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Abstract: The estimation of heat conduction properties has considerable importance in the
characterization of bamboo with respect to its potential use as an alternative construction material.
Even though traditional methods such as hot plates have successfully measured thermal parameters,
like thermal diffusivity and conductivity in bamboo samples, it is still necessary to transform the
cylindrical bamboo specimen into a piece with special geometry and size. This requirement makes
this method impractical in applications where several bamboo specimens need to be measured in their
original cylindrical shape. This paper presents the estimation of thermo-physical parameters k and
ρcp in Guadua angustifolia kunth (Guadua a.k.) bamboo through nonlinear least square optimization
and infrared thermography. A sensitivity analysis was carried out to determine how the temperature
on the bamboo surface is affected by changes in the convection coefficient h, thermal conductivity k,
and volumetric heat capacity ρcp. In spite of the nonlinearity and high correlation in the parameters
of the inverse heat conduction problem (IHCP), the estimation of such parameters is robust and
consistent with those reported in the literature.

Keywords: inverse heat conduction problem; infrared thermography; thermo-physical properties;
heat transfer coefficient; Guadua a.k.

1. Introduction

Some properties make bamboo an excellent construction material; three of them are its high
specific strength, fast growth, and abundance. Bamboo is stronger and denser than North American
softwoods like pine, fir, and spruce. In the last years, these reasons have promoted an increment in the
use of bamboo for construction in some Latin-American and Asian countries [1].

Guadua angustifolia kunth (Guadua a.k.) is a giant species of bamboo that not only grows
fast, reaching its maximum strength after 3–4 years, but also decreases greenhouse effects, capturing
40 times more CO2 than pine trees. The beneficial mechanical properties mentioned above, along with
its ability to absorb CO2, turns Guadua a.k. into an interesting construction material for sustainable
development and an alternative to concrete and steel [2].

Previous works on bamboo characterization have concentrated their efforts on measuring its
mechanical and thermal properties. In [3], authors have measured mechanical properties such as
flexural properties and compressive strengths in bamboo culms of a commercial species in China
named Moso. Compared to common North American construction woods loaded along the axial
direction, Moso bamboo is approximately as stiff and substantially stronger in both flexure and
compression, but denser. Additionally, the experimental results of mechanical characterization in
glued laminated Guadua a.k. reveals higher strength and comparable stiffness compared to those of
engineered timbers commonly used in the United States [4,5]. The analysis of mechanical properties in
bamboo species Kao Jue and Mao Jue usually used in Hong Kong and Southern China concluded that
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they are good construction materials with excellent mechanical properties against compression and
bending [6].

In addition to the measurement of mechanical properties in bamboo samples, previous bamboo
characterizations have also been oriented toward the estimation of thermal parameters. One approach
evaluated the insulating properties of the PLA (poly lactic acid) bamboo fiber ‘green’ composites by
determination of the thermal conductivity, which was measured using a hot-wire method. The thermal
conductivity of PLA-bamboo fiber ‘green’ composites was significantly influenced by their density [7].
Another approach, instead characterizes thermal conductivity of bamboo fiber reinforced polyester
composite using a guarded heat flow meter method [8]. The results of this study indicated that the
developed composite is an insulating material. In [9], the authors evaluated the thermal conductivity of
bamboo mat board (BMB) based on a steady-state guarded hot-plate method, and studied the effect
of density on thermal conductivity of BMB. In [10], based on a photoacoustic technique in frequency
configuration, Gordillo et al. evaluated the thermophysical parameters of Guadua a.k. specimens
such as thermal effusivity, thermal diffusivity, and thermal conductivity. The main findings show that
thermal diffusivity is lower in the external region close to the bark surface, while this is kept constant
along the stem.

Even though these approaches successfully measure bamboo thermal properties, these parameters
are not uniform in the same sample, and it is necessary to convert the cylindrical bamboo culm into a
sample with specific dimensions and shape. This need for adaption renders these methods impractical
when testing numerous specimens whose geometries are mostly cylindrical. Hence, it is important to
analyze non-invasive methods that permit the estimation of thermal parameters in bamboo samples.

Infrared thermography (IT) is a non-destructive technique that employs the heat emitted by
bodies/objects to rapidly and noninvasively detect defects in specimens or estimate thermophysical
parameters in materials [11,12]. In active IT, it is necessary to apply heat to the specimen inspected
in order to obtain significant temperature differences that prove the presence of anomalies. In wood
inspection, active IT has important applications such as the estimation of wood density [13],
the imaging of moisture content distribution [14–16] and the detection of adhesion defects in laminated
wood composites [17]. In bamboo inspection, active IT studied the glue interface between bamboo
laminate, since it affects bamboo flooring quality. The researchers used active thermography using
frequency modulated wave imaging (FMTW) and discovered glue deficiencies of gaps between
laminates at different frequencies [18]. In spite of these applications of active IT in wood and bamboo
inspection, to the extent of our knowledge, there are no previous works in inversion algorithms for
the estimation of thermal parameters in bamboo cylindrical specimens. Nonetheless, active IT and
inversion algorithms have provided good results in scenarios such as defect parameter estimation in
composites [19], determination of material properties [20], and heat flux estimation [21].

In this work, we conduct the non-destructive estimation of Guadua a.k. thermal parameter k
and ρcp based on the inversion of infrared thermography data. This inversion method inspects the
specimen in its cylindrical shape based on the discretization of a 1D direct heat transfer model in
cylindrical coordinates. In spite of the importance of chemical preservation in Guadua a.k. to decrease
its vulnerability to insect attacks, few studies have analyzed the effects of preservation on the thermal
properties. In this paper, we compare the estimated values of k and ρcp obtained from preserved
and non-preserved specimens to observe how preservation impacts these parameters. The main
contributions of this work are: (i) the estimation of thermal parameters k and ρcp in Guadua a.k.
through nonlinear least squares and infrared thermography; and (ii) the sensitivity analysis of the
direct model with respect to thermal parameters k, ρcp, h, and r. The remainder of this article is
organized as follows: Sections 2 and 3 describe the theoretical thermal model and inverse problem
formulation. Sections 4 and 5 introduce the estimation of thermal parameters in the presence of
additive Gaussian noise and the experimental set-up. Finally, Sections 6 and 7 estimate the thermal
parameters in bamboo specimens and conclude the paper.
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2. Theoretical Model

For this research, we use the Cepa of the Guadua a.k, which corresponds to the lowest part of the
trunk. The wall thickness and outside diameter of Cepa provide appropriate strength for its use in
construction [22]. Cepa geometry can be properly described with cylindrical coordinates. Therefore,
in this section, we present the theoretical model of the radial heat transfer in a cylinder heated from
inside to a temperature Ts(t) and subjected to convective heat loss. This phenomenon is formulated in
Equation (1).

1
r

∂

∂r

(
rk

∂T
∂r

)
= ρcp

∂T
∂t

inar0 < r < R, for t > 0, (1a)

T = Ts(t) atar = r0, for t > 0, (1b)

∂T
∂r

=
h
k
(T − T∞) atar = R, for t > 0, (1c)

T = T(r) for t = 0, ina r0 < r < R, (1d)

where k is the thermal conductivity, ρcp is the volumetric heat capacity, Ts(t) is the temperature at r = r0,
and T(r) is the cylinder initial temperature between the inner and outer walls. The Crank–Nicholson
(CN) method solves numerically the heat transfer model presented in Equation (1). This method,
besides providing unconditional stability, offers second order accuracy O(∆r2, ∆t2) in both space and
time [23,24]. Before finding the CN representation of Equation (1a), let us rewrite it as follows:
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, (2)

where α =
k

ρcp
is the thermal diffusivity and β =

(
1
r
+

1
k

∂k
∂r

)
is an extra coefficient added to the

equation when the thermal conductivity is assumed to vary with respect to r. Even though here we
express Equation (2) in its CN form to have a more general approximation, for the inversion procedure,
we supposed k, ρcp, and h to be constant to avoid ill-conditioning in increasing the dimension of k.

Now, to find the finite difference equation as in the CN method, we substitute the following
second order derivative approximations into Equation (2):
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After plugging Equation (3) into Equation (2), we obtain Equation (4), where λi =
αi∆t
2∆r2 ,

Γi =
βi∆r

2
. βi is expressed as

1
r0 + ∆ri

+
1
ki

∂k
∂r

(ri).
∂k
∂r

(ri) is approximated by using second order

forward and backward differences at the first and last points of the grid, respectively, while it is
approximated by using center differences at the interior points:

λiTl+1
i−1 − (2λi + 1) Tl+1

i + λiTl+1
i+1 = ...

−λi (1− Γi) Tl
i−1 − (2λi − 1) Tl

i − λi (1 + Γi) Tl
i+1.

(4)

Using Equation (4), we can set up a system of n− 2 linear equations that allow us to solve for the
temperatures Ti, i = 2, ..., n− 2 for tl+1. The values Tl

1 and Tl
n allow the incorporation of the boundary

conditions (Equation (1b,c)) into the CN model by modifying Equation (4) for i = 2 and for i = n− 1
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as indicated in Equations (5) and (6), respectively. In these two equations, l.b.c. and r.b.c. stand for a
term added by the incorporation of the left and right boundary conditions, respectively:

− (2λ2 + 1) Tl+1
2 + λ2Tl+1

3 = ...
−λ2 (1− Γ2) Tl

1 − (2λ2 − 1) Tl
2 − λ2 (1 + Γ2) Tl

3 − λ2 Ts(ti)︸ ︷︷ ︸
l.b.c.

, (5)
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T∞︸ ︷︷ ︸

r.b.c.

.

(6)

For the sake of clarity, it is worth mentioning that Equation (3c) was discretized by using second
order backward differences to estimate Tn at the boundary.

Additionally, Figure 1 gives some useful insights into the heat conduction problem described
by Equation (1) in steady-state. Figure 1 shows the temperature at r = R, which is the cylinder face
subjected to convection, against the heat transfer coefficient at time t = 3596.4 s (the average time at
which the inspected bamboo culms reach steady state heat conduction). Since we assume the bamboo
culms are subjected to free convection, in our simulations, the convection heat transfer coefficient
ranges from 0 to 50 W/m2·K. From Figure 1, one observes that the higher k is, the more linear the
relationship between the outer temperature and h becomes. Observing Figure 1, we can roughly
estimate that the thermal conductivity of bamboo samples and the heat transfer coefficient are around
k = 0.3 W/m·K and h = 25 W/m2·K since the temperatures obtained in the experiments oscillate
around 38 ◦C. It is important to note that the heat conduction model was chosen to be more suitable
for the temperature information we can access by the available instruments. Imposed thermal flux
models are unfeasible for this direct problem since we have no available instruments to measure the
input heat flow on the inner wall in our experimental set-up, and this heat flow is time variant and
spatially uneven.
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Figure 1. Steady state surface temperature on the cylinder’s convex side against heat transfer coefficient
for different values of thermal conductivity.
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3. Inverse Problem Formulation

In this paper, we analyze the effects of bamboo preservation on bamboo’s thermo-physical
parameters. Consequently, we focus on the inverse problem of retrieving k, and ρcp of a bamboo
sample heated with an electric resistor. From Equation (2), one can also think of estimating h in which
case we would cope with an inverse problem in which not only are the thermophysical properties of the
material unknown but the boundary conditions as well. This problem, however, is not easily solved
because of strong correlation between parameters and ill-conditioning. In Section 4, we show some
disadvantages of including h in the estimation process.

Given p =
[
k, ρcp

]
as vector of unknown parameters in Equation (1), we intend to estimate

these quantities through nonlinear least-squares regression using the surface temperature evolution

Tcam(R, its) on the cylinder’s convex side measured with an infrared camera, where ts =
1
30

is the

sampling time, i ∈ {0, 1, 2, 3, 4, 5, 6, 7, ..., m}, and Ts(its) is determined as:

1
a0

j=1

∑
j=0

bjTres(ts(i− j)) + a1Ts(ts(i− 1)), (7)

where Tres(its) is the known temperature of a tubular resistor placed at r = 0 < r0. Coefficients
(aj, bj) represent the heat losses in the experimental platform that cannot be included explicitly in the
heat diffusion equation. Section 5 explains the estimation of these parameters. Figure 2 shows the
methodology used here to estimate these parameters [25]. The datasets are available to the interested
readers upon request to the authors.

Non-linear Least Squares

(Levenberg-Maquardt, LM,

algorithm)

Cylindrical 1-D Heat 

Diffusion Equation

As shown in Eq. (1)

Figure 2. Methodology to address the Inverse Heat Conduction Problem (IHCP) presented
above. Assuming ai, bi, Tres, and h as known. T(R, t, p) is fitted to Tcam by varying p using the
Levenberg–Maquardt (LM) algorithm. The algorithm stops and yields popt when one of these criteria

is met (i) max|JTW(Tcam − T(p))| < ε (ii) max|∆pi
pi
| < ε (iii)

χ2

m− n + 1
< ε. The LM algorithm

is highly sensible to pinit especially when the IHCP is nonlinear in the parameters, thus it must be
carefully chosen.

Measuring an estimate’s accuracy is difficult, above all when there is little to no clue about the
true values. Nonetheless, we can measure the consistency and robustness of a solution with respect to
unexplained variability in the data through the asymptotical standard parameter error σp defined in
Equation (8). This variability may be a consequence of something simple such as instrumental noise,
or parameter correlation, or something more complex like the lack of completeness in the model that
disregards some facts about the true nature of the problem [26]:
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σp =

√
diag

(
[JTW J]−1

)
, (8)

where J is the sensitivity matrix, W is diagonal matrix whose diagonal is diag(W) = σ2
T =

1
m− n + 1

(T− T̂(p f it))
T(T− T̂(p f it)), and n is the parameter vector length. There are three important

facts to highlight about this metric. First, very noisy data increase the value of σp. Second, highly
correlated parameters certainly increase σp, meaning that any change in one parameter results in
changes in the other parameters. In our case, the convective coefficient h is a difficult parameter to
control and know beforehand since it varies depending on the materials surface and the environmental
conditions. Third, ill-conditioning of an IHCP can be noticed through σp, as it depends on J,
small eigenvalues of J causes the standard error to rise drastically [26].

Additionally, sensitivity coefficients allow us to characterize the IHCP as either linear or nonlinear
in the parameters. Non-linearity in the parameters makes any IHCP sensitive to measurement
errors [27]. Figure 3a displays the relative sensitive coefficients for our inverse heat conduction scenario.
Here, we show that, as h increases, not only does Jh change, implying that it depends on h and so the
IHCP is nonlinear with respect to h, but h variation also causes Jk and Jρcp to vary, thus demonstrating
correlation between the parameters. Likewise, the variation of k and ρcp also introduces an effect on
the other relative sensitivity coefficients. Figure 3a also shows that the volumetric heat capacity ρcp

strongly affects the transitory state of the heat conduction. In contrast, h and k most influence the
temperature behavior at the steady state. In estimating parameters through temperature measurements,
the sensor position is also fundamental; Figure 3b shows that Jr varies with position. For instance,
at r = R, where we have located our sensor (with no possibility of relocation since we intend to
perform a non-destructive test), temperature response is lagged and attenuated, making it harder to
estimate parameters by using these temperature measurements. As our IHCP also exhibits correlation
among parameters and nonlinearity, the problem of estimating thermo-physical properties of materials,
in this scenario, is challenging.
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Figure 3. Relative sensitivity coefficients. (a) Jk, Jh and Jρcp ; and (b) Jr are the first derivatives of the
temperature with respect to k, h, ρcp, and r (position within the cylinder).

An additional fact to point out is that a substantial difference in the range of the parameters to
estimate makes the LM algorithm very sensitive to noise, preventing it from converging, as volumetric
heat capacity and thermal conductivity take values proportional to 106 and 10−1 for bamboo,
respectively, we decided to optimize the volumetric heat capacity in the range of 2–10, but the model
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internally multiplies it by 106. This approach increases the probability of convergence and produces
better Jacobean matrices.

4. Estimation of Thermo-Physical Properties of Bamboo Using Synthetic Data with Additive
White Gaussian Noise

In order to gain insight into the estimation of the thermo-physical properties of a material and
its surrounding medium from transient temperature measurements, we generate synthetic data by
solving the heat diffusion equation explained in Section 2 through the Crank–Nicholson method for a
known set of parameters pt = (k, ρcp, h). Even though this experiment uses data from the solution of
the direct model, it allows us to observe how the LM regression algorithm performs under different
conditions such as noisy data and random initialization. The noisy data was generated by adding
additive white Gaussian noise (with standard deviations σ of 0.1) to the data. Random initialization,
on the other hand, was performed by randomly choosing parameters in the set of initial random
guesses S = {pinit = (k, ρcp, h) | 0.4pt,1 < k < 1.6pt,1, 0.4pt,3 < ρcp < 1.6pt,3, 0.4pt,2 < h < 1.6pt,2}.
It is necessary to take into account that as k, ρcp, and h form fractions in the heat diffusion model,
a scaled version of them will always allow a perfect curve-fitting even if the parameters are not the
ones we used to calculate the numerical solution. That is why it is preferable to have an initial guess
whose components (or individual parameters) do not have a scaling factor in common. For instance,
if pt is the actual value toward which the LM algorithm must converge, pinit cannot be 1.2pt. Instead,
we should multiply every individual component by a different factor i.e., pinit = (1.2pt,1, 0.9pt,1, 0.6pt,1).
These kinds of initial guesses prevent us from obtaining, at least in the first iteration, a valid solution
but far from the actual one.

Even though we carefully choose the initial guesses as described above, when optimizing the
three parameters at once, the results are not satisfactory. For any initial guess, the algorithm finds a
convergence point that lies on a three-dimensional line as shown in Figure 4. Those optimal points are
all equivalent and are in predefined boundaries, so they all could be a possible solution. However,
they differ from the true parameter values. This undesirable behavior that does not allow the algorithm
to be robust against initial conditions is a consequence of highly correlated parameters. Here, we
deal with the problem by reducing the complexity of the inverse heat problem by optimizing over a
two-dimensional space, where the parameter vector is now p = (k, ρcp) while h is assumed constant.
This action improves the algorithm robustness against initial conditions, reducing uncertainty in the
estimation quantified through the asymptotical standard error σp.

Table 1a,b show the results of the curve-fitting scenario aforementioned. It is worth recalling
that only two parameters k and ρcp are optimized, while h is assumed known. For this case, we
try to fit a noisy temperature curve with parameters k = 0.146 W/m·K, ρcp = 3.5× 106 J/m3·K,
and h = 10 W/m2·K. In a realistic scenario, the value of h would be difficult to find. That is why
we assume different values for h keeping them in the natural convection range from 2 to 25 J/m3·K,
and then observe how these blindly chosen h values affect the estimation by using the relative error.
Table 1a shows these results. ¯p f it is the average convergence value that results from initializing the
LM algorithm with 50 initial guesses obtained as explained in previous paragraphs. As seen in the
table, the standard deviation of these estimates is of order 10−8 approximately, which shows that
the algorithm responds well to initial conditions’ variability. We see as well that when h is chosen
mistakenly, the relative errors are very high; they can reach values up to 150%, which is unacceptable.
Nonetheless, Table 1b shows that dividing k into ρcp, the LM algorithm accurately retrieves thermal
diffusivity (α f it) with an error up to 0.395% for any value of h. As a consequence, estimating the
thermal diffusivity of the material makes the LM algorithm less sensitive to the unawareness of h.
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Figure 4. Initial guesses (a) and convergence points (b) for the LM algorithm in a three-dimensional
parameter space.

Table 1. Results of parameter estimation with synthetic data for (a) pt and (b) αt obtained from pt.
One hundred random initial guesses were used to estimate ¯p f it, which is the average of the optimal
estimates. The two columns in pt refer to k, ρcp, respectively.

(a)

h pt ¯p f it σ f it × 10−8 |pt − ¯p f it|
pt

× 100

7 [0.146 3.500] [0.102 2.437] [0.8366 128.51] [30.07 30.35]
10 [0.146 3.500] [0.145 3.482] [4.4487 514.92] [0.112 0.506]
25 [0.146 3.500] [0.364 8.775] [2.7828 409.99] [149.7 148.7]

(b)

h αt ¯α f it × 10−8 σ f it
|αt − ¯α f it|

αt
× 100

7 0.0417 0.0419 1.883× 10−8 0.395
10 0.0417 0.0419 7.301× 10−8 0.395
25 0.0417 0.0419 1.654× 10−8 0.395

5. Experimental Set-Up

5.1. Guadua’s Samples Preparation

In this work, we tested 10 cylindrical pieces of Guadua a.k. that were divided into 20 pieces
by splitting each into two parts as shown in Figure 5. The average height of the samples is of
15.81± 0.24 cm, the average thickness is of 7.83± 0.78 mm, and the average outer diameter is of
6.94± 0.41 cm. Half of the inspected samples underwent a preservation process in which the samples
were submerged in a mixture of 16 L of water with 0.4 kg of boric acid and boron at 5% of concentration.
The mixture was kept at 60 ◦C for better and fast bamboo preservation during 24 h. When bamboo
preservation ended, the samples were dried at 100 ◦C for 24 h, resulting in an average humidity of
11.86± 1.6%.
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Thermal
Insulator

Electrical 
Resistor

Bamboo
Sample

Figure 5. Experimental measurement platform.

5.2. Thermal Data Acquisition

The temperature measurements were performed using the experimental platform that is
shown in Figure 5. The thermal insulator, ’Isoboard FC’ material, has a thermal conductivity
of 0.085 W/m·K. The heat source is a 60 W-electric resistor that we control at 90 ◦C using a
Proportional–Integral–Derivative (PID) controller and a J type thermocouple. An IR camera FLIR
T360 (FLIR Systems, Wilsonville, Oregon, United States) remotely measures the temperature on the
convex face of the cylindrical bamboo sample. This camera has an FPA (Focal Plane Array) with
size of 320× 240, a field of view of 25× 19◦, a thermal sensibility of 0.06 ◦C, and a spectral range
from 7.5 µm to 13 µm.

Figure 6 presents the general scheme of the video acquisition. In the acquisition scheme, the heat
source is energized using a variac to reduce the power supplied to the resistance since the controlled
response has a high overshoot. Then, we decide to reduce the power from 60 W to 10 W.
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Figure 6. Scheme of temperature acquisition.

The IR camera records external temperature variations of the sample produced by the heat source.
The calibration process transforms image gray levels acquired with the frame-grabber into temperature
values that range from 18 ◦C to 100 ◦C. The transformation function is a fourth degree polynomial that
provides an error of 0.2 ◦C in the conversion.

A region of interest (ROI) that contains the bamboo sample is selected from the 720× 480 images
provided by the frame grabber. This region is chosen to have its emissivity unaffected by the viewing
angle since the camera’s optical axis is located to be, to the best of our ability, perpendicular to the
selected region. Each experiment lasts one hour, in which the bamboo sample temperature Tcam is
taken from one pixel in the ROI and recorded with a sampling frequency of 30 fps. Then, this signal is
decimated to take one frame every 5 s and reduce the memory space. This sub-sampled signal (Tcam)
along with the resistance temperature (Tres) are the inputs to the inversion algorithm that estimates
parameters k and ρcp. Figure 7 shows an example of these temperature inputs taken with a emmisivity
of 0.96 for the bambbo surface and a reflected temperature of 20 ◦C set in the camera.
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Figure 7. Examples of temperature curves in (a) the electrical resistence Tres and (b) Tcam the external
side of the bamboo sample.

The internal temperature of the bamboo sample is measured with a K type thermocouple and a
FLUKE 179 multimeter (Fluke Electronics, Everett, Washington, United States). There is a decrease of
temperature in the internal side of the bamboo sample, with respect to Tres. Therefore, we estimate
a bank of eight Infinite Impulse Response (IIR) filters to account for this phenomenon. Matlab’s
System Identication Toolbox calculates the parameters of each filter H(z) represented by Equation (9).
R2 validates the fitting of each model H(z), obtaining values that range from 0.96 to 0.99:

H(z) =
b0 + b1 · z−1

1 + a1 · z−1 . (9)

6. Estimation of Thermo-Physical Properties of Bamboo Using Experimental Data

Estimating thermo-physical properties of bamboo can be complicated, particularly when done
in a non-destructive way. Bamboo’s tissue is inhomogeneous; it varies along and across the culm.
Most of the studies [10,28,29] that estimate thermal properties of bamboo both along and across
the culm take small pieces of bamboo culms since the analysis equipment imposes such specific
geometries on the specimens to be analyzed. Even though these works provide insight into the thermal
properties of bamboo, they lack practical use when inspecting numerous samples whose geometries
are mostly cylindrical.

Here, we address the problem of estimating thermal conductivity, volumetric heat capacity, and
convective heat transfer coefficient of bamboo samples, which are approximately half a cylinder,
from data obtained as explained in Section 5. The direct model assumes no interactions in z and φ

directions and constant properties radially to reduce complexity in the inverse procedure. Therefore,
our experiments yield average values of k, ρcp, and h.

As mentioned in Section 4, estimating k, ρcp, and h is challenging not only for the nonlinearity
of the IHCP, but for the correlation among the three parameters. As a result, we optimized over the
parameter space defined by k and ρcp while h is assumed known. Removing h from the optimization
parameters diminishes the correlation between k and ρcp from 1 to 0.6± 0.15. This allows the LM
algorithm to have more consistent results in the sense that variations of 5% around an initial guess
produce variations of 0.1% around the convergence point of the initial guess, which is a desirable
behavior according to [26].
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Table 2 shows the average estimates of ten bamboo samples subjected to preservation and
another ten left untreated (as exposed in Section 5). Although on average we find the estimates to be
consistent with the measurements performed by [9,10,29], bamboo itself poses a big challenge because
its properties depend on its species, porosity, density, vessel distribution among others. In addition,
it is worth noting that in general it is difficult to make a fair comparison since most of the works in this
area use different techniques and assumptions to measure the thermal properties of bamboo.

Table 2. Average parameter estimates (obtained by using the LM algorithm) for unpreserved and
preserved bamboo samples. Ten bamboo samples were used to estimate ¯p f it which is the average
of the optimal estimates of each bamboo sample. The two columns in both ¯p f it and σ̄p refer to k,
ρcp, respectively.

Bamboo Category h [W/m2·K] ¯p f it [W/m·K J/m3·K] σ̄p R2

unpreserved
15 [0.109 4.200× 106] [0.0010 0.1476] 0.98
25 [0.154 6.744× 106] [0.0004 0.0644] 0.99
35 [0.215 9.020× 106] [0.0006 0.0874] 0.99

preserved
15 [0.111 4.274× 106] [0.0008 0.1148] 0.99
25 [0.168 7.175× 106] [0.0005 0.0738] 0.99
35 [0.233 9.100× 106] [0.0008 0.1162] 0.98

Table 2 also shows that, although the variation of h causes great changes in the estimated
parameters (k and ρcp), the standard errors are small in magnitude; the least standard error is reached
when h equals 25, however. Figure 8 shows the curves of the estimates against the bamboo sample
number. These curves permit us to visualize that, for values of h less than 25, the estimation of k tends
to the lower bound in the optimization parameter space (OPS). By contrast, when h is greater than 25,
some values ρcp tend to the upper bounds in the OPS. This effect is undesirable since it implies that
the optimization action of the LM algorithm is being saturated, thus converging to a optimal value
that is unnatural within the defined bounds. As a result, we consider that values of the parameters
that converge within the bounds are better than those that lie over the lower and upper bounds; in this
case, the best results are achieved when h = 25. Here, as done in Section 4, we also remove the scaling
effect of h by dividing the curves in Figure 8 to obtain the thermal diffusivity of the bamboo samples
as shown in Figure 9. In this figure, we can see that, for every value of h, the thermal diffusivity of
the samples tend to be the same except for the points that converge to lower limits of the thermal
conductivity boundaries. Figure 10a accounts for the goodness of fit of the proposed approach for a
chosen experimental temperature curve. σy is the standard error of the fit that exhibits higher values at
the beginning of the heating. This bias is due to the over estimation of the prediction model. However,
σy is still low. The overestimated temperature data reflects in the histogram of residuals showed
in Figure 10a. Even though this distribution is biased toward right, it is still a normal distribution,
which is a desirable property that guarantees no systematic error.
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Figure 8. k and ρcp estimates for unpreserved (a) and (b) and preserved (c) and (d) bamboo samples as
the convective coefficient of air h varies.
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Figure 9. Thermal diffusivity estimates for unpreserved (a) and preserved (b) bamboo samples.
The curves were obtained by dividing thermal conductivity and volumetric heat capacity curves
displayed in Figure 3.



Appl. Sci. 2017, 7, 1253 14 of 16

0 1000 2000 3000 4000
20

25

30

35

40

T
(t

,r
=

R
)

 

 

T
 data 

T
fit

 + 1.96sigma
y

T
fit

 − 1.96sigma
y

T
 fit 

0 1000 2000 3000 4000
0

0.01

0.02

0.03

σ y
(t

)

(a)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

50

100

150

200

histogram of residuals

T
 data 

 − T
 fit 

co
u
n

t

(b)

Figure 10. (a) top: temperature data and fitted-temperature data, with confidence intervals of 96%
(a) bottom: standard error of the fit, σy(t); (b) histogram of curve-fitting residuals.

In this work, furthermore, the bamboo preservation process is based on a diffusion treatment
with a combination of borax and boric acid. In this process, molecules of the preservative migrate
through a porous medium, bamboo [30]. According to our experiments, the differences between thermal
properties of preserved and non-preserved bamboo samples are not significant to conclude about the
quality of preservation based on thermal parameters. A reason for this result is that the temperature
evolution on the external face of the bamboo is not sensitive enough to variations of density and porosity
generated by treatment process. Furthermore, bamboo is a non-homogeneous material and is seldom
totally saturated with water when treated and dried causing a non-uniform distribution of preservant
across the specimen. In a similar work carried out on laminated veneer lumber, the authors have
found that thermo-physical properties such as the thermal conductivity k and volumetric heat capacity
ρcp of materials may vary after preservation process [28], although they manifest that further studies
have to be done to corroborate whether these variations are a consequence of chemical interactions of
preservatives with the wood or with the adhesives that join the wood laminates.

7. Conclusions

In this paper, the estimates of thermal properties k and ρcp in Guadua a.k. specimens are obtained
by an inverse method from temperature data. The transient temperature data were acquired by using
non-invasive active IT in transmission mode (i.e., the camera and the heat source are at opposite
faces of the sample). Tests were conducted on both preserved and unpreserved Guadua a.k. culms.
One of the great advantages is the determination of thermo-physical properties in a non-destructive
and straightforward experiment, without cutting or preparing the sample into specific geometries
or shapes.

In spite of the nonlinearity and high correlation in the parameters of this IHCP, we found that,
according to the asymptotical parameter and fit standard errors σp and σy, the estimates of k and ρcp

across different bamboo specimens are consistent and robust with respect to variations in the initial
conditions. Setting h in values less than 15 W/m2·K units makes the estimates of k and ρcp converge to
the lower bound of optimization range. Nonetheless, the estimation of the thermal diffusivity α instead
of k and ρcp separately makes the LM algorithm less sensitive to the unawareness of h.

Finding a sole value for thermal conductivity and volumetric heat capacity for Guadua a.k. is not
straightforward, as thermal properties may vary for numerous reasons, moisture content, density, inner
vessel distribution, etc. Measurements of thermal conductivity on bamboo board have shown that
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this parameter ranges from 0.121–0.384 W/m·K computed by using steady-state guarded hot-plate [9].
Ref. [10] reports that the values for k and ρcp are approximately 0.33 W/m·K and 3× 106 J/m3·K when
computed using photoacoustic data. What is certain about these estimations is that they are in the
range of thermal insulators (0.04–0.9 W/m·K) [31].

Even though the proposed approach yields estimated values of k and ρcp that are h-dependent,
the estimated values lie in the range of thermal insulators as well. In addition, the volumetric heat
capacity is comparable with the values reported in [10]. It is worth noting that estimated thermal
diffusivity presents little to no dependency on h. The estimated values, nonetheless, are less than those
of woods, because of bamboo’s higher capacity to store heat as shown in [32].

Our tests show that the differences between thermal properties of preserved and non-preserved
bamboo samples are not significant to make conclusions about the penetration of preservatives into
the bamboo samples.

We believe that the proposed inversion approach can serve as a solid starting point for further
infrared nondestructive inspections of Guadua a.k. specimens to estimate parameters such as defect
depth and thickness in green composites.
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