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Abstract: In recent years, the online secondary path modeling (SPM) method with an auxiliary
noise power scheduling strategy has been crucial for active noise control (ANC) systems and has
also become a popular research topic. However, most scheduling strategies have been designed for
broadband active noise control (BANC), and these ideas may not be directly applied to narrowband
active noise control (NANC) systems due to the difference in structure between BANC and NANC
systems. In this paper, a new online SPM method with auxiliary noise power scheduling is proposed.
Here, the controlled system is adapted using the filtered-x weighted accumulated least mean square
(FXWALMS) algorithm proposed by the authors. Moreover, the auxiliary noise power is scheduled
based on the convergence status of the forgetting factor to accurately track the change in the NANC
system. As a result, the proposed method not only achieves good modeling accuracy and fast
convergence but also considerably increases noise attenuation. Extensive simulations are conducted
to prove the superior performance of the proposed method in various scenarios.

Keywords: narrowband active noise control (NANC); FXLMS algorithm; online secondary path
modeling (SPM); forgetting factor; noise power scheduling

1. Introduction

In the past few years, the research on active noise control (ANC) technology has received
considerable attention as more and more applications have appeared [1–5], and several systems
and algorithms have been proposed by various researchers [6–12]. The ANC technique can be used
to effectively attenuate low-frequency acoustic noises for which the passive noise control (PNC)
techniques [13] are either ineffective or increase the bulk and cost of entire systems. The main theory
behind ANC is based on the superposition principle of acoustic waves, where an antinoise of equal
amplitude and opposite phase is generated and combined with the primary noise by an ANC system,
resulting in the cancellation of both noises. With the widespread use of industrial equipment, various
annoying noise signals are generated by rotating machines, such as fans, compressors, and engines.
These types of noises include multiple narrowband components, exhibit narrowband characteristics,
and usually can be modeled as multiple sinusoidal signals with additive white noise. The narrowband
active noise control (NANC) system can suppress such noise signals more efficiently in various
engineering and environmental applications.

The modeling issue of the secondary path plays crucial role in stabilizing the ANC system.
The model of the secondary path can be obtained using an offline modeling technique before the
operation of ANC system. However, for a practical ANC application, a primary noise signal always exists,
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and the acoustics transfer function of the secondary path may be time-varying. Under these situations,
online secondary path modeling (SPM) is essential for ensuring the stability of the ANC system.

Several contributions to the research on online SPM methods have been made by many researchers.
The use of auxiliary noise power injection with fixed power was originally proposed by Eriksson [14].
The original idea of Eriksson’s method was later modified and extended in [15–19], which used
fixed power auxiliary noise in all operating situations. Nevertheless, the fixed power auxiliary
noise contributes to the residual error, which we want to minimize, and leads to the performance
degradation of the ANC system in the steady state. To remedy this problem, various auxiliary noise
power scheduling strategies have been proposed [20–25]. However, it should be noted that most of the
above mentioned strategies were designed for broadband active noise control (BANC). These strategies
cannot be directly applied to an NANC system because the primary noise signal, which is used in
the strategies and can be obtained for a BANC system, cannot be obtained for an NANC system.
The detailed performance analysis of the NANC system with online SPM using Eriksson’s method
was provided by Xiao [26]. In [27], the method of scaling auxiliary noise by one-delayed residual noise
signal was proposed for NANC system equipped with an online SPM subsystem and the detailed
performance analysis is also given.

In this study, we are mainly concerned with NANC with an online SPM system and propose a new
online SPM method with an auxiliary noise power scheduling strategy. The method we proposed
is a further extension of previous works by the authors of [12,28]. First, a variable forgetting factor
filtered-x weighted accumulated least mean square (FXWALMS) algorithm [28] is introduced into the
control filter in order to improve the convergence and tracking performance of the system. Second,
according to the range of the forgetting factor, the new auxiliary noise power is scheduled based on
the convergence status of the forgetting factor to accurately track the change in the NANC system.
As a result, the proposed method not only achieves better modeling accuracy but also considerably
reduces the residual noise. Extensive simulations are conducted to demonstrate that the proposed
system can improve the overall performance of the system effectively.

The rest of the paper is organized as follows. In Section 2, the existing online SPM method for
NANC systems is briefly introduced. Section 3 presents the proposed method in detail. In Section 4,
simulation results are given to verify the effectiveness of the proposed method under various scenarios.
Finally, conclusions are given in Section 5.

2. Existing Online Secondary Path Modeling (SPM) Method for Narrowband Active Noise
Control (NANC) Systems

2.1. Basic NANC System with Online SPM

By applying Eriksson’s method [14] to an NANC system, Xiao [26] introduced and analyzed
a basic NANC system with online SPM. The block diagram of the NANC system equipped with
auxiliary white noise is shown in Figure 1. The whole system is composed of two subsystems.
One, called the NANC subsystem, synthesizes the secondary source signal, for which a linear combiner
(LC) is used as the controller and an adaptive notch filter is used as a noise canceler to mitigate the
primary noise p(n). The other, called the SPM subsystem, estimates the secondary path, for which
fixed-power auxiliary noise is used as the training signal.
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Figure 1. Narrowband active noise control (NANC) system with online secondary path modeling
(SPM, ith channel).

The primary noise can be represented as

p(n) =
q

∑
i=1
{ai cos ωin + bi sin ωin}+ vp(n) (1)

where q is the number of frequency components of the primary noise, ωi is the frequency of the
ith component, and vp(n) is a zero-mean additive white noise with variance σ2

p . {ai(n), bi(n)} are
the discrete Fourier coefficients (DFC) of the ith frequency components. The reference sine and
cosine waves, which are generated by a synchronization signal from a nonacoustic sensor, such as
a tachometer [29], are defined as

xai (n) = cos (ωin), xbi
(n) = sin (ωin) (2)

where ωi is identified from the synchronization signal. The output of the secondary source signal
generated by the NANC subsystem is expressed as

yp(n) =
q

∑
i=1

yi(n) =
q

∑
i=1
{âi(n)xai (n) + b̂i(n)xbi

(n)} (3)

where {âi(n), b̂i(n)}
q
i=1 are DFC estimations of the secondary source, updated using some adaptive

algorithms. The true secondary path is modeled by a moving average (MA) system

S(z) =
M−1

∑
j=0

sjz−j (4)

where M is the model order and {sj}M−1
j=0 are the model coefficients. The error signal is measured

using an error microphone, given by

e(n) = p(n)− ys(n) = p(n)−
M−1

∑
j=0

sjy(n− j) (5)

where
y(n) = yp(n)− v(n) (6)
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where v(n) is the auxiliary white Gaussian noise with zero mean and variance σ2
v .

In the NANC subsystem, the FXLMS algorithm is used to update the DFC estimation of the
secondary source, given by

âi(n + 1) = âi(n) + µie(n)x̂ai (n) (7)

b̂i(n + 1) = b̂i(n) + µie(n)x̂bi
(n) (8)

where µi is the step size, which directly determines the convergence speed, and x̂ai (n) and x̂bi
(n) are

the input filtered reference signals, which can be calculated using

x̂ai (n) =
M̂−1

∑
j=0

ŝjxai (n− j) = α̂ixai (n) + β̂ixbi
(n) (9)

x̂bi
(n) =

M̂−1

∑
j=0

ŝjxbi
(n− j) = −β̂ixai (n) + α̂ixbi

(n) (10)

α̂i =
M̂−1

∑
j=0

ŝj cos (jωi), β̂i =
M̂−1

∑
j=0

ŝj sin (jωi) (11)

Ŝ(z) =
M̂−1

∑
j=0

ŝjz−j (12)

where Ŝ(z) is the estimate of the secondary path, which is identified and utilized simultaneously by
the SPM subsystem while the whole system is in operation. Parameters M̂ and ŝj are the order and
finite pulse response (FIR) coefficients of the secondary path estimate Ŝ(z), respectively.

In the SPM subsystem, v(n) is the training signal of the subsystem. The coefficient (weight) vector
of the filter Ŝ(z) and the input reference signal vector are defined, respectively, as follows

Ŝ(n) = [ŝ0(n) ŝ1(n) · · · ŝM̂−1(n)]
T (13)

V(n) = [v(n) v(n− 1) · · · v(n− M̂− 1)]T (14)

The output of the filter Ŝ(z) is given by

yv(n) = VT(n)Ŝ(n) =
M̂−1

∑
j=0

ŝj(n)v(n− j) (15)

where ∗ denotes linear convolution. The corresponding error signal ev(n) is calculated using

ev(n) = e(n)− yv(n) = e(n)−
M̂−1

∑
j=0

ŝj(n)v(n− j) (16)

The LMS algorithm used to update the coefficient vector Ŝ(n) of the SPM subsystem given as

Ŝ(n + 1) = Ŝ(n) + µsev(n)V(n) (17)

where µs is the step size, which directly determines the convergence speed of the SPM subsystem.

2.2. NANC System with Online SPM Using Scaled Auxiliary Noise Injection

The fixed power auxiliary noise used in Figure 1 contributes to the residual error and causes
the low convergence speed of the system. To address this problem, a NANC system equipped with
an online SPM subsystem that uses auxiliary noise scaled by one-delayed residual noise signal was
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proposed in [27], the block diagram of which is depicted in Figure 2. We see that this structure is
similar to that of Xiao’s method shown in Figure 1, except for the addition of an auxiliary noise power
scheduling strategy called noise power scheduling.

Figure 2. NANC system with online SPM using scaled auxiliary noise injection (ith channel).

The auxiliary noise power scheduled based on the status of the one-sample-delayed residual
noise signal can be expressed as

vg(n) = |e(n− 1)|v(n) (18)

The signal y(n) can be recalculated as

y(n) = yp(n)− vg(n) = yp(n)− |e(n− 1)|v(n) (19)

Substituting the above equation into Equation (5), one has

e(n) = p(n)− ys(n) = p(n)−
M−1

∑
j=0

sjy(n− j) = p(n)−
M−1

∑
j=0

sjyp(n− j) +
M−1

∑
j=0

sj|e(n− 1− j)|v(n− j) (20)

Similarly, using vg(n) to replace v(n) in Equations (15) and (16), one obtains

yv(n) = VT
g (n)Ŝ(n) =

M̂−1

∑
j=0

ŝj(n)vg(n− j) =
M̂−1

∑
j=0

ŝj(n)|e(n− 1− j)|v(n− j) (21)

ev(n) = e(n)− yv(n) = e(n)−
M̂−1

∑
j=0

ŝj(n)|e(n− 1− j)|v(n− j) (22)

where Vg(n) is defined as

Vg(n) = [|e(n− 1)|v(n) |e(n− 2)|v(n− 1) · · · |e(n− M̂− 2)|v(n− M̂− 1)]T (23)

The FXLMS algorithm for DFC estimation {âi(n), b̂i(n)}
q
i=1 and the LMS algorithm for the

coefficient vector of Ŝ(z) are expressed as

âi(n + 1) = âi(n) + µie(n)x̂ai (n) (24)

b̂i(n + 1) = b̂i(n) + µie(n)x̂bi
(n) (25)
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Ŝ(n + 1) = Ŝ(n) + µsev(n)Vg(n) (26)

From Equations (18), (20), and (22), the auxiliary noise v(n) is scaled by an absolute value of the
one-sample-delayed residual noise signal. Then, it is added with the output of the NANC subsystem
and acts as a secondary source. Meanwhile, it is also entered into the secondary path model. When the
system is close to the steady state, the scaled auxiliary noise |e(n− 1)| becomes very small, significantly
reducing the residual noise signal of the overall system.

3. Proposed Method

Here, a new online SPM method with an auxiliary noise power scheduling strategy for the
NANC system is proposed by extending the method developed by the authors [28] to improve the
performance of the whole system. The block diagram of the proposed method is shown in Figure 3.
We see that the structure of the proposed method is similar to that of Liu’s method shown in Figure 2,
except for some modifications in the following subsystem.

Figure 3. NANC system with online SPM using new auxiliary noise power scheduling strategy
(ith channel).

First, let us consider the NANC subsystem shown in Figure 3. To increase the convergence rate
and traceability, a modified FXWALMS (MFXWALMS) algorithm with the variable forgetting factor
scheme [28] is used in the NANC subsystem. The MFXWALMS algorithm for the DFC estimates of the
secondary source can be rewritten as

âi(n + 1) = âi(n) + µiep(n)x̂ai (n) + λ(n)(âi(n)− âi(n− 1)) (27)

b̂i(n + 1) = b̂i(n) + µiep(n)x̂bi
(n) + λ(n)(b̂i(n)− b̂i(n− 1)) (28)

where λ(n) is the time-varying forgetting factor, the update equation of which can be expressed as

λ(n + 1) = γλ(n) + εe(n)e(n− 1), 0 ≤ λ(n) < 1 (29)

In the above equation, γ and ε are similar to those used in the algorithm of [28]. The upper
limit parameter λmax can be used to avoid λ(n + 1) values that are too large and to make the system
more stable. Here, we substitute the error autocorrelation of the entire system e(n)e(n− 1) for the
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error autocorrelation of the NANC subsystem ep(n)ep(n− 1) to update λ(n), as λ(n) is used in the
two subsystems and the residual error of the entire system can better indicate the status of the whole
system compared to the error signal ep(n) of the NANC subsystem.

For the online SPM subsystem, according to the characteristics of the range of the variable
forgetting factor λ(n), new auxiliary noise power scheduled based on the convergence status of λ(n)
can be expressed as

vg(n) = λ(n− 1)v(n) (30)

Using vg(n) to replace v(n) in Equations (15) and (16), one obtains

yv(n) = VT
g (n)Ŝ(n) =

M̂−1

∑
j=0

ŝj(n)vg(n− j) =
M̂−1

∑
j=0

ŝj(n)λ(n− 1− j)v(n− j) (31)

ev(n) = ep(n) = e(n)− yv(n) = e(n)−
M̂−1

∑
j=0

ŝj(n)λ(n− 1− j)v(n− j) (32)

where Vg(n) is redefined as

Vg(n) = [λ(n− 1)v(n) λ(n− 2)v(n− 1) · · · λ(n− M̂− 2)v(n− M̂− 1)]T (33)

Similarly, the signal y(n) can be recalculated as

y(n) = yp(n)− vg(n) = yp(n)− λ(n− 1)v(n) (34)

Substituting the above equation into Equation (5), one has

e(n) = p(n)− ys(n) = p(n)−
M−1

∑
j=0

sjy(n− j) = p(n)−
M−1

∑
j=0

sjyp(n− j) +
M−1

∑
j=0

sjλ(n− 1− j)v(n− j) (35)

The LMS algorithm for the coefficient vector of Ŝ(z) is given by

Ŝ(n + 1) = Ŝ(n) + µsev(n)Vg(n) (36)

Using error autocorrelation to update λ(n) not only is a good measure of the proximity to the
optimum but also can reduce the effect of the uncorrelated noise. Generally, the error autocorrelation
estimate is a large value in the convergence stages or error bursting, which may be caused by the
changes in the secondary path or primary noise, resulting in a large λ(n). When the adaptation process
approaches the steady state, the value of the error autocorrelation approaches zero, resulting in a small
λ(n). These characteristics of the change in λ(n) are very useful for the two subsystems. For the
NANC subsystem, the large λ(n) improves the convergence speed and tracing capabilities, and the
small λ(n) can ensure a low misadjustment. For the SPM subsystem, the auxiliary noise v(n) is scaled
by λ(n) before it is added to the entire system. In this way, the large λ(n) will yield a large vg(n),
which can improve modeling accuracy. Moreover, the power of the auxiliary noise v(n) scaled by
λ(n − 1) will become very small, which can significantly reduce the e(n) of the system when the
adaptive process approaches the steady state.

4. Simulations and Results

Extensive simulations are performed to demonstrate the effectiveness of the proposed method
under different scenarios. The simulation performance of the proposed method is compared with that
of existing methods, referred to herein as Method 1 [26] and Method 2 [27]. The comparison of the
overall system performances is carried out based on the following performance measures:
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A. Relative modeling error of the secondary path, defined as

4S(n)(dB) = 10 log10
‖ S(n)− Ŝ(n) ‖2

‖ S(n) ‖2 (37)

B. Mean square error (MSE) at the error microphone, E[e2(n)].
C. DFC estimation MSEs of primary noise p(n), which can be represented by

E[ε2
âi
(n)] = E[(âi,opt − âi)

2], E[ε2
b̂i
(n)] = E[(b̂i,opt − b̂i)

2] (38)

where constants âi,opt and b̂i,opt are the optimum values to eliminate all the sinusoid components in the
primary noise, which can be computed using Equation (20) [26].

The secondary path S(z) adopts a truncated impulse response of the acoustic path, which is
an experimental datapoint provided in [29]. S(z) and its estimates Ŝ(z) are FIR filters of the order
M = M̂ = 21. The frequency responses of S(z) are shown in Figure 4. A zero-mean white Gaussian
noise with variance 0.5 is used as a training signal v(n) in the SPM, and a scaled factor k is used to
initialize the power of the v(n) for different methods to obtain better performances in the simulations.
Moreover, a zero-mean white Gaussian noise of variance 0.01 is added to the primary noise as
a measurement noise vp(n). For each of the simulation results, a Monte Carlo average over 100 has
been achieved. The main simulation results are given as follows.
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Figure 4. Frequency response of the acoustic paths S(z). (a) Original acoustic path; (b) Changed
acoustic path at n = 50,000.

4.1. Case 1

In this case, the primary noise includes three frequencies (q = 3): w1 = 0.1π, w2 = 0.2π,
and w3 = 0.3π. The corresponding DFCs are set to a1 = 2.0, b1 = −1.0, a2 = 1.0, b2 = −0.5,
and a3 = 0.5, b3 = 0.1, respectively. S(z) is the fixed secondary path. The frequency responses
of S(z) are shown in Figure 4a. To compare the scaling strategy of |e(n − 1)| and λ(n − 1) more
clearly, Method 3, which uses auxiliary noise scheduled based on λ(n− 1) but employs the same
NANC subsystem as that of Method 2, is included in the comparison. The parameters of the four
methods are set as follows. In Method 1, µi = 0.0002 for all i, µs = 0.004, and the scaled factor
k = 0.2. The corresponding parameters in Method 2 are µi = 0.0002 for all i, µs = 0.02, and k = 0.2.
The parameters used in Method 3 and the proposed method are µi = 0.0002 for all i, µs = 0.02,
γ = 0.9992, ε = 0.0012, λmax = 0.9, and k = 1, and the initial forgetting factor is set as λ(1) = 0.4.
The simulation results for Case 1 are provided in Figures 5–8.
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Figure 5a–f shows comparisons between the DFC estimation MSEs of Method 1, Method 2,
Method 3, and the proposed method. The MSEs E[e2(n)] are displayed in Figure 6a. To identify the
system performance more clearly, each MSE value for the plot was obtained by averaging the square
values of 50 past residue errors, as shown in Figure 6b. The modeling error 4S(z) and the mean
variable forgetting factor of the proposed method are shown in Figures 7 and 8, respectively. To show
the process of adjusting the auxiliary noise carried out in Method 2, the e(n− 1) of Method 2 is shown
in Figure 8.
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Figure 5. Comparison between the discrete Fourier coefficient (DFC) estimation mean square errors
(MSEs) of Method 1, Method 2, and the proposed method for the fixed acoustic path S(z) shown in
Figure 4a. (a) E[ε2

a1
(n)]; (b) E[ε2

a2
(n)]; (c) E[ε2

a3
(n)]; (d) E[ε2

b1
(n)]; (e) E[ε2

b2
(n)]; (f) E[ε2

b3
(n)].

The following remarks can be made based on above simulation results.
(1) Regarding the performance of convergence, the proposed method has a faster rate of

convergence, as a result of using the FXWALMS algorithm, than that of Method 1 and Method 2,
as shown in Figures 5a–f and 6.

(2) Regarding the steady-state performance of the system, the fixed power auxiliary noise used
in Method 1 not only contributes to the residual error but also seriously degrades the steady-state
performance of the DFC estimation MSEs. However, the proposed method and Method 2 have better
steady-state performances than Method 1. Moreover, although Method 2 has a similar steady-state
performance to that of the proposed method based on the DFC estimation MSEs, the proposed method
has a better steady-state performance for the residual error E[e2(n)], as shown in Figures 5a–f and 6.
The reason for the improved noise-reduction performance is that the proposed auxiliary noise power
scheduling strategy results in a smaller auxiliary noise power in the steady state than that of Method 2.
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Figure 6. Comparison between the residual errors of Method 1, Method 2, and the proposed method
for the fixed acoustic path S(z) shown in Figure 4a. (a) Mean square error E[e2(n)]. (b) Mean square
error E[e2(n)] obtained by averaging the square values of 50 past residue errors.
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Figure 7. Comparison between the modeling errors4S(n) of Method 1, Method 2, and the proposed
method for the fixed acoustic path S(z) shown in Figure 4a.
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Figure 8. Mean variable forgetting factor of the proposed method for the fixed acoustic path S(z) shown
in Figure 4a.



Appl. Sci. 2017, 7, 1236 11 of 14

(3) Compared with Method 2, the proposed method can achieve a better modeling accuracy.
Although Method 1 achieves good modeling accuracy, the low convergence and poor steady-state
performance seriously degrade the overall performance of the system, as indicated in Figure 7.

(4) The curves of the mean variable forgetting factor of the proposed method clearly indicate
the status of convergence, as shown in Figure 8. Generally, it is better if the scaling strategy has
the ability to quickly vary the auxiliary noise in the convergence stage; moreover, small auxiliary
noise power is better when the algorithm is approaching the steady state. In addition, large jumps to
adjust the auxiliary noise will adversely affect the convergence performance. λ(n) is a time-varying
forgetting factor, and its value can be computed by weighting the historical autocorrelation errors.
The scaling strategy of |e(n− 1)| uses only the current error information. The fluctuation of |e(n− 1)|
will significantly affect the convergence speed. Since the weighting of the historical autocorrelation
errors plays an important role in reducing the volatility, the convergence process of the system using
λ(n) in the SPM subsystem can be faster and more stable.

4.2. Case 2

In this case, the same primary noise as in Case 1 is adopted in the simulation. The secondary
path S(z) is suddenly changed in the middle of the adaptive process (n = 50,000). The frequency
responses of the original and changed path are shown in Figure 4a,b, respectively. The parameters
of the three methods are set as follows. In Method 1, k = 0.2, µi = 0.0002 for all i, and µs = 0.004.
In Method 2, µi = 0.0002 for all i, µs = 0.02, and k = 0.2. The parameters used in the proposed method
are µi = 0.0002 for all i, µs = 0.02, γ = 0.9988, ε = 0.0023, λmax = 0.9, and the value of the forgetting
factor is initially set as λ(1) = 0.4. Similar comparisons to those conducted for Case 1 are provided
in Figures 9–12. From these figures, we see that the proposed method can not only yield excellent
performances similar to those in Case 1 but also accurately track the change in the secondary path.
Therefore, the proposed method again performs well and outperforms Method 1 and Method 2 in
terms of the variable secondary path.
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Figure 9. Comparison between the DFC estimation MSEs of Method 1, Method 2, and the proposed
method for the variable acoustic path S(z) shown in Figure 4. (a) E[ε2

a1
(n)]; (b) E[ε2

a2
(n)]; (c) E[ε2

a3
(n)];

(d) E[ε2
b1
(n)]; (e) E[ε2

b2
(n)]; (f) E[ε2

b3
(n)].
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Figure 10. Comparison between the residual errors of Method 1, Method 2, and the proposed method
for the variable acoustic path S(z) shown in Figure 4. (a) Mean square error E[e2(n)]. (b) Mean square
error E[e2(n)] obtained by averaging the square values of 50 past residue errors.
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Figure 11. Comparison between the modeling errors4S(n) of Method 1, Method 2, and the proposed
method for the variable acoustic path S(z) shown in Figure 4.
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Figure 12. Mean variable forgetting factor of the proposed method for the variable acoustic path
S(z) shown in Figure 4.
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5. Conclusions

A new online SPM method using an auxiliary noise power scheduling strategy for NANC
systems was proposed and investigated in detail via extensive simulations in this paper. The proposed
method uses a variable forgetting factor FXWALMS algorithm to adapt the control filter of the NANC
subsystem to improve its convergence property and tracking performance. Furthermore, a new
auxiliary noise power scheduling strategy was designed for the online SPM subsystem. According to
the proposed scheduling method, the forgetting factor is used to adjust the auxiliary noise power
for accurately tracking the convergence status of the NANC system. Consequently, the proposed
method not only achieves good modeling accuracy and fast convergence but also improves the
noise-reduction performance of the NANC system in the steady state. The presented simulation
results also demonstrate good stability and dynamic tracking performance regarding a change in the
secondary path.
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