reconfiguration
problem is to decide the open or close status of every switch, which finally change the topologies of
a distribution network. Thus, the dynamic reconfiguration model can be represented as:

fr(t, Tr, tpt) = min
t+Tr

∑
t=1

(Ploss
′(t) | tpt ∈ TP) (23)

where Tr is time horizon for calculating power losses, tpt ∈ TP is the selected topology of a distribution
network for time period [t, t + Tr], TP is the set of total possible topologies of the distribution network.

Generally, it can be assumed that each branch is equipped with a switch, thus a topology tp can
be further defined as the status of switches in the distribution networks.

tp = {swi}, i = 1, ..., N (24)

where swi is the status of the i-th switch, i.e., 1 for close, 0 for open.
In order to cooperate with the scheduling of the MG coalition, the DNO can make decisions

after receiving the expected exchanging energy Pmi(t). However, due to the forecasting errors,
the errors of expected exchanging energy are also cannot be omitted, even with the utilization of
stochastic programming. Finally, the errors may influence the efficiency of reconfiguration model. Thus,
the power flow of the distribution network containing DC-linked MGs can be updated as follows.

Pi
′′(t) = ∑

j∈Ci

[
Pj(t) + rjlj(t)

]
+ Pli(t)− (Pmi(t) + ∆Pmi(t)) (25)

Qi
′′(t) = ∑

j∈Ci

[
Qj(t) + xjlj(t)

]
+ Qli(t)− (Qmi(t) + ∆Qmi(t)) (26)

U′′k (t)
2=U′′i (t)

2+2
[
riPi
′′(t) + xiQi

′′(t)
]
+ (ri

2 + xi
2)li (27)

where ∆Pmi(t) and ∆Qmi(t) is the exchanging power deviation of active and reactive power exchanging
between MGs and DNO, respectively.

As a result, the actual power loss at time t is:

Ploss
′′(t) =

N

∑
i=1

ri
Pi
′′(t)2 + Qi

′′(t)2

Ui
′′(t)2 (28)

Furthermore, considering the real-time errors, the dynamic reconfiguration model can be updated
as follows:

f̃r(t, Tr, tpt) = min ((Ploss
′′(t) +

t+Tr

∑
t=t+1

Ploss
′(t)) | tpt ∈ TP) (29)

By solving (29) at time t, tpt ∈ TP is the optimal decided topology of a distribution network for
time period [t, t + Tr]. However, with the time progress, tpt may not be the optimal solution for time
period [t + 1, t + Tr] due to the real-time operation errors at time t + 1. Extremely, if the DNO choose to
update the reconfiguration scheme every time slot, the switches could be operated very frequently to
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change the network topologies, which is also not economical considering the cost of switch operations.
To address this problem, a event triggered model is formulated as follows.

f̃r(t, Tr, tpt)− ((Ploss
′′(t) +

t+Tr

∑
t=t+1

Ploss
′(t)) | tpc ∈ TP) >

T

∑
t=2

CswNsw(t)/η (30)

where tpc is the current topology of distribution network, Csw is the unit cost of changing switches,
and Nsw is the total number of switches changed; η is the unit cost of power loss.

At time t, if tpt = tpc, that means the current topology is already the optimal solution, which don’t
need to make any change; otherwise, if tpt 6= tpc, the current topology is not the optimal solution,
the DNO should compare the benefit with the cost caused by switch operations, as expressed in (30).
Thus, the DNO can finally achieve a trade-off between optimal solutions and complicated switch
operations.

4.4. Constraints

4.4.1. Voltage Constraints

The inequality constraint on voltage of each node is

Uimin ≤ Ui ≤ Uimax (31)

where Uimin, Uimax is the upper limit and lower limit of node voltage.

4.4.2. Branch Power Limit

The power limit of branch can be described as

Sjb ≤ Sjbmax (32)

where Sjbmax is the maximum power of branch j when the distribution network operates normally.

4.4.3. Network Structure Constraints

According to the operation requirements of media voltage distribution networks, the topology
must be open loop. In the reconfiguration, this requirement should be guaranteed, which is described
as follows.

tpt = {swi} = openloop (33)

4.5. Solution Algorithm

The dynamic reconfiguration of distribution network is a complex non-convex, mixed-integer
programming and typical non-linear problem, which appropriately involves the use of the evolutionary
algorithms such as genetic algorithm (GA). Figure 3 shows the flowchart of reconfiguration model.
To preserve the radial structure of the network, each loop can only have one switch open at a time. Thus,
a gene in the chromosome represents the ID of opened switch in a loop. Based on the total number
of loops in the network, the decimal coding is used to represent the chromosome by sequencing the
opened switches of all the loops [30].
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5. Billing Mechanism

Multi-MG combines as a cooperative coalition via DC-link to make a deal with DNO in order
to minimize the scheduling cost. After everyday’s operation, the coalition needs a suitable and fair
mechanism to distribute the total operation cost. Generally, each MG has its own DERs and loads,
and the unit energy costs of its DERs are different. Basically, the principle is that each MG provides
the own customers with the low cost DERs. That is, we should sort the DERs from the low cost to
the high cost. Let Ng DERs in a MG indexed as 1, 2, ..., Ng, respectively, and to simplify the problem
explanation, we omit t for the following equations (i.e., C denotes C(t), P denotes P(t) etc.).

Firstly, the cost of DERs in a MG can be denoted as a cost set C:

C = {Ci}, i ∈ [1, Ng] (34)

where Ci is the generation cost of ith DERs.
The output energy of DERs in the MG can be denoted as a energy set P:

P = {Pi}, i ∈ [1, Ng] (35)

where Pi is the output energy of ith DERs.
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After sorting from low to high, the cost of DERs are updated as follows:

C = {Cj}, j ∈ [1, Ng] (36)

And the corresponding energy set can be updated as well:

P = {Pj}, j ∈ [1, Ng] (37)

Moreover, the cost trading between two MGs can be expressed as:

Cpay = Csel f −
Ng

∑
j=1

Cj (38)

where Csel f is the cost of power consumed by MG’s own load.
According to the principle that the low cost DERs should meet the load demand of local customers

in each MG, Csel f can be defined as a piecewise function:

Csel f =



C1(Pl), Pl ∈ [0, P1]

C1 + C2(Pl − P1), Pl ∈ (P1, P2]
...

C1 + C2 + · · ·+ Cj(Pl −
Ng−1

∑
j=1

Pj), Pl ∈ (PNg−1, PNg ]

(39)

Take 2 MGs named MG1 and MG2 as an example, the cost function of MG1 can be seen in
Figure 4. It is assumed that there are three types of DERs within MG1. The unit energy costs of its
DERs combined as a cost set named C = {C1, C2, C3}, the corresponding power set is P = {P1, P2, P3}.
After sorting from low to high, the cost and power set of DERs are updated as follows: C = {C1, C2, C3},
P = {P1, P2, P3}. P1 is the power generated by PV and WT, and P2 is the power generated by
microturbine, and the MG exchanges power of P3 with DNO.Therefore, the cost which MG1 ought to
pay MG2 can be expressed as follows:

Cpay = Csel f −
3

∑
j=1

Cj (40)

C1 = CdP1 (41)

C2 = a(P2)2 + bP2 + c (42)

C3 = η1 ·max(P3, 0) + η2 ·min(P3, 0) (43)

As can be seen from Figure 4, Csel f can be denoted by

Csel f = CdP1 + a(Pl − P2)2 + b(Pl − P2) + c (44)
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Power (kW)

Cost (CNY)

P1
0

C1

Cself

Figure 4. Example of operation cost of distributed energy resources (DERs) in an MG.

6. Case Study

The IEEE 33-bus test system [32] is used to validate the performance of the proposed method
(as shown in Figure 5). The test system is composed of 32 branch lines and 5 tie lines, and each line
has a switch as well. The system voltage is 12.66 kV, the maximum capacity is 10 MVA, and the
maximum load is 5084.26+ j2547.32 kVA. In order to fit the testing of the proposed method, three MGs,
named as MG1, MG2 and MG3, are respectively connected to node 15, 31 and 28, which are tied by two
separated DC-links. In the three MGs, the DERs include microturbines, PVs and WTs, which provide
electricity services for residential, industrial and commercial users.

The capacity of DERs are shown in Table 1 and the power limit on DC-link converters are set
as 200 kVA. The parameters of the GA are: ρm = 0.001, ρc = 0.6, generation = 20, population = 50.
As shown in Figure 6, 24 h of actual data of PV, WT and load in a day are collected to test the method.
For the sake of tractability, the original scenario set is adequately trimmed down to 5 scenarios via
scenario-reduction techniques [33].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21

22 23 24

25 26 27 28 29 30 31 32

MG1

MG3 MG2DC-link

Figure 5. IEEE 33-node test system containing multi-microgrid connected via DC-link.
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Table 1. Capacity of distributed energy resources (DERs) in each Microgrids (MG).

Microgrid Connected Node Load (kW) Microturbine (kW) PV (kW) WT (kW)

MG1 15 60 — 0–60 —
MG2 31 210 100 0–60 0–60
MG3 28 120 100 0–70 —
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(a) Output power of DERs in MG1.
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(b) Output power of DERs in MG2.
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(c) Output power of DERs in MG3.

Figure 6. Results of stochastic scheduling of 3 MGs.

6.1. Results of Stochastic Scheduling

Results of a stochastic scheduling of 3 MGs are shown in Figure 6. Within the coalition, each MG
has an equivalent position regardless of its own load demand and DERs’ output. The exporting and
importing power are exchanged via DC-links.

In Figure 6, the scheduling results can be divided into three time periods. Firstly, in the early
morning, the RES is insufficient, the MCO has to purchase electricity from the DNO at a higher price
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and maximize the output of microturbines to meet its load demand. There is an industrial shock load
in MG2 which causes the fluctuating electricity purchasing from the DNO from 2:00 to 10:00. Secondly,
from 11:00 to 19:00, with the increasing solar and wind energy, the MCO sells its extra electricity
to DNO and even turns off the microturbines to minimize the operation cost. Finally, from 20:00
to 24:00, the amount of purchasing electricity from the DNO has been gradually increased, and the
microturbines have been operated at the rated power, due to the reduction of RES and increased
load demand.

Exchanging powers via different DC-links are shown in Figure 7. PT(2-1) and PT(3-2) are
respectively denoted the exchanging power between MG2 and MG1 (positive means energy
transmitted from MG2 to MG1) and exchanging power between MG3 and MG2 (positive means
energy transmitted from MG3 to MG2). In Figure 7, the results show that the DC-links have acted
as efficient bridges for the inner energy sharing between the MGs. In the first two hours, energy
is transferred from MG2 to MG1 due to the heavy load in MG1. Furthermore, from 3:00 to 10:00,
both MG1 and MG3 have transferred energy to MG2 to satisfy the fluctuating heavy load. After that,
with surplus solar and wind energy and light load in MG2, the power flow directions of DC-links
have been changed at 10:00 and 15:00 to meet the growing load demand in MG1 and MG3. Finally,
after 21:00, the growing load demand in MG2 results in decreasing the exchanging power transferred
from MG2.

2 4 6 8 10 12 14 16 18 20 22 24
-150

-100

-50

0

50

100

150
PT (2-1)

PT (3-2)

P
o
w

er
 (k

W
)

Time (h)

Figure 7. Exchanging power on DC-links.

In order to test the effectiveness by using the stochastic programming, the scheduling costs
under stochastic and deterministic programming are shown in Table 2. The scheduling cost reduction
reaches to 11.82% by using stochastic programming, as taken the uncertainties of RES and loads
into consideration.

Table 2. Mean scheduling cost using stochastic and deterministic programming.

Deterministic Programming (CNY/h) Stochastic Programming (CNY/h) Reduction Rate (%)

220.60 194.53 11.82

Furthermore, the added value of co-operation between different MGs should be analyzed.
From the viewpoint of MG owners, the network tariff can be ignored and the energy purchased
from the adjacent MGs could be cheaper than the one from the distribution network, thus it is more
economic for the MGs to work as a coalition via DC-links. The comparison between the separated
mode and co-operation mode of MGs is shown in Table 3. In the separated mode, we assume that the
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DC-links are opened, and each MG trades energy with the distribution network directly when there
is plenty or lack of renewable energy. The results show that the scheduling cost of separated MGs is
6.45% higher than the co-operated MGs.

Table 3. Comparison of mean scheduling cost between separated mode and co-operated mode.

Separated Mode (CNY/h) Co-Operated Mode (CNY/h) Reduction Rate (%)

207.95 194.53 6.45

6.2. Results of Billing Mechanism

After a day’s operation, the MCO should redistribute the cost of each MG according to
the exchanged energy via DC-links. The results of billing mechanism are shown in Figure 8,
where trading(1-2) represents the cost transacted from MG1 to MG2, and trading(3-2) represents
6205640the cost transacted from MG3 to MG2. In the first two hours, MG1 has to buy energy from
MG2 to meet the heavy load demand at a higher price. From 3:00 to 9:00, the fluctuating heavy load
demand in MG2 leads to a high cost paid to both MG1 and MG3. From 10:00 to 18:00, there is plenty of
solar and wind energy and light load in MG2, thus MG1 and MG3 can purchase electricity from MG2
to meet their growing load demands. After 21:00, although the exchanged powers are sharply reduced,
the transacted cost still maintain on a high level due to higher generation cost in this time period.
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Figure 8. Results of cost transactions between MGs.

6.3. Results of Event Triggered Dynamic Reconfiguration

The results of event triggered dynamic reconfiguration are shown in Table 4. We can see that
the states of switches are changed two times and the reconfiguration actions are carried out at 1:00
and 21:00.

Table 4. Results of event triggered reconfiguration scheme.

Time Period Switched Opend

1:00–20:00 6–7 11–21 10–11 30–31 26–27
21:00–24:00 6–7 8–9 13–14 30–31 24–28

In order to test the effectiveness of the event trigger, two scenarios are taken as comparison objects:
(i) fixed time period for each 8 h (i.e., 3 times per day), (ii) fixed time period for each 24 h (i.e., 0 time
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per day). As can be seen in Table 5, the results of two indicators (power loss and cost of power loss)
show that the event trigger method has better performance, in which the power loss reductions reach
to 23.75% and 33.80%, as compared to the two scenarios.

Table 5. The mean cost and power loss under normal and dynamic reconfiguration.

Reconfiguration Times Power Loss Cost (CNY) Power Loss (kWh) Power Loss Reduction (%)

0 1173.35 182.9549 –
3 894.68 139.5038 23.75
2 876.94 121.1111 33.80

7. Conclusions

In this paper, we have proposed a multi-party optimal operation method for distribution networks
containing DC-linked MGs, which has integrated the reconfiguration problem of distribution network
and the optimal scheduling problem of multi-MG in a unified framework. Firstly, we have modelled
the energy sharing between MGs as a optimal scheduling in a MG coalition by using the stochastic
programming, and have designed a billing mechanism for the energy sharing. Using the three
interconnected MGs as a testing case, we have shown that the model can efficiently deal with the
uncertainty features of RES and loads, and the billing mechanism can fairly distribute the operation
cost among MGs. Moreover, we have further proposed an event triggered method for dynamic
reconfiguration of distribution networks. Finally, the method has been tested by using a modified
IEEE-33 nodes system with the three interconnected MGs. The results show that event triggered
method has better performance compared to the traditional fixed time period reconfigurations, and the
power loss has reduced for 33.80% maximally. In the future works, the proposed method can be
extended and improved in several aspects. First, the islanding situation of the MGs is a possible
scenario for the operation, it would be interesting to consider the island operation and analyze the
behavior by using this framework. Second, the types of DERs or other components can be involved,
such as energy storage [34], fuel cell [30], heat pump [35], and electric vehicles [36].
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