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Featured Application: The method employing the artificial neural network proposed in this study
for predicting the material removal rate in ultrasonic machining can be considered as a guide for
modelling complex general machining problems without explicit mathematical functions.

Abstract: The present study proposes a back propagation artificial neural network (BPANN) to
provide improved precision for predicting the material removal rate (MRR) in ultrasonic machining.
The BPANN benefits from the advantage of artificial neural networks (ANNs) in dealing with
complex input-output relationships without explicit mathematical functions. In our previous study,
a conventional linear regression model and improved nonlinear regression model were established
for modelling the MRR in ultrasonic machining to reflect the influence of machining parameters on
process response. In the present work, we quantitatively compare the prediction precision obtained by
the previously proposed regression models and the presently proposed BPANN model. The results
of detailed analyses indicate that the BPANN model provided the highest prediction precision
of the three models considered. The present work makes a positive contribution to expanding
the applications of ANNs and can be considered as a guide for modelling complex problems of
general machining.

Keywords: artificial neural network; regression techniques; modelling precision; material removal
rate; ultrasonic machining

1. Introduction

Artificial neural networks (ANNs) represent an approach for solving complex problems in
numerous fields and are particularly useful for dealing with complex input-output relationships
without explicit mathematical functions [1]. ANNs simulate the human brain to process information
rapidly and efficiently through a system of neural networks consisting of vast numbers of neurons.
ANNs usually consist of an input layer, an output layer and one or more hidden layers. In general,
the number of neurons of the input layer must correspond to the number of input variables; the number
of neurons of the output layer must be equivalent to the number of outputs produced by the network;
and the hidden layer performs the operations designed to achieve the desired output, where its number
of neurons is obtained by a process of trial and error [1,2]. The development of the ANN computing
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paradigm has been mainly driven by the practical requirement to solve specific problems in a rapid and
more computationally-efficient manner. The ability to learn is a peculiar feature of intelligent systems.
In artificial systems, learning is viewed as the process of updating the internal representation of
a system in response to external stimuli so that it can perform a specific task with greater precision and
efficiency. The learning process in ANNs includes modifying the network architecture, which involves
incrementally adjusting the magnitudes of the weights of the connections between neurons in the
network (also known as the “synapse strength”) [2,3]. This process is performed repetitively as the
network is presented with training examples, which is similar to the process by which biological
organisms learn from experience. As a result, ANNs have been one of the most powerful statistical
approaches for solving problems that are not amenable to conventional statistical methods [3].

In contrast to the modelling of input-output relationships using ANN techniques, regression
models provide a quantitative description of input-output relationships using specific mathematical
functions. For the ultrasonic machining (USM) technique, process responses are associated with the
selection of machining parameters [4–7]. An increased material removal rate (MRR) has always been
one of the primary goals of USM manufacturers and users [8–12]. A number of methods have been
developed for selecting machining parameter values to enhance the MRR, such as Taguchi statistical
analyses and regression modelling analyses [13–19]. In our past work [5], we analysed the MRR of
USM in detail based on orthogonal tests using the Taguchi method. The regression modelling analyses
employed three main machining parameters affecting the process response (i.e., abrasive granularity,
feed pressure and feed speed). Analysis of variance (ANOVA) was executed to investigate the statistical
significance of the parameters at a 95% confidence level and to determine the relative contribution of the
parameters to the process response. The results showed that the abrasive granularity had a significant
and nonlinear effect on the MRR in USM, where an abrasive granularity deviating substantially from
an optimum value negatively affected the MRR. On this basis, an improved nonlinear regression
model was established using a mathematical modelling method. The prediction precision of the
improved nonlinear regression model was demonstrated to be substantially greater than that of
a conventional linear regression model. However, identifying an appropriate function for fitting
the nonlinear relationships between the machining parameters of USM and the process response is
typically quite difficult. Therefore, this approach requires much more powerful modelling methods
that can facilitate mapping between machining parameters and process responses.

For this reason, ANNs have been applied for complex input-output modelling and have nearly
always improved the correlations obtained relative to conventional regression methods [20,21].
The ANN models employed for this purpose have been denoted by various terms such as connectionist
models, parallel distributed processing models and neuromorphic systems [3]. These models function
by means of the dense interconnection of simple computational units and are specified by the
network topology, computational unit characteristics and training or learning algorithms employed [1].
The advantages of ANNs have facilitated numerous successful applications [22,23].

In addition to our previously proposed regression models [5], we have also applied ANNs [24–26]
to explore the impact of machining parameters on USM process responses. Employing ANNs for
predicting the MMR in USM offers a significant advantage over regression techniques because ANNs
do not require explicit mathematical functions. However, we did not consider whether the prediction
precision provided by ANN modelling approaches is greater than that of our regression models.
Therefore, the primary objective of this study is to propose a back propagation ANN (BPANN) for
dealing with the complex input-output relationships in USM in the absence of an explicit mathematical
model. We then compare the prediction precision of the BPANN proposed in this study with
the corresponding precisions obtained using the previously proposed regression models [5] with
equivalent experimental parameters on an experimental apparatus. As such, the neurons of the input
layer were selected as the abrasive granularity (G), feed pressure (P) and feed speed (FS) and included
a single neuron in the output layer representative of the predicted MRR, which is consistent with past
studies [5].
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2. Review of Our Earlier Research Work

Table 1 presents the main aspects and results of our earlier research work regarding regression
models [5].

Table 1. Main details and results of our earlier research work regarding regression models [5].

Research Detail Description

Experimental USM
apparatus
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Table 1. Cont.

Research Detail Description

Regression models Linear and nonlinear regression models given by Equations (3) and (4), respectively, in this study.

Comparison of the
modelling precision
with 8 new
experimental
conditions
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According to Table 1, we note that the establishment of a suitable nonlinear regression equation
is crucial to use in the regression technique for predicting the MRR in the USM technique. However,
establishing a suitable nonlinear regression equation is difficult for most complex input-output
problems of general machining. In contrast, the input values of ANNs can theoretically be arbitrary
because the output values of ANNs are obtained by simulating the human learning process. Therefore,
we consider an ANN as a more powerful modelling method for mapping complex nonlinear
input-output problems.

3. Neural Network Modelling Method

The proposed BPANN is an iterative gradient procedure designed to minimize the mean square
error (MSE) between the actual output of the model and the desired output. Similar ANNs have
already been used in many fields such as data modelling, classification, prediction, control, data and
image compression and pattern recognition [3].

The proposed BPANN model was based on a total of 96 group experiments, which included
80 group experiments conducted in this study and 16 group experiments conducted in our previous
study [5]. Supervised learning was selected as the training method for the BPANN [20–23]. To facilitate
comparison between the BPANN model obtained in this study and our previously proposed regression
models, the data obtained from the 80 group experiments were randomly divided into two subgroups
consisting of 60 and 20 experimental datasets for conducting training and validation, respectively,
and the 16 group experiments were employed as testing sets.

The transfer function employed for the network is given as follows:

f (x) =
2

1 + e(−2x)
− 1 (1)

where x is the input value of the neuron and f (x) is the output of the neuron. This function is
a hyperbolic tangent sigmoid, which is mathematically equivalent to a hyperbolic tangent function,
but which provides for improved network functionality [20,24]. All variable values were normalized
within the interval (0, 1) to improve the effectiveness of the transfer function. While numerous
methods are available for normalizing variable values, the present work employed the following
equation [20,24]:

Xi =
xi − xmin

xmax − xmin
(2)

where Xi is the normalized element of any input value xi and xmax and xmin are the maximum and
minimum values of xi, respectively.

The BPANN was trained using resilient backpropagation, which considerably improves the results
of the training process for networks employing sigmoid transfer functions [22,23]. The learning rate
used was 0.01. The BPANN was constructed, trained and implemented using MATLAB 7.11.0 (R2010b)
software, and statistical analyses were conducted using SPSS 20.0 software, all of which were run
under a Microsoft Windows 7 operating system on a computer with an Intel® Core™ i3-470 CPU.
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Overfitting is often the main problem associated with the training of ANNs [20,21]. To avoid overfitting
of the BPANN, the point at which overfitting occurred was detected by conducting a comparison
of the training and validation set errors every 100 epochs to determine when an increase in the
validation set error occurred in conjunction with a decrease in the training set error. In addition,
a specific search program comprising a series of loops, one in each sublayer, was proposed to obtain
the optimum structure of the BPANN [20,21]. The number of neurons in each sub-layer was then
successively increased automatically during training. Numerous methods can be employed to evaluate
the performance of a model. The simplest method is based on the value of the correlation coefficient
R for a plot of predicted value versus experimental output [1]. When all the loops have finished, the
program considers the optimum structure to be that obtaining an absolute value of R that is closest
to one for the validation set [20,21], where |R| = 1 corresponds to perfect correlation. In addition,
the determination coefficient R2 is another important value for evaluating the performance of a model,
where an R2 value closest to one implies an optimum model.

4. Results and Discussion

The topological structure of the BPANN obtained in this study is presented in Figure 1, where the
number of input layer neurons is three, representing G, P and FS, the number of output layer neurons
is one, representing the MRR, and the optimum number of neurons in the single hidden layer is 10,
which was obtained according to a trial and error process. The learning process of the BPANN is
presented in Table A1 of Appendix A. The error training curve is presented in Figure A1 of Appendix B.
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Figure 1. Structure of the BPANN obtained (3 × 10 × 1).

A linear least-squares fit [18] was adopted to compare the prediction precisions of the previously
proposed regression models and the presently proposed BPANN model. The order of the linear fit was
determined by inspecting the residual errors of the approximation via the MSE [27,28].

According to our past study [5], the conventional linear regression equation is given as follows:

MRR = 5.037 − 0.003 × G − 0.023 × P + 0.214 × FS (3)

The improved nonlinear regression equation is given as follows:

MRR = 0.904 + 5.041 × sin
68π

G
− 0.023 × P + 0.214 × FS (4)

The best linear fits of the MRR predictions obtained for the conventional linear regression model,
improved nonlinear regression model and the testing sets of the BPANN model with respect to the
experimental values are presented in Figure 2a–c, respectively.
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Figure 2. Correlation between the predicted values and the experimental values along with the best
linear fit to the data: (a) the conventional linear regression model; (b) the improved nonlinear regression
model; and (c) the BPANN model.

The modelling performances, i.e., the slope M, intercept B, R and R2, of the three methods are
presented in Table 2, where the ideal values are M = 1, B = 0, R = 1 and R2 = 1. Here, the prediction
precision increases as the obtained values approach the ideal values.

Table 2. Prediction precision indicators of the three modelling methods, where the ideal values are
M = 1, B = 0, R = 1 and R2 = 1.

Three Modelling Methods M B R R2

(a) Conventional linear regression model 0.149 3.57 0.387 0.150
(b) Improved nonlinear regression model 0.859 0.603 0.927 0.859
(c) Back-propagation artificial neural network model 0.884 0.371 0.948 0.899

From Figure 2 and Table 2, we note that the BPANN model has the highest prediction precision of
all models considered. This indicates that the BPANN model provides better prediction results than
either of the regression models.
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To intuitively demonstrate the prediction precision obtained by the three models, the experimentally
measured values and the corresponding prediction values for the sixteen experimental datasets are
presented in Figure 3. We observe that the BPANN model and the improved nonlinear regression model
are useful for predicting the MRR in the USM process; however, the results in Figure 2 and Table 2 more
clearly demonstrate that the BPANN model provides the best results. Meanwhile, the conventional
linear regression model is useless for predicting the MRR in the USM process.
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Figure 3. Comparison of measured MRR values and the corresponding prediction values of the
three models for the sixteen experimental datasets.

5. Conclusions

The present study proposed the BPANN for dealing with the complex input-output relationships
in USM in the absence of an explicit mathematical model. We then compared the MRR prediction
precision of the BPANN with the corresponding precisions obtained using previously proposed
regression techniques with equivalent experimental parameters G, P and FS. Based on the conducted
analyses, the following conclusions can be drawn.

(1) The BPANN model proposed in this study and the improved nonlinear regression model
established in our earlier research are useful for predicting the MRR in the USM process, but the
results of the present study demonstrate that the BPANN model provides the best results and
requires no explicit mathematical function.

(2) The method employing ANNs proposed in this study for predicting the MRR in USM can be
considered as a guide for modelling complex general machining problems without explicit
mathematical functions.
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Appendix A

Table A1. Learning process of the BPANN.

Symbolic Definition of the BPANN

Definition Symbol

Input vector of the BPANN Pk = (a1, a2, . . . , an)
where n represents the number of input vectors of the BPANN
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Table A1. Cont.

Symbolic Definition of the BPANN

Target vector of the BPANN Tk = (y1, y2, . . . , yq)
where q represents the number of target vectors of the BPANN

Input vector of the middle layer unit Sk = (s1, s2, . . . , sp)
Output vector of the middle layer unit Bk = (b1, b2, . . . , bp)
where p represents the number of vectors of the middle layer unit

Input vector of the output layer unit Lk = (l1, l2, . . . , lq)
Output vector of the output layer unit Ck = (c1, c2, . . . , cq)
where the number of vectors of the output layer unit is equal to that of the target vectors of the ANN

Connection weight of the input layer to the middle layer wij, i = 1, 2, . . . , n, j = 1, 2, . . . , p
Connection weight of the middle layer to the output layer vjt, j = 1, 2, . . . , p, t = 1, 2, . . . , q
Output threshold of each unit in the middle layer θj, j = 1, 2, . . . , p
Output threshold of each unit in the output layer γt, t = 1, 2, . . . , q
Parameter k k = 1, 2, . . . , m
where m represents the number of parameters k

Learning Steps of the BPANN

Step Description

1
Initialize and subsequently assign a random value within the interval (−1, 1) to each wij, vjt,
θj and γt.

2 Randomly select and apply a set of input and target vectors (i.e., Pk and Tk) to the network.

3

Calculate the input and output value sj and bj of each unit in the middle layer by the

transfer function according to the formula

 sj =
n
∑

i=1
wijai − θj

bj = f (sj)
j = 1, 2, . . . , p.

4

Calculate the input and output value lt and ct of each unit in the output layer by the

transfer function according to the formula

 lt =
p
∑

j=1
vjtat − rt

ct = f (lt)
t = 1, 2, . . . , q.

5
Calculate the generalized error of each unit of the output layer dk

t according to the formula
dk

t = (yk
t − ct)× ct(1 − ct) t = 1, 2, . . . , q.

6
Calculate the generalized error of each unit of the middle layer ek

j according to the formula

ek
j =

[ q
∑

t=1
dt × vjt

]
× bj(1 − bj) t = 1, 2, . . . , q.

7
Modify the connection weights vjt and the thresholds γt according to formulas{

vjt(N + 1) = vjt(N) + α × dk
t × bj

γt(N + 1) = γt(N) + α × dk
t

t = 1, 2, . . . , q, j = 1, 2, . . . , p, 0 ≺ α ≺ 1.

8

Modify the connection weights wij and the thresholds θj according to formulas{
wij(N + 1) = wij(N) + β × ek

j × ak
i

θj(N + 1) = θj(N) + β × ek
j

i = 1, 2, . . . , n, j = 1, 2, . . . , p, 0 ≺ β ≺ 1.

9 Randomly select and apply the next learning sample vectors to the network and return to
Step 3 until the completion of m training samples.

10

Re-select a set of input and target sample vectors from m study samples and return to Step
3 until the network global error E is less than a pre-set minimum value, i.e., the network
converges. Go to Step 11. If the number of training steps is greater than the pre-set value,
the network cannot converge.

11 End.
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Appendix B

The training function of the BPANN proposed in this study was “trainlm”, and the learning
function was “learngdm”. The learning rate was 0.1; the error training target was 0.001; and the
target number of training steps was 500. The BPANN system reached the training requirements after
269 iterations. The error training curve is presented in Figure A1.
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Randomly select and apply the next learning sample vectors to the network and 
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11 End. 
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