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Abstract: This paper addresses three related issues concerning the path following control of a
podded propulsion unmanned surface vehicle (USV), namely modeling, guidance and control.
The pod is different from the general propeller-rudder propulsion device, and its essence is a vector
thruster. Therefore, first, through various assumptions and simplification, the three-degree of freedom
(DOFs) planar motion model of the podded propulsion USV is established. Then, the classical
line-of-sight (LOS) guidance strategy is improved by adaptive sideslip angle and a time-varying
lookahead distance. Based on the guidance system, the corresponding controllers for yaw rate and
surge speed are presented, which are combined by backstepping technology, the neural network
minimum parameter learning method and the neural shunting model. Specifically, the neural network
minimum parameter learning method is proposed to compensate the uncertainty of the model and
the immeasurability of external disturbances, and the neural shunting model is employed to cope
with the “explosion of complexity” problem of backstepping. Meanwhile, an auxiliary dynamic
system is introduced to prevent actuator saturation (input saturation). All error signals of the system
are proven to be uniformly ultimately bounded (UUB) by employing Lyapunov stability theory.
Finally, two numerical simulations are given to prove the correctness of the proposed scheme.

Keywords: unmanned surface vehicle; pod; LOS; path following; uncertainty of model; actuator
saturation

1. Introduction

USV is a kind of intelligent offshore platform equipment, which has the characteristics of small
volume and fast speed. It can perform tasks in harsh or dangerous environments, which can reduce
unnecessary casualties [1]. Travel speed is one of the most important factors to describe the performance
level of ships. Many literature works have proven that the propulsion efficiency of the pod is higher
than the ordinary propeller-rudder, which can significantly improve the maneuverability and the
speed of ships [2,3]. The research object of this paper is a podded propulsion USV, and based on the
analysis, the thrust of the pod and the force acting on the ship hull, the three-DOF planar motion
model is established by hypothesis and simplification.

The biggest advantage of USV comes from its ability for independent, autonomous travel.
Meanwhile, path following is the most basic function of autonomous navigation [4]. For now,
the most popular navigation algorithm to implement path following is look-ahead LOS [5,6]. The main
principle of the LOS guidance algorithm is to imitate the behavior of a helmsman, which steers the
vehicle towards a lookahead distance (∆) ahead of the projection point of the vehicle along the path.
The characteristics of the LOS algorithm lie in that it is light in computation and easy to implement.
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However, the traditional LOS guidance algorithm has two shortcomings: in the path-following process,
the sideslip angle will be generated due to the effects of ocean disturbances; the value of ∆ is a constant,
which cannot be adjusted adaptively.

To compensate for the adverse effects of sideslip angle, many efforts have been made by scholars
from all over the world. Generally speaking, the simplest way is to measure the sideslip angle directly.
In [7], the sideslip angle was calculated by measuring the surge and sway velocities. However, not only
are the corresponding measuring instruments (sensors, etc.) expensive, but also the measured data
are noisy. Another way is that an integral term was added into the classic LOS guidance algorithm,
proposing integral LOS (ILOS) to alleviate the effect of sideslip angle [8]. Lekkas et al. proved that
the κ-exponentially stable ILOS guidance algorithm was derived for curved paths [9]. In addition,
Fossen et al. treated the sideslip angle as an unknown constant and identified its value with an
online adaptive approach [10]. Meanwhile, a novel predictor-based LOS (PLOS) guidance law for
the path following of the underactuated marine surface vehicle was proposed [11]. The proposed
navigation strategy not only inherited the simplicity of the traditional LOS, but also ensured the fast
convergence of the marine surface vehicle sideslip angle. For the issue of time-varying ∆, Pavlov
et al. presented a nonlinear model predictive control (MPC) approach, which can adjust its value
online to achieve smaller overshoot and faster convergence speed compared with the constant ∆ [12].
A function to adjust ∆ according to the cross-track error was given in [13]. In [10], only the cross-track
was considered, but in this note, both cross-track error and along-track error are taken into account,
which is more universal. Besides, the fuzzy algorithm is adopted to optimize the value of ∆. Due
to its small size and high speed, USV is more susceptible to external disturbances. Therefore, both
cross-track error and the differential of cross-track error are taken into account when tuning ∆. The
role of the differential of cross-track error is to provide an early judgment, which can enhance the
robustness of the system.

Modeling, guidance and motion control are three essential elements of path following. There is
very much literature investigating the design of the path following controller, and different algorithms
are introduced into it, such as classic and variant PID control [13,14], fuzzy control [15], sliding mode
control [16], backstepping control [17], and so on. According to engineering practice, the ship model
has the characteristics of nonlinearity and uncertainty due to the continuous change of operating
conditions. To deal with the uncertainty of the model problem, neural network (back propagation
(BP) neural network and radial basis function (RBF) neural network) [18,19] or fuzzy logic [20,21],
which have the ability of universal approximation, are usually introduced into the control system.
However, fuzzy logic requires more expert prior knowledge, so the neural network is used more widely
in the field of universal approximation. In [22], a new novel neural network adaptive controller was
developed for cooperative path following of marine vessels. Although the neural network can solve
the problem of the unknown dynamic model, as a multi-layer neural network, it will undoubtedly
increase the amount of computation of the control system. Besides, in practical engineering, there
is a very important factor that needs to be taken into consideration, that is the input saturation of
the actuator. Input saturation is easy to ignore for the path following design since the commanded
control inputs calculated by the path-following control laws are possibly constrained by the maximum
outputs that the actuator can produce. If input saturation is not taken into consideration, it is very
likely to reduce system performance and even lead to instability of the entire path following. In [23],
an auxiliary design system was introduced to analyze the effect of input constraints, and its states were
used for adaptive tracking control design. In the presence of unknown time-varying disturbances and
input saturation, an auxiliary dynamic system, a disturbance observer and a dynamic surface control
(DSC) technique were used to design a robust nonlinear control law for a fully-driven supply ship [24].
In [25], a path-following controller for USV was developed by combining the neural network and DSC
technique subject to input saturation.

Motivated by the above-mentioned observations, the goal of this article is that based on the
establishment of the podded propulsion USV model, the ALOS algorithm with a time-varying ∆ is
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proposed to provide guidance. Besides, a path-following controller, which is proposed by using the
backstepping method, the neural shunting model, the neural network minimum parameter learning
method and the auxiliary dynamic system, is developed for USV without knowing the exact information
of the model structure and the time-varying external disturbances. The main contributions of this note
can be summarized as follows:

(1) Based on force analysis and MMG (Ship Manoeuvring Mathematical Model Group)separation
modeling theory, the podded propulsion USV is proven to be an underactuated system.

(2) An improved LOS algorithm is employed as a navigation strategy for USV, which means that it
not only ensures the expected compensation effect, but also avoids the use of expensive sensor
equipment.

(3) A novel neural shunting model is adopted to deal with the “explosion of complexity”, which can
reduce the computational complexity of the control system.

(4) Model uncertainties and time-varying external disturbances are estimated by the neural network
minimum parameter learning method. Compared with RBF and BP, the neural network minimum
parameter learning method has a smaller amount of computation.

(5) The auxiliary dynamic system is introduced to prevent the input saturation problem, which is
closer to practical engineering.

The rest of the paper is organized as follows. Section 2 describes the process of modeling.
In Section 3, ALOS with a time-varying ∆ guidance algorithm is proposed. In Section 4, the path
following controller is designed. The stability of the closed-loop system is demonstrated in Section 5.
In Section 6, numerical simulations are given to prove the correctness of the strategy proposed in this
note. Finally, Section 7 summarizes the full text.

2. Modeling of USV

2.1. Kinematics Equation

The corresponding relationship between the body-fixed frame and the Earth-fixed inertial frame
is shown in Figure 1; where o − x0y0z0 is the body-fixed frame and O− X0Y0Z0 is the Earth-fixed
inertial frame.

Figure 1. The Earth-fixed inertial and body-fixed frame.
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In practice, USV has six DOFs, including: surge velocity u, sway velocity v, yaw rate r,
heave velocity w, rolling rate p and pitching rate q. Since path following is a planar motion task, only w,
p and q need to be taken into account. (x, y) represents the position of the USV, and δ is the propulsion
angle. The kinematics equation transformation between the body-fixed frame and the Earth-fixed
inertial frame can be expressed as:

ζ̇ = J(ψ)υ (1)

where ψ is the heading angle, ζ = [x, y, ψ]T , υ = [u, v, r]T and J(ψ) is the transition matrix.

J(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2)

Then, we can get the kinematics equation of USV [26].
ẋ = u cos ψ− v sin ψ

ẏ = u sin ψ + v cos ψ

ψ̇ = r
(3)

2.2. Kinetic Equation

To study the planar kinetic equation, the following standards are used: m is vehicle’s mass, xg

is the distance from the barycenter of USV to the body-fixed frame, Iz is the vehicle’s moment of
inertia about the z-axis, Xu, Yv, Yr, Nv and Nr are the linear damping terms, Xu̇, Yv̇, Yṙ, Nv̇ and Nṙ are
the hydrodynamic added mass terms. The planar kinetic equation of three DOFs is established by
Lagrange mechanics theory.

Mυ̇ + C(υ)υ + D(υ)υ = τ + τb (4)

where τ = [τu, τv, τr]T , τu, τv and τr represent the control forces and moment in all directions,
τb = [bu, bv, br]T , bu, bv, br denote the external disturbances caused by wind, wave and currents,
M is the inertia matrix, C(υ) is the Coriolis and centripetal matrix and D(υ) is hydrodynamic damping
matrix.

M =

 m− Xu̇ 0 0
0 m−Yv̇ mxg −Yṙ

0 mxg −Yṙ Iz − Nṙ

 (5)

C(υ) =

 0 0 a13

0 0 a23

a31 a32 0

 (6)

where a13 = −(m − Yv̇)v − (mxg − Yṙ)r, a23 = (m − Xu̇)u, a31 = (m − Yv̇)v + (mxg − Yṙ)r and
a32 = −(m− Xu̇)u.

D(υ) =

 −Xu 0 0
0 −Yv −Yr

0 −Nv −Nr

 (7)
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When the propulsion angle is δ, the vector thrusts in different directions are:
τu = T cos δ

τv = Tsinδ

τr = LTsinδ

(8)

T is the thrust of the thruster, which is a function related to the rotating speed of the propeller. L
is the length from the center of rotation to the fulcrum of the propulsor. The effective attack angle of
the pod αR is a small value with the unit “rad”. Therefore, we can draw sin αR = αR = δ, where the
propulsion angle δ = [−0.5236 rad, 0.5236 rad] [27]. Hence, if δ is a small value and L > 1, then τv ≈ 0.

Assumption 1. For a typical pod, it can be rotated 360◦. However, in order to reduce the difficulty of
manipulating USV, its rotatable angle is often limited to a certain range, such as ±30◦.

Define m11 = m − Xu̇, m22 = m − Yv̇, m23 = mxg − Yṙ, m32 = mxg − Nv̇, m33 = Iz − Nṙ,
d11 = −Xu, d22 = −Yv, d23 = −Yr, d32 = −Nv, d33 = −Nr, Xp = τu and Np = τr. Assuming that USV
is symmetrical and the barycenter of it coincides with the center of the body-fixed frame, that is to say,
xg = 0, Yṙ = 0, Nv̇ = 0, Yr = 0 and Nv = 0, then (4) can be simplified as (9).

u̇ = fu +
1

m11
τu +

1
m11

bu

v̇ = fv +
1

m22
bv

ṙ = fr +
1

m33
τr +

1
m33

br

(9)

where: 
fu = m22

m11
vr− d11

m11
u

fv = −m11
m22

ur− d22
m22

v
fr =

m11−m22
m33

uv− d33
m33

r
(10)

Remark 1. From the modeling principle, many assumptions and simplifications are used; from the actual
navigation, the operating conditions are constantly changing. Therefore, in essence, fu, fv and fr are uncertain
dynamic functions:

Remark 2. The sway v has been proven in [28] to be passive-bounded stable.

Assumption 2. The external disturbances accord with the following assumptions: |bu| ≤ bu max, |bv| ≤ bv max

and |br| ≤ br max, where bu max, bv max and br max are unknown positive constants.

Assumption 3. There exist constraints on the control inputs and velocities as τu min ≤ τu ≤ τu max,
τr min ≤ τr ≤ τr max, u ≤ umax, v ≤ vmax and r ≤ rmax with positive constants τu max, τr max, umax,
vmax, rmax and negative constants τu min, τr min.

3. LOS Guidance Algorithms

The LOS algorithm is used to convert the desired path to reference heading angle. Meanwhile,
in order to be more universal, we assume that the sideslip angle cannot be measured directly, so the
adaptive method is employed to estimate sideslip angle to compensate the difference between heading
angle and course angle. Finally, the fuzzy algorithm is used to adjust the value of lookahead distance
∆(t) > 0 to realize a better control effect.

3.1. Problem Formulation

From Figure 2, (x, y) stands for the coordinates of USV in the Earth-fixed inertial frame. In this
article, we consider the path-following task at the kinematic level and assume that the speed can be
manually or automatically controlled. The resultant speed of the USV is the vector sum of u and v,
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U =
√

u2 + v2 and Umin ≤ U ≤ Umax, Umin > 0. Consider a geometric path (xp(θ), yp(θ)) as the
reference path, where θ is an independent variable. The along-track error and the cross-track error
are computed as the orthogonal distance to the path-tangential reference frame defined by the point
(xp(θ), yp(θ)). Hence: [

xe

ye

]
= RT(γp)

[
x− xp(θ)

y− yp(θ)

]
(11)

R(γp) =

[
cos(γp) − sin(γp)

sin(γp) cos(γp)

]
(12)

where R(γp) ∈ SO(2) is the rotation matrix in yaw.

γp(θ) = arc tan(y′p(θ), x′p(θ)) (13)

where x′p(θ) = ∂xp
/

∂θ and y′p(θ) = ∂yp
/

∂θ. Note that for a straight line, γp = arc tan(yj+1 − yj, xj+1 − xj)

is a constant between the waypoints. The equations of the along- and the cross-track errors for a given
vehicle position (x, y) become:{

xe = (x− xp(θ)) cos(γp) + (y− yp(θ)) sin(γp)

ye = −(x− xp(θ)) sin(γp) + (y− yp(θ)) cos(γp)
(14)

where xe represents the along-tracking error and ye is the cross-tracking error. Differentiating xe and ye

along (14) gives:

ẋe = U cos(ψ− γp + β) + γ̇pye −Up (15)

where β = arc tan(v, u) denotes the sideslip angle and Up is the virtual reference speed to stabilize xe.

ẏe =− (ẋ− ẋp(θ)) sin(γp)− (x− xp(θ)) cos(γp)γ̇p

+ (ẏ− ẏp(θ)) cos(γp)− (y− yp(θ)) sin(γp)γ̇p

=u sin(ψ− γp) + v cos(ψ− γp) + ẋp(θ) sin(γp)− ẏp(θ) cos(γp)︸ ︷︷ ︸
n1

+ γ̇p ((x− xp(θ)) cos(γp) + (y− yp(θ)) sin(γp))︸ ︷︷ ︸
xe

(16)

n1 can be rewritten as n1 = θ̇

√
x′(θ)2 + y′(θ)2 sin(γp + φ); where φ = arctan(−y′(θ), x′(θ)) = −γp.
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Figure 2. LOS guidance geometry for curved paths.

Assumption 4. Assume that β is small, so sin(β) = β and cos(β) = 1. During path following, we can view
β as a constant, so β̇ = 0.

Based on the conclusions above, we can get that:

ẏe = U sin(ψ− γp) + U cos(ψ− γp)β (17)

The goal of the design is to put forward an ALOS guidance strategy, which can make the
underactuated USV follow the desired geometric path (xp(θ), yp(θ)). Meanwhile, the unknown
sideslip angle is compensated in real time, which is inevitable. It is worth mentioning that the ultimate
goal of path following is to achieve xe → 0 and ye → 0 as t→ ∞.

3.2. Adaptive Compensation of the Sideslip Angle

Assumption 5. The heading controller can follow the reference heading angle perfectly, so ψ = ψd. Let β̂

denote the adaptive estimate of β, and β̃ = β− β̂ is the parameter estimation error.

The ALOS can be represented as (18) and (19).

ψd = γp − acr tan(
1
∆

ye + β̂) (18)

˙̂β = κ
Uye√

∆2 + (ye + ∆β̂)
2

(19)

For (15), the velocity Up can be seen as used to stabilize xe.

Up = −U
∆√

∆2 + (ye + ∆β̂)
2
+ γxe (20)

and:

θ̇ =
Up√

x′p(θ)
2 + y′p(θ)

2
(21)
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where 0 < ∆min < ∆ < ∆max is the user-specified lookahead distance. Applying (17) with 0 < Umin ≤
U ≤ Umax renders the origin (xe, ye, β̃) = (0, 0, 0) uniformly globally asymptotically stable (UGAS).

sin(arctan(−ye + ∆β̂

∆
)) = − ye + ∆β̂√

∆2 + (ye + ∆β̂)
2

(22)

cos(arctan(−ye + ∆β̂

∆
)) = − ∆√

∆2 + (ye + ∆β̂)
2

(23)

Then:

ẏe = −U
ye − ∆β̃√

∆2 + (ye + ∆β̂)
2
− γ̇pxe (24)

Similarly,

ẋe = γ̇pye −U
∆√

∆2 + (ye + ∆β̂)
2
−Up (25)

Design the Lyapunov function V1 = 1
2 x2

e +
1
2 y2

e +
1
2 κβ̃2 with κ > 0. From (24) and (25), we can

get that:

V̇1 =xe ẋe + yeẏe + κβ̃ ˙̃β

=− γx2
e −

Uy2
e√

∆2 + (ye + ∆β̂)
2
+ β̃(

U∆ye√
∆2 + (ye + ∆β̂)

2
+

1
κ

˙̃β) (26)

Since ˙̃β = − ˙̂β, we can substitute (19) into (26). This gives:

V̇1 < −γx2
e −

Uy2
e√

∆2 + (ye + ∆β̂)
2
< 0 (27)

The speed of the USV is chosen as:

U = l
√

∆2 + (ye + ∆β̂)
2

(28)

where l > 0; we obtain:

V̇1 ≤ −γx2
e − ly2

e < 0 (29)

Theorem 1. The origin (xe, ye, β̃) = (0, 0, 0) is uniformly globally exponentially stable (UGES) if the adaptive
law of θ is (21), ψd is set as (18) and U is equal to (28).

Proof of Theorem 1. The first Lyapunov function V1 is set as positive definite and radially unbounded,
while its derivative is quadratically negative definite when asserting (18), (21) and (28). Therefore,
by the stability theory of Lyapunov, the origin (xe, ye, β̃) = (0, 0, 0) is UGES. This is actually a theoretical
conclusion. In actual engineering, due to the interference of various factors and the restriction of actual
system, the result of this idea is difficult to achieve.
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3.3. Time-Varying Lookahead Distance

Up to now, adaptive compensation of the sideslip angle is proposed in the case of considering the
value of lookahead distance ∆ as constant. In principle, a smaller ∆ is selected when the USV is far
from the reference path, and this will produce an aggressive behavior to decrease the cross-track error
faster; a larger ∆ is selected when the USV is near the reference path. The fuzzy algorithm is used to
optimize the value of ∆, and it is a dual input and single output system: ye and ẏe are input entries;
the gain = is the output entry. The final output is ∆ = ∆min +=(∆max − ∆min).

The method of fuzzy optimization is shown as follows:

(1) ye and ẏe are normalized to [ −1 1 ]; the data domain of = is [ 0 1 ].
(2) ye is equally divided into NB, NS, Z, PS and PB; ẏe is equally divided into NB, NS, Z, PS and PB;

= is equally divided into VS, S, M, B and VB.
(3) Zadeh and max-min are used for fuzzy reasoning. Meanwhile, the centroid area center of gravity

method is used for defuzzification.

When the fuzzy algorithm is employed to optimize ∆, Equation (27) can be rewritten as:

V̇1 < −γx2
e −

Uy2
e√

∆max
2 + (ye + ∆max β̂)

2
< 0 (30)

The corresponding conclusions can be obtained from (30) that when the strategy of changing ∆ is
introduced into the ALOS algorithm, the region where the guidance system is UGAS is constrained by
∆max. Therefore, the larger ∆max is, the more limited the region where the system is UGAS becomes.

4. Control System Design

|•| is the absolute operator. ‖•‖ denotes the Euclidean norm, and ‖•‖2 = ∑c,d {}2
c,d · (•)c,d denotes

the element of (•) in row c and column d.

4.1. Preliminary Knowledge

4.1.1. Neural Network Minimum Parameter Learning Method

In engineering applications, the RBF neural network is the most commonly-used method to
address the uncertainty of models and parameters, which can represent a given continuous function
f (x) as:

f (x) = WTh(x) + ε ∀x ⊂ Ωx (31)

where Ωx is a compact set in Rm, weight vector W = [w1, w2, ...., wl ]
T ∈ Rl , h(x) =

[h1(x), h2(x), · · · , hl(x)] is a Gaussian functions, ε is the approximation error and |ε| ≤ ε̄, ε̄ > 0,
l > 0 is the node number of the neural network [29].

However, the RBF neural network increases the computational complexity of the controller. In
order to simplify the control law, a novel neural network minimum parameter learning method is
adopted to approximate the unknown function [30]. The essence of the neural network minimum
parameter learning method is as follows: define ϕ = ‖W‖2, and ϕ is a normal number. ϕ̂ is the
estimated value of ϕ, and its estimation error ϕ̃ = ϕ̂− ϕ.

4.1.2. Neural Shunting Model

The neural shunting model was proposed by Grossberg in 1988, which was used to understand
the real-time adaptive response of an individual to the outside environment. With the continuous
progress of technology, the neural shunting model has been applied in many fields, such as motor



Appl. Sci. 2017, 7, 1232 10 of 20

control, robotic arm control, path planning, and so on. The neural shunting model can be represented
as:

β̇r=− Aβr + (B− βr) f (αr)− (D + βr)g(αr) (32)

where αr and βr are the input and output of the model, respectively. A, B and D are corresponding
positive design parameters. In addition, if αr ≥ 0, f (αr) = αr and g(αr) = 0; if αr < 0, f (αr) = 0 and
g(αr) = −αr. In essence, the neural shunting model can be viewed as a filter, and it can make the
control signal flatten.

4.1.3. Input Saturation

In practice, the control force and moment are subject to saturation nonlinearities due to the
physical limitations of the actuator. It can be described as follows:

τi =


τi max, i f τ0i > τi max
τ0i, i f τi min ≤ τ0i ≤ τi max
τi min, i f τ0i < τi min

(33)

where i = u, r, τi max and τi min are the maximum and minimum output that the actuator can provide,
respectively, τ0i is the control command without considering input saturation and τi is the final control
command with the same meaning as (9).

To prevent the saturation problem of implementing agencies, an auxiliary dynamic system is
constructed as follows [23]:

ėi =

 −Keiei −
|ie ·∆τi |+0.5∆τ2

i
|e2

i |
· ei + ∆τi, |ei| ≥ ξi

0, |ei| < ξi

(34)

where Kei is a positive design parameter, ei is an introduced variable, ξi is a small positive parameter
and ie is a variable, which will be introduced in the next subsection. ∆τi = τi − τ0i.

4.2. Yaw Rate Controller

The yaw rate controller and surge speed controller are designed to achieve the control of the
heading angle and speed of USV.

Step 1: Define a heading tracking error ψe as:

ψe = ψ− ψd (35)

From (3) and (9), the time derivative of ψe is given by:

ψ̇e = r− ψ̇d (36)

In order for ψe → 0, αr is selected as the virtual control.

αr = −k1ψe + ψ̇d (37)

where k1 is a positive design parameter. Make αr pass through a neural shunting model, then one
can obtain:

β̇r = −Aβr + (B− βr) f (αr)− (D + βr)g(αr) (38)
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The meaning of each symbol has the same meaning as those defined in (32). Define:

re = r− βr (39)

From (9) and (38), the time derivative of (39) is given by:

ṙe = fr +
1

m33
τr +

1
m33

br + Θr (40)

where Θr = [A + f (αr) + g(αr)]βr − [B f (αr)− Dg(αr)].
The neural network minimum parameter learning method is used to estimate the uncertain

function fr +
1

m33
br. Its approximation error is εr, and |εr| ≤ ε̄r, ε̄r > 0.

The corresponding control law is chosen as:

τ0r = −krere −m33Θr − ψe −
1
2

re ϕ̂rhTh (41)

where kre is a positive design parameter and h is the shorthand for h(x).

ėr =

 −Kerer − |re ·∆τr |+0.5∆τ2
r

|e2
r | · er + ∆τr, |er| ≥ ξr

0, |er| < ξr

(42)

where the meaning of each symbol has the same meaning as those defined in (34). The ultimate control
law for r is selected as:

τr =


τr max, i f τ0r > τr max

τ0r, i f τr min ≤ τ0r ≤ τr max

τr min, i f τ0r < τr min

(43)

where the meaning of each symbol has the same meaning as those defined in (33).
The adaptive law of the estimation function is:

˙̂ϕr =
1
2

γrr2
e hTh− κrγr ϕ̂r (44)

where γr and κr are two positive design parameters.

4.3. Surge Speed Controller

When time t → ∞, the objective of the speed is lim
t→∞

U → Ud. Since U =
√

u2 + v2, we get that

u →
√

U2
d − v2. Hence, we define a desired surge speed as ud →

√
U2

d − v2, which is valid when
assuming Ud ≥ |v| at all times. This assumption is highly realistic since in practice, |v| is just a small
fraction of U. Then, the objective of the surge speed controller becomes lim

t→∞
u→ ud. Define a surge

speed tracking error ue as:

ue = u− ud (45)

Taking the time derivative of (45) along (9) yields:

u̇e = fu +
1

m11
τu +

1
m11

bu − u̇d (46)

Equally, the neural network minimum parameter learning method is used to approximate fu +
1

m11
bu. Its approximation error is εu and |εu| ≤ ε̄u, ε̄u > 0.
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The corresponding control law is chosen as:

τ0u = −kueue + m11u̇d −
1
2

ue ϕ̂uhTh (47)

where kue is a positive design parameter.

ėu =

 −Keueu − |ue ·∆τu |+0.5∆τ2
u

|e2
u| · eu + ∆τu, |eu| ≥ ξu

0, |eu| < ξu

(48)

Then, the ultimate control law for u is selected as:

τu =


τu max, i f τ0u > τu max

τ0u, i f τu min ≤ τ0u ≤ τu max

τu min, i f τ0u < τu min

(49)

where the meaning of each symbol has the same meaning as those defined in (33) and (34).
The adaptive law of the estimation function is:

˙̂ϕu=
1
2

γuu2
e hTh− κuγu ϕ̂u (50)

where γu and κu are two positive design parameters.
In order to facilitate the understanding of the full paper, the block diagram of the podded

propulsion USV path following is shown in Figure 3.

Figure 3. The block diagram of the podded propulsion USV path following.

As shown in Figure 3, the “modeling” of podded propulsion (PP) unmanned surface vehicle is
the basis of the path-following system. The reason why “modeling” and “desired path” are connected
by dotted lines is that the problem of model identification is not considered in this paper. Then, the
“desired path” is converted into target heading by “LOS guidance”. Finally, the path following of the
podded propulsion unmanned surface vehicle is implemented by designing the “yaw rate controller”
and “surge speed controller” respectively.

5. Stability Analysis

5.1. Stability of the Controller

Define:

yr = βr − αr (51)
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The time derivative of (51) is:

ẏr =− ([A + f (αr) + g(αr)]βr − [B f (αr)− Dg(αr)])− Xr

where Xr = ∂αr
∂ψe

ψ̇e +
∂αr
∂ψ̇d

ψ̈d and |Xr| ≤ X̄1, X̄r > 0. Define Ar = A + f (αr) + g(αr); then, one can
obtain:

ẏr = −Arβr + Bαr − Xr (52)

Theorem 2. For System (9), the corresponding control laws (43), (49) and adaptive laws (44), (50) can make
the signals and states of the system uniformly ultimately bounded.

Proof of Theorem 2. Define the second Lyapunov function.

V2 =
1
2
(ψ2

e + m11u2
e + m33r2

e + y2
r +

1
γu

ϕ̃2
u +

1
γr

ϕ̃2
r + e2

u + e2
r ) (53)

The time derivative of (53) is:

V̇2 =ψeψ̇e + m11ueu̇e + m33re ṙe + yr ẏr +
1

γu
ϕ̃u ˙̂ϕu +

1
γr

ϕ̃r ˙̂ϕr + eu ėu + er ėr (54)

Substituting (43) and (49) into (54) yields; then, one can get that:

V̇2 ≤− k1ψ2
e + ψ2

e +
1
4

y2
r − (kue −

1
2
)u2

e − (kre −
1
2
)r2

e

+ ϕ̃u(−
1
2

u2
e hTh +

1
γu

˙̂ϕu) + ϕ̃r(−
1
2

r2
e hTh +

1
γr

˙̂ϕr)

+ yr ẏr + eu ėu + er ėr + ueεu + reεr + ue∆τu + re∆τr + 1 +
1
2

ε̄2
u +

1
2

ε̄2
r (55)

Substituting (44) and (50) into (55), we can obtain:

V̇2 ≤− (k1 − 1)ψ2
e − (kue −

1
2
)u2

e − (kre −
1
2
)r2

e −
1
2

κu(ϕ̃2
u − ϕ2

u)−
1
2

κr(ϕ̃2
r − ϕ2

r ) + yr ẏr

+ eu ėu + er ėr + ue∆τu + re∆τr + 1 +
1
4

y2
r +

1
2

ε̄2
u +

1
2

ε̄2
r (56)

Define B = Ar; then, Arβr − Arαr = Aryr. (57) can be obtained.

V̇2 ≤− (k1 − 1)ψ2
e − (kue −

1
2
)u2

e − (kre −
1
2
)r2

e −
1
2

κu(ϕ̃2
u − ϕ2

u)−
1
2

κr(ϕ̃2
r − ϕ2

r )− Ary2
r

− yrXr + eu ėu + er ėr + ue∆τu + re∆τr + 1 +
1
4

y2
r +

1
2

ε̄2
u +

1
2

ε̄2
r (57)

From Young’s inequality, i.e., ab ≤ 1
2σ a2 + σ

2 b2 with σ > 0 and (a, b) ∈ <2, it follows that

−yrXr ≤ σy2
r

2 + X̄2
r

2σ . Then:

V̇2 ≤− (k1 − 1)ψ2
e − (kue −

1
2
)u2

e − (kre −
1
2
)r2

e −
1
2

κu ϕ̃2
u −

1
2

κr ϕ̃2
r − (Ar −

σ

2
− 1

4
)y2

r + eu ėu

+ er ėr + ue∆τu + re∆τr +
X̄2

r
2σ

+ 1 +
1
2

ε̄2
u +

1
2

ε̄2
r +

1
2

κu ϕ2
u +

1
2

κr ϕ2
r (58)
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It is clear that ei ėi = −Keie2
i −

|ie ·∆τi |+0.5∆τ2
i

|e2
i |

· e2
i + ∆τi · ei and ∆τi · ei ≤ 1

2 ∆τ2
i + 1

2 e2
i , where i = u, r.

It is obvious that the final equation can be reached.

V̇2 ≤− (k1 − 1)ψ2
e − (kue −

1
2
)u2

e − (kre −
1
2
)r2

e −
1
2

κu ϕ̃2
u −

1
2

κr ϕ̃2
r − (Ar −

σ

2
− 1

4
)y2

r − (Keu −
1
2
)e2

u

− (Ker −
1
2
)e2

r +
X̄2

r
2σ

+ 1 +
1
2

ε̄2
u +

1
2

ε̄2
r +

1
2

κu ϕ2
u +

1
2

κr ϕ2
r (59)

Define λ1 = k1 − 1 > 0, λ2 = kue − 1
2 > 0, λ3 = kre − 1

2 > 0, λ4 = 1
2 κu, λ5 = 1

2 κr,

λ6 = Ar − σ
2 −

1
4 > 0, λ7 = Keu − 1

2 > 0, λ8 = Ker − 1
2 > 0, Λ = X̄2

r
2σ + 1 + 1

2 ε̄2
u +

1
2 ε̄2

r +
1
2 κu ϕ2

u +
1
2 κr ϕ2

r .
Then:

V̇2 ≤− λ1ψ2
e − λ2u2

e − λ3r2
e − λ4 ϕ̃2

u − λ5 ϕ̃2
r − λ6y2

r − λ7e2
u − λ8e2

r + Λ (60)

Define λ := min{λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8}; then, it follows from (60) that:

V̇2 ≤ −2λV2 + Λ (61)

Solving Inequality (61) gives:

V2 ≤ (V2(0)−
Λ
2λ

)e−2/t +
Λ
2λ
≤ V2e−2/t +

Λ
2λ

, ∀t > 0 (62)

The above inequality means that V2 is eventually bounded by Λ
2λ . Thus, all the error signals are

UUB. When appropriate control parameters are selected, the quantity Λ
2λ can be made arbitrarily small.

The tracking error can also be very small, and then, a good path-following effect is achieved.

5.2. Stability of the Closed-Loop System

Theorem 3. Consider the closed-loop system consisting of the USV dynamics (3), (9), the guidance
laws (17), (18), the control laws (43), (49), the adaptive update laws (44), (50) and the neural shunting model
(32). There exist appropriate designs κ, γ, k1, kue, kre, γu, κu, ξu, γr, κr, Keu, Ker, ξr, A, B, D, such that all
error signals in the system are UUB.

Proof of Theorem 3. To analyze the stability of closed-loop system, construct the following
Lyapunov function.

V = V1 + V2 (63)

Its time-derivative is computed as:

V̇ ≤− γx2
e − ly2

e − (k1 − 1)ψ2
e − (kue −

1
2
)u2

e − (kre −
1
2
)r2

e −
1
2

κu ϕ̃2
u −

1
2

κr ϕ̃2
r − (Ar −

σ

2
− 1

4
)y2

r

− (Keu −
1
2
)e2

u − (Ker −
1
2
)e2

r + Λ (64)

Thus, it can be seen that all signals in the closed-loop system are UUB.

6. Numerical Simulations

To prove the correctness of the proposed guidance and control strategy, straight-line and curve
path following simulations are carried out. The simulation object is CyberShip II, which is a small,
fully-driven model supply ship [31,32].
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6.1. Straight-Line Path Following

The control parameters are selected as follows: ud = 1m/s, κ = 0.01, γ = 80, ∆min = 4, ∆max = 7,
k1 = 30, kue = 900, kre = 50, γu = 100, κu = 0.1, γr = 100, κr = 0.1, Keu = 1, ξu = 0.1, Ker = 1,
ξr = 0.1, τu max = 600 (N), τu min = −600 (N), τr max = 480 (N/m), τr min = −480(N/m), and the
neural shunting model design parameters are taken as A = B = D = 5. The initial state of USV is
[x(0), y(0), ψ(0), u(0), v(0), r(0)] = [0, 100, 1, 0, 0, 0]. The desired geometrical path is a straight-line
expressed as pd(θ) = [θ, θ]T . In addition, according to [33], more complicated time-dependent
disturbances are considered as:

bu = 1 + 0.1 sin(0.2t) + 0.3cos(0.5t)
bv = 1 + 0.2 sin(0.2t) + 0.1cos(0.4t)
br = 1 + 0.1 sin(0.1t) + 0.1cos(0.2t)

(65)

The simulation results of straight-line path following are plotted in Figure 4.
Figure 4a shows that the USV tracks the reference straight-line path accurately, which would be

impossible without sideslip angle compensation. Meanwhile, it is observed that the USV converges to
the reference path in a short time without obvious overshoot. The reference heading generating by the
guidance system and the actual heading are depicted in Figure 4b. We can see that the actual heading
can perfectly track the reference heading in the early stage of control, and even if there are external
disturbances, the yaw rate controller still has a good control effect. Figure 4c shows the value of ∆,
and the same as the expected theoretical assumption, ∆ decreases as the error decreases. The reason
why its value fluctuates is due to the presence of disturbances. From Figure 4d, it is observed that
the estimated value of sideslip angle has a large range of variation, which eventually converges at
about −1.2 rad. We can fully expect the collapse of the entire control system if the sideslip angle is
not effectively compensated. The control inputs of force τu and moment τr are depicted in Figure 4e,f.
In the early stage of control, they have larger initial values, which are determined by factors such as
error, control gain, the algorithm itself, and so on. If both error and control gain increase, τu and τr

may produce a value greater than the actuator output capability. Therefore, it is necessary to consider
the actuator saturation in the design of the controller. Besides, it is observed that they converge to an
ideal range in a very short time, and certain fluctuations exist to compensate for external disturbances.
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(a) Path following result (b) Course

(c) Lookahead distance (d) Sideslip angle

(e) τu (f) τr

Figure 4. The results of the straight-line path following.

6.2. Curve Path Following

Under the condition that the guidance parameters, the control parameters, the external
disturbances and the initial state of USV remain the same, the curve path following simulation
is carried out. The desired geometrical path is a curve expressed as pd(θ) = [50 sin(θ/250), θ]T .
The simulation results of curve path following are plotted in Figure 5.
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(a) Path following result (b) Course

(c) Lookahead distance (d) Sideslip angle

(e) τu (f) τr

Figure 5. The results of the curve path following.

Figure 5a plots that the task of path following can still be implemented well without any navigation
and control parameters unchanged, which shows that the proposed path following strategy has good
adaptability. The heading tracking effect is shown in Figure 5b, and it still can maintain good control
performance. The change curve of ∆ is similar to that of straight-line path following, which is depicted
in Figure 5c. Figure 5d displays the estimated value of sideslip angle. Similarly, the control inputs τu
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and τr are depicted in Figure 5e,f, respectively. They vary within a reasonable range, and τr has an
input saturation phenomenon.

Thus far, the numerical simulations of straight-line path following and curve path following have
achieved good results, indicating the correctness and effectiveness of the adaptive LOS navigation
strategy and control strategy proposed in this paper.

6.3. Control Parameter Setting Strategy

In this subsection, some setting strategies are presented for the adjustment of the path following
system parameters. The navigation module’s parameters κ, γ, ∆min and ∆max and the control module’s
parameters k1, kue, kre, γu, κu, γr, κr, Keu, ξu, Ker, ξr, A, B and D should be carefully tuned to optimize
control performance. On the whole, there is no fixed principle for the adjustment of all parameters.
However, according to the design principle of the path-tracking strategy and the practical experience
of scholars, we can qualitatively sum up some rules.

(1) For the navigation system, larger values of gain γ and adaptive gain κ mean that the sideslip
angle can converge at a faster rate. Meanwhile, ∆min and ∆max can also affect the convergence
rate. A fast convergence rate means that the sideslip angle can be compensated better, but it
certainly adds to the possibility of oscillation or divergence in the navigation system.

(2) Larger gains kue and kre do not affect the amplitude of generated control signals in (41) and
(47). They are adjusted to get the desired following performance without consideration of the
actuator saturation. Nevertheless, larger kue and kre may cause unnecessary chattering of the
control signals.

(3) Large values of adaptive gains γr and γu in (44) and (50) increase the learning speed of the neural
network minimum parameter learning method. This means that USV can obtain more accurate
following performance. However, too fast a learning speed will affect the stability of the control
system. κr and κu are used to optimize (44) and (50), respectively.

(4) k1, A, B and D can affect the response speed of the control system. Faster system response
enables USV to reach the reference path in a shorter time, but it also raises the possibility of
system instability.

(5) Ker, ξr, Keu and ξu are employed to adjust the auxiliary dynamic system. Only a suitable set of
parameters can be used to achieve the desired results.

In summary, the various models of the path-following system interact with each other. When
adjusting the navigation or control parameters, both the control effect and the stability of the system
need to be taken into consideration. Enough patience and full consideration are needed to solve
this problem.

7. Conclusions

In this note, a complete set of strategies for podded propulsion USV path following is presented.
First, the podded propulsion USV is proven to be an underactuated system. Then, an ALOS navigation
law with a varying ∆ is developed to optimize the traditional guidance scheme. In the third step,
an underactuated path-following controller is proposed subject to the uncertainty of model and
input saturation. The neural network minimum parameter learning method is employed to estimate
the uncertain functions and external disturbances, and the neural shunting model is used to deal
with the “explosion of complexity” issue. The stability of the closed-loop system is proven by
Lyapunov functions. Finally, two numerical simulations demonstrate the correctness of the proposed
path-following strategy.

Although this article takes into account as many practical conditions as possible, there are still
problems that need to be addressed. For example, the dynamic characteristics of the thruster are
not taken into consideration. In other words, the final control inputs are force (τu) and moment (τr),
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not propulsion angle and the rotating speed of the propeller that the pod can provide. The problem
will be solved in future works.
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Abbreviations

The following abbreviations are used in this manuscript:

USV unmanned surface vehicle
DOF degree of freedom
LOS line of sight
UUB uniformly ultimately bounded
UGES uniformly globally exponentially stable
UGAS uniformly globally asymptotically stable
ALOS adaptive line of sight
ILOS integral line of sight
PLOS predictor-based line of sight
DSC dynamic surface control
MPC model predictive control
RBF radial basis function
BP back propagation
PP podded propulsion
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