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Abstract: Affective computing is an increasingly important outgrowth of Artificial Intelligence, which
is intended to deal with rich and subjective human communication. In view of the complexity of
affective expression, discriminative feature extraction and corresponding high-performance classifier
selection are still a big challenge. Specific features/classifiers display different performance in
different datasets. There has currently been no consensus in the literature that any expression
feature or classifier is always good in all cases. Although the recently updated deep learning
algorithm, which uses learning deep feature instead of manual construction, appears in the expression
recognition research, the limitation of training samples is still an obstacle of practical application.
In this paper, we aim to find an effective solution based on a fusion and association learning strategy
with typical manual features and classifiers. Taking these typical features and classifiers in facial
expression area as a basis, we fully analyse their fusion performance. Meanwhile, to emphasize
the major attributions of affective computing, we select facial expression relative Action Units
(AUs) as basic components. In addition, we employ association rules to mine the relationships
between AUs and facial expressions. Based on a comprehensive analysis from different perspectives,
we propose a novel facial expression recognition approach that uses multiple features and multiple
classifiers embedded into a stacking framework based on AUs. Extensive experiments on two public
datasets show that our proposed multi-layer fusion system based on optimal AUs weighting has
gained dramatic improvements on facial expression recognition in comparison to an individual
feature/classifier and some state-of-the-art methods, including the recent deep learning based
expression recognition one.

Keywords: feature fusion; multi-layer ensemble; action units (AUs); association rules; facial
expression recognition

1. Introduction

Facial expression plays a significant role in human society for interpersonal communication.
As indicated by Mehrabian, 55% of human emotional expression is transmitted by facial expressions [1].
Teaching computers to understand the psychology of human beings from their emotions will
enhance the intelligence and friendliness of computers, which will bring outstanding benefit for
facilitating human–machine interaction and providing services to humans. Increasingly, our computers
are becoming like robots, interacting with people in a sensory–motor world. Although current
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research has achieved improving results, making computers understand human expressions is still
a challenge. Part of the reason is due to the complexity of human expression, which causes difficulty
in discriminating feature extraction and classifier determination. Actually, current existing features
and classifiers achieve good results in facial expression recognition from a different perspective, so it is
natural to consider integrating the functions of single feature and classifier to solve the complexity
problem of facial expression, but which one is not an easy problem to solve. In this paper, we propose
a multi-feature and classifier fusion-based facial expression and utilize a data-driven method to learn
the contributions of each feature and classifier. Furthermore, we also consider action units instead of
whole face as the basic processing units to deal with the different roles of facial regions, such as mouth
and eyes, in facial expression recognition. This is because each facial action unit contributes differently
in expressing understanding. To obtain more ideas for our proposed final solution, we review the
literature on relative research of facial expression recognition, mainly in features, classifiers and fusion
solution. In addition, we also analyse the related work in facial expression recognition by integrating
local region interpretation.

The remainder of this paper is organized as follows. Section 2 presents the review of related work.
Section 3 introduces the overview of our proposed fusion scheme. Section 4 addresses our basic idea of
affective relative AUs selection and relative feature extraction methods. Section 5 explores our fusion
performance analysis of feature pairs based on the Kappa-Error diagram. Section 6 elaborates our AU
weighting multi-layer fusion algorithm for facial expression recognition. Then experimental results are
given in Section 7 and the discussion and further works are presented in the final section.

2. Related Work

2.1. Features for Facial Expression Recognition

Facial expression analysis usually employs feature extraction methods to describe images in
different ways and to facilitate system classification. In the current practice of facial expression
recognition analysis, there are many typical feature descriptors, where different extracting strategies
have different principles. According to our understanding, there are three categories.

One category is texture-based feature. In this category, one of the common features is a global
one, using transforming domain methods, such as Gabor wavelet and Principal Component Analysis
(PCA), to extract facial appearance information [2–6]. In the last decades, the most efficient facial
description method utilizes histograms to record feature vectors such as Histograms of Oriented
Gradients (HOG) [7,8], Histograms of Local Binary Patterns (HLBP) [9–11] and Weber Local Descriptor
(WLD) [12,13], which calculated the change in orientation or a stimulus (such as sound, lighting) with
facial expression. The other popular feature extraction methods include Haar-features [14,15] and
scale-invariant feature transform(SIFT) descriptors [16].

One category is a geometric feature derived from landmark extraction. This is normally based on
an established two dimensional or three dimensional (2D/3D) facial model to locate feature points
based on shape parameters and various derived facial detection models, such as Active Appearance
Mode (AAM) [17,18]. Some fast landmark extraction methods have been proposed in recent years by
using the combining method with face and eye detection with the Vilas–Jones algorithm and together
with a local descriptor to detect the interested region and extract the extreme points as landmarks [19].
Other research extracts the accurate localization of landmarks, relying on the geometrical properties of
facial shape with the differential geometry as the theoretical substratum [20]. The derived geometric
feature could be simple, with geometric features such as lip width, and with lengths describing the
expression states such as how open the mouth is. Some research derived more complex geometric
features, for example, calculating a set of geodesic and Euclidean distances, together with nose volume
and ratios between geodesic and Euclidean distances; specifically, on the mouth and eyebrows as
a separate study for facial expression analysis in paper [21].
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One category is temporal feature, calculated from the image sequence, which has the benefit
of revealing the dynamic attribution of expression and improves the discriminative performance in
expression recognition. Optical flow is one popular and traditional dynamic information extraction
method for generating features [16,22]. Face tracking is another common approach to locate and track
the landmarks and derive the temporal features. As demonstrated in the research by Deepak Ghimire
et al., they use Elastic Bunch Graph together with eye detection to establish the landmarks, then the
tracking is done among two adjacent frames by iteratively processing and calculating displacements
with Gabor jet. The feature is generated with a derived geometric representation of a single frame
image and a set of the transformed landmark coordinate positions of succeeding frame images. It needs
to be mentioned here that the ensemble classification scheme achieves high recognition accuracy using
multi-class AdaBoost and support vector machines, respectively [23].

With development of the deep learning algorithm, the learning based feature extraction, instead
of the above manual construction ones, is applied in the facial expression recognition fields [24].
However, the requirement of the large training sample of deep learning based feature extraction
is not practical in most facial expression applications, with the obstacle of capturing and labelling
enough expression samples. Furthermore, the traditional facial expression feature becomes mature after
decades of research. Therefore, we still pursue an effective solution based on the typical facial features.

All in all, the above three categories of features have diverse formula rooted indifferent understandings
of facial properties and lead to the different discriminate performance in facial expression recognition.
In this paper, we explore a fusion solution to achieve overall performance improvement.

2.2. Fusion Strategy for Facial Expression Recognition

Although the existing feature extraction approaches provide the discriminate features to
foster the facial expression recognition performance, none has proved to be capable of achieving
satisfactory results in all application cases. As we illustrated in Section 2.1, part of the reason is
that a certain feature or learning approach has an inherent scheme and usually fits to a certain
category of problem. Therefore, a fusion-based solution has been proposed to improve the overall
performance by taking advantage of feature extraction approaches’ complementary performance. To get
a better understanding of feature extraction approaches’ fusion performance, this paper proposes
an analysis method based on a diversity and distinction evaluation metric by utilizing the Kappa-error
diagram [25].

In current research, many fusion-based expression recognition approaches have appeared.
Bartlett et al. employ an Adaboost and Support Vector Machine (SVM) fusion method together with
the Gabor feature for expression recognition. They gained a 93% recognition rate on the Cohn–Kanade
database. Additionally, based on the Facial Action Coding System (FACS) technique, the recognition
rate increases by 1.8% [2]. Thiago et al. utilize Gabor and LBP as feature descriptors. Their experiments
on the Cohn–Kanade and Japanese Female Facial Expression (JAFFE) datasets showed that the
recognition rate with multiple features and classifiers is 10% and 5% above that with a single feature
and classifier respectively [26]. Koelstra et al. propose a dynamic texture-based approach based on
facial Action Units (AUs). They use a Gentle Boost ensemble algorithm with the Hidden Markov
Model, which obtained an 89.8% classification rate for expression recognition on the Cohn–Kanade
dataset [27]. Valstarand Pantic exploited a fully automated facial AU detecting system with Gabor
wavelet features and a SVM classifier which classified the 15 AUs occurring along or in combination
with other AUs with a mean recognition rate of 90.2% in the Cohn–Kanade dataset [28].

Based on the above analysis, fusion provides a solution to overcome the shortage of single feature
and improves the overall performance. Therefore, our paper adopts the fusion strategy to perform
expression recognition. Considering that stack fusion provides a solution for the different source
integration, we select the stack fusion based approach, with which we have achieved good results in
our previous work on multi-classifier fusion for facial expression recognition [29].
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2.3. Facial Partition Strategy for Expression Recognition

In research by Cunningham et al., they prove that most expressions rely primarily on a single facial
area to convey meaning with different expressions using different areas [30]. From the technology
points, there is much research on making facial expressions with separate facial areas as a basis.
Hsieh et al. locate facial components by an active shape model to extract seven dynamic face regions
and they trained a multi-class support vector machine (SVM) to classify six facial expressions [31].
This method provides a typical idea of applying dynamic face regions to facial expression recognition.

3. Overview of Our Proposed Multi-Layer Fusing Facial Recognition Approach

Previous work has demonstrated that fusion based facial expression recognition approaches
including multiple features and classifiers outperform the single techniques. These approaches have the
advantage of integrating the complementarity of each source. Additionally, applying FACS, developed
by American psychologists Ekman and Friesen [32], helps to improve the performance of facial
expression recognition by integrating the action prediction of affective related action units. Motivated
by the good performance of the fusion strategy, we propose a multi-view fusion approach that deploys
stacking architecture to integrate AU blocks with multiple typical features and classifiers. Furthermore,
to facilitate counting the contribution of AUs for the different expressions, an AU-weighted matrix is
utilized at the top level of facial expression recognition. The associated rule algorithm is employed in
mining each AU’s contribution to each basic expression. From the global point of view, the flow chart
diagram of the overall method is illustrated in Figure 1.
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Figure 1. Flow chart diagram of the fusion-based expression recognition approach.

As shown in Figure 1, there are two layers to our facial expression recognition methods. The first
layer, called base-level classifier, works on the AU prediction. In this part, each AU block is represented
with multiple features. Then, each feature is input to several classifiers separately and obtains the
relative AU prediction probability. The second layer, viz. meta-level classifier, works on facial
recognition. At this layer, the obtained AU prediction probability pool from first layer is weighted.
Then, the weighted probability pool is input to the meta-level classifier which outputs the expression
determination results.

The architecture of our proposed approach is shown in Figure 2. There are two learning functional
modules. One is the two-layer fusion for recognition with the stacking framework. The other is AU
contribution learning, which utilizes association rules to explore AUs’ weight matrix for expression
estimation. The details of the processing procedure are illustrated as follows.

Firstly, facial images are separated into several AU blocks. Then, four kinds of feature extraction
methods are used separately in describing every AU set. After that, the occurrence probability of
each AU action is predicted with the base-level classifier. Finally, the facial expression classification
is done, with the obtained AU probability as an input at the meta-level. Note that the probability
of AU occurring is weighted before classification in the paper. The weights refer to the contribution
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of each AU in determining each basic expression. We describe it as a weight matrix, as shown at
the bottom right of Figure 2. This is obtained by sample learning at the second process, where we
utilize association rules to explore AUs’ weight matrix. As manual labelling of AU in each expression
is difficult, we still use the automatic AU labelling on expression instances. In this paper, we use
only a simple feature and classifier to train and obtain the corresponding AU label of each expression
instance in the dataset. By excavating a strong relationship between AUs and expressions from the
dataset, AUs’ weight matrix is set.

In our proposed method, we take full consideration of a variety of each AU block in facial
expression interpretation and make full use of the complementarity of different features and classifiers
on facial expression recognition. The stacking ensemble architecture ensures the contribution of each
source view derived from the data learning. In this way, the effectiveness and robustness of facial
expression recognition is supposed to be improved.
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Figure 2. The architecture for our proposed fusion-based expression recognition approach (Note: we
denote the outputs, viz. the six basic expressions—angry, disgust, fear, happy, sad, surprise—as E1, E2,
E3, E4, E5, E6, separately).

4. Selection of Affective Relative AUs and Feature Extraction

4.1. Choosing Affective Relative AUs Based on FACS

There are 43 muscles in the human face, which can be combined into more than 10,000 kinds
of facial expression. At least 3000 of these have specific affective meaning. Ekman and Friesen
established the popular Facial Action Coding System (FACS) [32], which divided the human face into
several independent “action units” (AUs). Based on our understanding of human facial anatomy
and physiological structure, these AUs are considered to be critical for representing and recognizing
facial expressions. Although the individual appearance differences in the human face are considerable,
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the structure of faces is physically similar. In addition, some researchers had verified that most
expressions rely primarily on a single facial area to convey meaning, and the combination of rigid head,
eyes, eyebrows, and mouth motions is sufficient to produce expressions that are as easy to recognize
as the original recordings [30]. Thus, based on the above two standpoints and cognitive experience,
we chose eight AUs as a basis for predicting six basic emotions. The selected AUs are shown in Table 1.

These AUs are selected as representatives of the muscle action in particular facial regions, and are
initially represented as image regions manually marked up based on sequences of video frames
(peak movement vs. rest state). Figure 3 illustrates eight kinds of AUs which are contained in six basic
facial expressions.

Table 1. Facial expression result of each feature and fusion feature performance with AUs.

AU FACS Name

AU2 Outer Brow Raiser
AU4 Brow Lowerer
AU10 Upper Lip Raiser
AU13 Sharp Lip Puller
AU15 Lip Corner Depressor
AU16 Lower Lip Depressor
AU24 Lip Pressor
AU27 Mouth Stretch
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4.2. AU Feature Extracting Solution

In present research, a wide variety of feature extraction algorithms are used in facial analysis:
Gabor wavelet, PCA (Principal Component Analysis), AAM (Active Apperance Model), HOG
(Histogram of Oriented Gradient), SIFT (Scale-invariant feature transform), LBP (Local Binary Pattern),
WLD (Weber Local Descriptor), etc. They reveal the discriminating property of objects for a certain
classification target with difference principles. As each AU has a different texture structure, we prefer
to choose several diverse features and fuse their complementary contribution in representing AUs.
This paper employs Gabor, AAM, LBP, and WLD feature descriptors, which have different feature
extraction mechanisms. The quantitative fusion performance between these selected features is
examined in the next part. The details of the employed features are briefly illustrated as follows:

a. Gabor feature: Selecting a two-dimension Gabor wavelet with the scale and direction v = 2 and
u = 4π/8 respectively. Together with PCA, dimension reduction Gabor is extracted to represent
each AU.

b. Geometry feature: Utilizing the AAM shape model to calibrate feature points and generate
corresponding geometry features for AU regions, and making the coordinate of feature points the
geometry feature vector.

c. LBP feature: Choosing a flexible circle operator to extract the local texture of each AU, and using
a histogram to record the LBP feature vectors of AU regions.

d. WLD feature: Using an emerging method that synthesizes multiple orientation and excitation
operators of sub-image sets, and forming a histogram to record WLD feature vectors of each
AU region.

Some results of Gabor/geometry/LBP/WLD feature extraction for AUs region are shown in Table 2.

Table 2. Four kinds of feature extraction results for AU blocks.

Image Gabor Geometry LBP WLD
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illustrated as follows: 

a. Gabor feature: Selecting a two-dimension Gabor wavelet with the scale and direction 𝑣 = 2 

and 𝑢 = 4𝜋
8⁄  respectively. Together with PCA, dimension reduction Gabor is extracted to 

represent each AU. 

b. Geometry feature: Utilizing the AAM shape model to calibrate feature points and generate 

corresponding geometry features for AU regions, and making the coordinate of feature points 

the geometry feature vector. 

c. LBP feature: Choosing a flexible circle operator to extract the local texture of each AU, and 

using a histogram to record the LBP feature vectors of AU regions. 

d. WLD feature: Using an emerging method that synthesizes multiple orientation and excitation 

operators of sub-image sets, and forming a histogram to record WLD feature vectors of each 

AU region. 

Some results of Gabor/geometry/LBP/WLD feature extraction for AUs region are shown in Table 2. 
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representing AUs. This paper employs Gabor, AAM, LBP, and WLD feature descriptors, which have 

different feature extraction mechanisms. The quantitative fusion performance between these 

selected features is examined in the next part. The details of the employed features are briefly 
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representing AUs. This paper employs Gabor, AAM, LBP, and WLD feature descriptors, which have 

different feature extraction mechanisms. The quantitative fusion performance between these 

selected features is examined in the next part. The details of the employed features are briefly 

illustrated as follows: 

a. Gabor feature: Selecting a two-dimension Gabor wavelet with the scale and direction 𝑣 = 2 

and 𝑢 = 4𝜋
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using a histogram to record the LBP feature vectors of AU regions. 
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representing AUs. This paper employs Gabor, AAM, LBP, and WLD feature descriptors, which have 

different feature extraction mechanisms. The quantitative fusion performance between these 

selected features is examined in the next part. The details of the employed features are briefly 

illustrated as follows: 

a. Gabor feature: Selecting a two-dimension Gabor wavelet with the scale and direction 𝑣 = 2 

and 𝑢 = 4𝜋
8⁄  respectively. Together with PCA, dimension reduction Gabor is extracted to 
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b. Geometry feature: Utilizing the AAM shape model to calibrate feature points and generate 
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representing AUs. This paper employs Gabor, AAM, LBP, and WLD feature descriptors, which have 

different feature extraction mechanisms. The quantitative fusion performance between these 

selected features is examined in the next part. The details of the employed features are briefly 
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a. Gabor feature: Selecting a two-dimension Gabor wavelet with the scale and direction 𝑣 = 2 

and 𝑢 = 4𝜋
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we prefer to choose several diverse features and fuse their complementary contribution in 

representing AUs. This paper employs Gabor, AAM, LBP, and WLD feature descriptors, which have 

different feature extraction mechanisms. The quantitative fusion performance between these 

selected features is examined in the next part. The details of the employed features are briefly 

illustrated as follows: 

a. Gabor feature: Selecting a two-dimension Gabor wavelet with the scale and direction 𝑣 = 2 

and 𝑢 = 4𝜋
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we prefer to choose several diverse features and fuse their complementary contribution in 

representing AUs. This paper employs Gabor, AAM, LBP, and WLD feature descriptors, which have 

different feature extraction mechanisms. The quantitative fusion performance between these 

selected features is examined in the next part. The details of the employed features are briefly 

illustrated as follows: 

a. Gabor feature: Selecting a two-dimension Gabor wavelet with the scale and direction 𝑣 = 2 

and 𝑢 = 4𝜋
8⁄  respectively. Together with PCA, dimension reduction Gabor is extracted to 
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b. Geometry feature: Utilizing the AAM shape model to calibrate feature points and generate 

corresponding geometry features for AU regions, and making the coordinate of feature points 
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operators of sub-image sets, and forming a histogram to record WLD feature vectors of each 
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we prefer to choose several diverse features and fuse their complementary contribution in 

representing AUs. This paper employs Gabor, AAM, LBP, and WLD feature descriptors, which have 

different feature extraction mechanisms. The quantitative fusion performance between these 

selected features is examined in the next part. The details of the employed features are briefly 

illustrated as follows: 

a. Gabor feature: Selecting a two-dimension Gabor wavelet with the scale and direction 𝑣 = 2 

and 𝑢 = 4𝜋
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we prefer to choose several diverse features and fuse their complementary contribution in 

representing AUs. This paper employs Gabor, AAM, LBP, and WLD feature descriptors, which have 

different feature extraction mechanisms. The quantitative fusion performance between these 

selected features is examined in the next part. The details of the employed features are briefly 

illustrated as follows: 

a. Gabor feature: Selecting a two-dimension Gabor wavelet with the scale and direction 𝑣 = 2 

and 𝑢 = 4𝜋
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corresponding geometry features for AU regions, and making the coordinate of feature points 
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d. WLD feature: Using an emerging method that synthesizes multiple orientation and excitation 
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we prefer to choose several diverse features and fuse their complementary contribution in 

representing AUs. This paper employs Gabor, AAM, LBP, and WLD feature descriptors, which have 

different feature extraction mechanisms. The quantitative fusion performance between these 

selected features is examined in the next part. The details of the employed features are briefly 

illustrated as follows: 

a. Gabor feature: Selecting a two-dimension Gabor wavelet with the scale and direction 𝑣 = 2 

and 𝑢 = 4𝜋
8⁄  respectively. Together with PCA, dimension reduction Gabor is extracted to 

represent each AU. 

b. Geometry feature: Utilizing the AAM shape model to calibrate feature points and generate 

corresponding geometry features for AU regions, and making the coordinate of feature points 

the geometry feature vector. 

c. LBP feature: Choosing a flexible circle operator to extract the local texture of each AU, and 

using a histogram to record the LBP feature vectors of AU regions. 

d. WLD feature: Using an emerging method that synthesizes multiple orientation and excitation 
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AU region. 
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we prefer to choose several diverse features and fuse their complementary contribution in 

representing AUs. This paper employs Gabor, AAM, LBP, and WLD feature descriptors, which have 

different feature extraction mechanisms. The quantitative fusion performance between these 

selected features is examined in the next part. The details of the employed features are briefly 

illustrated as follows: 

a. Gabor feature: Selecting a two-dimension Gabor wavelet with the scale and direction 𝑣 = 2 

and 𝑢 = 4𝜋
8⁄  respectively. Together with PCA, dimension reduction Gabor is extracted to 

represent each AU. 

b. Geometry feature: Utilizing the AAM shape model to calibrate feature points and generate 

corresponding geometry features for AU regions, and making the coordinate of feature points 

the geometry feature vector. 

c. LBP feature: Choosing a flexible circle operator to extract the local texture of each AU, and 

using a histogram to record the LBP feature vectors of AU regions. 

d. WLD feature: Using an emerging method that synthesizes multiple orientation and excitation 

operators of sub-image sets, and forming a histogram to record WLD feature vectors of each 

AU region. 
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certain classification target with difference principles. As each AU has a different texture structure, 

we prefer to choose several diverse features and fuse their complementary contribution in 

representing AUs. This paper employs Gabor, AAM, LBP, and WLD feature descriptors, which have 

different feature extraction mechanisms. The quantitative fusion performance between these 

selected features is examined in the next part. The details of the employed features are briefly 

illustrated as follows: 

a. Gabor feature: Selecting a two-dimension Gabor wavelet with the scale and direction 𝑣 = 2 

and 𝑢 = 4𝜋
8⁄  respectively. Together with PCA, dimension reduction Gabor is extracted to 

represent each AU. 

b. Geometry feature: Utilizing the AAM shape model to calibrate feature points and generate 

corresponding geometry features for AU regions, and making the coordinate of feature points 

the geometry feature vector. 

c. LBP feature: Choosing a flexible circle operator to extract the local texture of each AU, and 

using a histogram to record the LBP feature vectors of AU regions. 

d. WLD feature: Using an emerging method that synthesizes multiple orientation and excitation 

operators of sub-image sets, and forming a histogram to record WLD feature vectors of each 

AU region. 
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certain classification target with difference principles. As each AU has a different texture structure, 

we prefer to choose several diverse features and fuse their complementary contribution in 

representing AUs. This paper employs Gabor, AAM, LBP, and WLD feature descriptors, which have 

different feature extraction mechanisms. The quantitative fusion performance between these 

selected features is examined in the next part. The details of the employed features are briefly 

illustrated as follows: 

a. Gabor feature: Selecting a two-dimension Gabor wavelet with the scale and direction 𝑣 = 2 

and 𝑢 = 4𝜋
8⁄  respectively. Together with PCA, dimension reduction Gabor is extracted to 

represent each AU. 

b. Geometry feature: Utilizing the AAM shape model to calibrate feature points and generate 

corresponding geometry features for AU regions, and making the coordinate of feature points 

the geometry feature vector. 

c. LBP feature: Choosing a flexible circle operator to extract the local texture of each AU, and 

using a histogram to record the LBP feature vectors of AU regions. 

d. WLD feature: Using an emerging method that synthesizes multiple orientation and excitation 

operators of sub-image sets, and forming a histogram to record WLD feature vectors of each 

AU region. 
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certain classification target with difference principles. As each AU has a different texture structure, 

we prefer to choose several diverse features and fuse their complementary contribution in 

representing AUs. This paper employs Gabor, AAM, LBP, and WLD feature descriptors, which have 

different feature extraction mechanisms. The quantitative fusion performance between these 

selected features is examined in the next part. The details of the employed features are briefly 

illustrated as follows: 

a. Gabor feature: Selecting a two-dimension Gabor wavelet with the scale and direction 𝑣 = 2 

and 𝑢 = 4𝜋
8⁄  respectively. Together with PCA, dimension reduction Gabor is extracted to 

represent each AU. 

b. Geometry feature: Utilizing the AAM shape model to calibrate feature points and generate 

corresponding geometry features for AU regions, and making the coordinate of feature points 

the geometry feature vector. 

c. LBP feature: Choosing a flexible circle operator to extract the local texture of each AU, and 

using a histogram to record the LBP feature vectors of AU regions. 

d. WLD feature: Using an emerging method that synthesizes multiple orientation and excitation 

operators of sub-image sets, and forming a histogram to record WLD feature vectors of each 

AU region. 
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5. Analysing Feature Fusion Performance According to Kappa-Error Diagrams

To evaluate fusion performance between the above selected typical features, we utilize kappa-error
diagrams. The kappa-error diagram is a popular tool for analysing ensemble methods proposed by
Margineantu and Dietterich [33], which is used to gain insight into ensemble performance. Kuncheva
points out that there are two main factors reflecting the fusion performance: accuracy and pairwise
diversity [25]. Higher accuracy and higher diversity (evaluated with kappa) indicates the better
ensemble performance of a pair of methods. However, these two performance factors normally conflict
and are unable to increase at the same time. Therefore, a bound in the diagram is defined, indicating
ensemble performance of pairs with trade-off of two factors. In the kappa-error diagram, the pairwise
point closing the bound curve indicates the better ensemble performance of these two methods.
Referring to the concluded judge rules, this paper adopts the kappa-error diagram and bound in AU
feature fusion analysis. The diversity and complementarity of every feature pair are evaluated for AU
recognition. This paper applies this strategy to feature ensemble evaluation.

5.1. Theory of Kappa-Error Diagram Evaluation

Suppose that F1 and F2 are a pair of features that are under-estimated. For each AU from
one dataset, each feature is extracted respectively. We employ several typical classifiers—KNN
(K nearest neighbour), SMO (sequential minimal optimization), MLP (multilayer perception)—in
AU recognition. To use various classifiers is to ensure the general and authority of AU judgment.
The corresponding pairwise contingency table is counted with each classifier as in Table 3.

Table 3. Contingency table with two classification results.

Predict Result F1 Correct F1 Wrong

F2 Correct a b
F2 Wrong c d

In the table, parameter a represents the number of samples for both extraction methods doing the
right classification with the same classifier; b and c are the number of samples for which one extraction
method is right and another is wrong; and d is the number of samples for which both extraction
methods are wrong. Then, error “e” and kappa “kappa” values are computed as follows [29]:

e =
1
2

(
c + d

N
+

b + d
N

)
(1)

kappa =
OA− AC

1− AC
(2)

where N is the number of samples in the dataset: here N = a + b + c + d. OA and AC are computed
as follows:

OA =
a + d

N
(3)

AC =
(a + d)(a + c) + (b + d)(c + d)

N2 (4)

where OA represents the average sample number for which both extraction methods have the same
results with one classifier. Thus, it describes the coherence of two extraction methods. The higher the
coherence, the closer the functions of two extraction methods will be. It means no improvement of
performance with fusion. On the contrary, it indicates that the functions of two extraction methods are
various. Fusing of these two features will help to provide complementary contribution and improve
the whole ensemble’s results. To provide more objective criteria than accuracy directly, kappa is used,
which removes the chance factor by minus AC. The diversity of two technologies being evaluated is
based on the rule that the lower the kappa is, the higher the diversity is.
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Error in Equation (1) is the average of the sample number for each feature doing the wrong
classification with the same classifier. It is easy to understand that the higher error caused by each
extraction method in the pair will reduce the entire function of the ensemble. High diversity and
high accuracy are the target in determining the distinctive feature in AU fusion of the stacking
ensemble system.

Further, Kuncheva examines the bound on the region for the dichotomous case where feasible
kappa-error trade-offs are found. The paper derives bounds kmin on kappa in terms of the error e, as in
Equation (5). The pairwise closing of the bound has good performance benefit for fusion [25].

kmin = 1− 1
(1− e)

, 0 < e < 0.5 (5)

5.2. Analyzing Feature Fusion Performance for AU Prediction Based on Kappa-Error Diagram Evaluation

Extracting a power feature not only reflects the essential characteristic of AUs, but also enhances
the discriminative performance for AU prediction. Considering the differences of AUs’ images,
no feature displays stable description for all images. Actually, different features present different
representational performance when describing the different objects or regions.

This paper designs a fusion experiment analysing the feature description ability for different
AUs. Here, we chose four features (Gabor/geometry/LBP/WLD) for representing AU regions.
Four-features extraction is done on the same public dataset at the same time. Three kinds of
classifiers (MLP/SMO/IBK) were employed to train and learn AUs’ features separately. Therefore,
the corresponding kappa and error values are accounted for in each feature pair in predicting one AU
region with one classifier. For four features, there are six pairs of feature combination. In Figure 4,
three colours (red/green/blue) represent three kinds of classifiers, while six different symbols represent
six feature pairs. Figure 4 shows the fusing results of six feature pairs for each AU prediction.
The horizontal and vertical axes are the diversity parameter (kappa) and the average error parameter
(error) respectively. The boundary curve of K = 1 − 1/(1 − e) is shown in the diagram.

According to Figure 4, fusion performance of six feature pairs varies for different AUs’
prediction. For the glabella region (AU10) and the middle region of face (AU4), feature combinations
have high performance on AU recognition. The average error rate is generally lower than 0.7.
Furthermore, diversity between four features exists in these areas. Additionally, the evaluation
points are distributed close to the boundary, which indicates that the corresponding feature pair
has good fusion characteristics. For eyes and mouth regions (AU2/AU13/AU15/AU16/AU24/AU27),
the average error rate of feature pairs is about 0.7 and the kappa value in most situations is higher
than others, which illustrates that the diversity of feature pairs in describing these regions is relatively
weak compared to the above two regions. It also could be found from Figure 3 that the Gabor and
LBP feature combination, denoted by “+”, shows a better fusion performance than others. However,
no other feature pairs display an overall advantage for all AUs’ prediction. Four features show
different representing ability in different AU regions, and fusion of any two features has a variety of
representation performance. In conclusion, this paper adopts all four features to describe each AU and
fuses them to enhance the overall describing ability for all selected expression AUs.
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Figure 4. Kappa-error diagram of six pairs of feature descriptors. The points obtained by experimenting
on the Cohn-Kanade (CK) dataset—the IBK, SMO, MLP classification results—are shown in red, green
and blue. Feature pairs Gab–Geo/Gab–LBP/Gab–WLD/Geo–LBP/Geo–WLD/LBP–WLD are marked
by *, +, “diamond”, “angle”, “square”, “star”.

6. Multi-Layer Fusion with Weighted AU for Facial Expression Recognition

6.1. Multi-Layer AUs’ Fusion with Stacking Framework

Stacking is a technique to fuse multiple classifiers applied to a specific classification problem [34].
It aims to improve the classification results over the individual classifier. It outperforms other fusion
methods by simply voting or linear combination, which weights the function of individual classifiers
through the sample training 29. This paper proposes a novel stacking-based ensemble structure
combined with AUs’ prediction in a facial expression recognition system. For each AU prediction,
our proposed ensemble structure also takes full advantage of feature and classifier fusion to obtain
better understanding of emotion action.
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The stacking framework has two parts: the base level, which processes the input respectively with
several base classifiers, and the meta-level, which relearns and integrates the results of base classifiers.
The detailed procedure of stacking is illustrated as follows. Supposing there are n base classifiers
marked as F1, F2, . . . , Fn, one meta-classifier marked as M, and m classes marked as C1, C2, . . . , Cm;
each sample S will be processed by the following procedure.

Stacking Procedure

Step 1 i = 1.

Step 2 If i ≤ n, go to Step 3. Otherwise, go to Step 4.

Step 3

Classifying with the base classifier Fi. For each sample S, the probability vector Pi = {Pi1, . . . , Pij,
. . . , Pim} under the base classifier Fi is derived, where pij indicates the probability that sample S is
assigned to class Cj (j = 1, 2, . . . , m).
Then i++ go to Step 2.

Step 4
The classification results of all base classifiers are obtained, here marked as P = {P1, P2, . . . , Pn}.
Then go to Step 5.

Step 5
The meta-classifier M processes the input data, viz. the matrix P from base classifiers, and outputs
the ultimate recognition result.

Based on the stacking principle, we propose multiple channels for AUs’ prediction at base level.
As illustrated before, we pick eight affective related AUs, which include mouth, eyes, intercilium and
middle of facial regions. At base level, we employ four alternate feature descriptors (Gabor, geometry,
LBP, WLD) to represent AU blocks and use typical classifiers (SMO, MLP, IBK) to calculate the
probability of whether the specific action happens or not. At the meta-level, we integrate the prediction
probabilities of AUs as the input to the meta-classifier for further expression recognition. Figure 5 gives
our proposed multi-layer facial expression recognition based on the stacking ensemble algorithm.
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6.2. AUs’ Weight Learning by Association Rules

To optimize the contribution and cooperation of eight AU channels for facial expression
recognition, this paper provides a novel strategy, mining the strong relationship between AUs
and emotions based on an a priori algorithm. Based on the learned rules, the weights of AUs are
adjusted accordingly.

Association rule learning is a method for discovering relations between variables in large datasets.
It is intended to identify strong rules in datasets using some measures of interestingness [35]. In order
to select interesting rules from the set of all possible rules, constraints on various measures of
significance and interest are used. The best-known constraints are minimum thresholds on support
and confidence [36]. Support is the fraction of transactions that contain both X and Y items; confidence
is the fraction of transactions containing items X that also contain items Y. Intuitively, support measures
the significance of the rule, so we are interested in rules with relatively high support. Confidence
measures the strength of the correlation, so rules with low confidence are not meaningful, even if
their support is high. We employed the basic a priori algorithm for finding the sets of items with high
support, then used confidence as a threshold to filter the strong relationship. Therefore, a rule in this
context is there relationship among transaction items with enough support and confidence.

Motivated by this principle, we propose a strategy based on an a priori algorithm to help us find
a strong relationship between AU and expressions. Counting the statistic rules from the data, we found
the contribution of AU in expression prediction. The details of the process are described as follows.

First of all, this paper selected a geometric feature to extract the AU feature, which is identified in
a more stable manner by different classifiers on expression recognition performance and outperforms
any single feature descriptors among all the recognition results of AUs’ prediction, and used classifiers
from base level to distinguish the prediction expression label of eight AU regions. Note that the
output in this learning process is the expression prediction label instead of the prediction probability
of each AU. Then, the a priori algorithm was used to carry out AU strong association mining for each
expression, which treated the eight AU prediction labels of one sample and its real expression label
as an item set for finding a strong relationship between AUs’ prediction expressions and terminal
expression. Table 4 shows part of one emotion sample: for one image, there are eight AU prediction
labels, which are in the set of angry, disgust, fear, happy, sad and surprise and the real expression
label is in the last column (italic). Thus, one item-set consists of eight expression predicting labels and
one expression real label, and all the item-sets form a whole dataset for one expression. We made them
the input of an a priori algorithm.

Table 4. Part of E1 (angry) item-set.

Num
Expression Prediction Label Real Label

of ExpressionAU2 AU4 AU10 AU13 AU15 AU16 AU24 AU27

1 angry disgust angry angry angry angry angry sad angry
2 angry happy angry angry disgust angry angry angry angry
3 angry angry angry angry sad angry angry angry angry

··· ··· ···

We picked out strong relationships between AUs and expressions for which min-support was
greater than 0.85 and min-confidence was greater than 1. Parts of the results are shown in Table 5.
One rule noted was that PAUi→REj, where the AU prediction label was in the left set and the real label
was in the right set.
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Table 5. The result of association about AU and simple expression based a priori.

Expression Association Rules of AU

E1 (39) AU24 = angry ≥ Expression = angry 39

E2 (43) AU10 = disgust ≥ Expression = disgust 41; AU27 = disgust ≥ Expression = disgust 39

E3 (55) AU16 = fear ≥ Expression = fear 54

E4 (81) AU13 = happy ≥ Expression = happy 81; AU2 = happy ≥ Expression = happy 75;
AU4 = happy ≥ Expression = happy 74

E5 (62) AU15 = sad ≥ Expression = sad 60; AU2 = sad ≥Expression = sad 56;
AU16 = sad ≥ Expression = sad 53

E6 (75) AU27 = surprise ≥ Expression = surprise 75; AU2 = surprise ≥ Expression = surprise 70

In Table 5, we could find that each emotion is strongly related with several specific AUs.
Therefore, we assign the different weights to corresponding AUs for emotion recognition. To make
the quantitative analysis, the relationship is unified based on intentions. Noting the number
of PAUi→REj as Num(PAUi→REj) and total number of each emotion samples as Num(DEj), viz.
REj = Num(PAUi→REj)/Num(DEj), i, j. Then, we mapped REj into the three degrees of weight as
2, 1, 0.5, respectively; the mapping rules were:

0.95 ≤ REj ≤ 1⇒ weight = 2 (6)

0.90 ≤ REj ≤ 0.95⇒ weight = 1 (7)

0.85 ≤ REj ≤ 0.90⇒ weight = 0.5 (8)

Accordingly, the optimal AU weighted matrix with six expressions is produced. The size of matrix
W is 6 × 8, which is six expressions and eight AU channels, shown in Equation (9).

AU2 AU4 AU10 AU13 AU15 AU16 AU24 AU27

W =



0 0 0 0 0 0 2 0
0 0 2 0 0 0 0 1
0 0 0 0 0 2 0 0
1 0.5 0 2 0 0 0 0
1 0 0 0 2 0.5 0 0
1 0 0 0 0 0 0 2



angry
disgust

f ear
happy

sad
surprise

(9)

F = W ∗



AU2
AU4

AU10
AU13
AU15
AU16
AU24
AU27


8×n

(10)

Then, we multiply the AU weight matrix and AU prediction probability matrix from the stacking
multi-layer model as feature vectors F as in Equation (10), which is the input to the classifier for
recognizing facial expressions.

Here, W is the AU weight matrix. The process of the weight AU matrix based on association rule
learning is illustrated as in Figure 6. Note that in Figure 6, EPL is expression prediction label; SR is
strong relationship; ERL is expression real label.
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6.3. AU Weighted Fusion Algorithm for Facial Expression Recognition

This algorithm combines the FACS technique and stacking framework. On the basis of AUs’
prediction at each block with a multi-layer fusion model, weighted AUs’ predictions are fused and
processed for facial expression recognition. This two-layer model for expression recognition is shown
in Figure 7.

As shown in Figure 7, the input at fusion level 2 is the prediction probability pool of eight AUs
with the combination of three classifiers and four features respectively from level 1. The obtained
combination of the AU prediction pool is multiplied with the learned AU weighted matrix as shown
in Equation (6). Therefore, each expression only uses its strong related AU blocks and the input
AU prediction pool will be reshaped as six rows of the weighted prediction pool. These six rows of
the weighted prediction pool are generated inputs of six expression classifiers, viz. meta-classifier,
respectively. The final expression is the one with the highest prediction possibility of these six binary
expression classifiers.
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Further details of the overall procedure for the approach in Figure 7 are as follows.

Abbreviations and notation
AU—action unit—active for each instance/image
AUi—action unit block—e.g., use (2, 4, 10, 13, 15, 16, 24, 27)
G, A, L, W—features—e.g., use (Gabor, AAM, LBP, WLD)
PP—prediction probability
Ei—facial expressions—e.g., angry, disgust, fear, happy, sad, surprise

Fusion level 1
A. AUs’segmentation: divide facial image into eight AU blocks which related with six basic expressions.
AUi consists of AU2, AU4, AU10, AU13, AU15, AU16, AU24, AU27;
B. Feature extraction: select G, A, L, W feature descriptors; extract each AU region. For one kind of AU,
AUi = {FG, FA, FL, Fw}, i ∈ {1, 2, ..., 8};
C. Base-classifiers recognition: treat SMO, MLP, IBK as a base classifier to recognize AUs; calculate PP of each
AUi. For one kind of AU, the Pj = {PG, PA, PL, Pw}, and j is SMO, MLP, IBK;
Fusion level 2
D. AUi PP combination: integrate PP from three classifiers matched to four features, for one AU region,
format 12(3 × 4) dimensions vector. AUi = {p1, p2, . . . , p3}, and i ∈ {1, 2, ..., 8}, m ∈ {1, 2, 3, ..., 12};
E. AUi weighted optimal: employ an a priori algorithm, mining the strong relationship between AUi and
expressions; produce the AU tuning matrix W6×8; Note: Each row is a weighted AU feature input for one basic
expression classification.
F. Meta-classifiers recognition: use one type of classifier to recognize facial expression; including MLP, SMO,
IBK and NB. Note: there are six binary classifiers for determining the possibility of each expression. The final
expression is the one with the highest prediction possibility.



Appl. Sci. 2017, 7, 112 16 of 23

7. Experimental Results

7.1. Image Datasets and Experimental Setup

To demonstrate the effectiveness of the proposed multi-layer fusion with the AU weight optimal
strategy, we have performed experiments on two public facial expression datasets: CK dataset (CK)
and JAFFE dataset (JAFFE). The number of images for each emotion is shown in Table 6.

Table 6. Sample size of each emotion on CK and JAFFE datasets.

Emotions CK JAFFE

1: angry 39 30
2: disgust 43 29

3: fear 55 32
4: happy 81 32

5: sad 62 30
6: surprise 75 30

Total images 355 183

At the base-level, three classifiers are selected: SVM, MLP and IBK. SVM used in the paper is
a simple support vector machine SMO with linear kernel. Parameters of used MLP are set with Weka’s
default hidden layer (MLP with hidden layer default “a” signifying the arithmetic mean of the input
and output layer sizes). Instance-based learning IBK is configured with Weka’s default of 1 nearest
neighbour. The classifier at the meta-level employs Naive Bayes (NB), based on so-called Bayesian
theory, which can often outperform more sophisticated classification methods [37]. All the training
and testing processes are done in a cross-validation way with 10 folds in weka.

7.2. Comparison on Multi Features or Classifiers Fusion Performance Analysis

To verify the rationality and validity of our proposed multi-layer fusion strategy, we designed
two comparison experiments. One compares one feature with multiple feature fusion, and the other
compares one classifier and multiple classifiers. This paper makes comparison on the recognition
performance (accuracy rate) between our proposed full fusion methods with multiple features and
multiple classifiers with two partial fusions.

Here, we use one of four features (Gabor/geometry/LBP/WLD) as the feature for AUs and
employ combined classifiers with MLP, SMO, IBK and NB to do facial expression recognition.
From the experimental results (Table 7), compared with using single feature, the multiple feature
fusion based method exhibits the best expression recognition results even in different classifiers and
different datasets.

Similarly, this paper used one of three classifiers (IBK/MLP/SMO) as a single classifier.
Comparison is made between this classifier and a multi-classifier combination (SMO + IBK + MLP)
under the same AUs feature for facial expression recognition. From the experiment (Table 8),
we found that the recognition rate of all single classifiers alone does not exceed the multiple classifiers
fusion method.

As is shown in the Tables 7 and 8, all the cases with highest prediction accuracy are specified in
bold. The results show that the multiple features or the multiple classifiers fusion method achieves the
highest accuracy rate in most cases and comparative results with the highest ones in a few other cases.
It indicates that the fusion methods generally outperform any single feature or classifier-based methods.
The results also verify that there is a great complementarity between different features/different
classifiers. Therefore, benefiting from making full use of the diversity among different features and
classifiers, fusion-based methods overcome the shortcomings of a unilateral aspect. Conclusively,
the fusion strategy for AUs’ prediction based on a stacking framework is feasible.
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Table 7. Comparing recognition results with simple feature and multi-feature based on AU.

Accuracy (%) Feature Description MLP SMO IBK NB

JAFFE

Gabor feature 63.19 59.89 62.09 53.30
Geometry feature 83.52 79.67 84.07 78.02

LBP feature 46.15 45.60 47.25 47.80
WLD feature 78.02 71.98 75.82 70.33

Gab + Geo + LBP + WLD 89.07 90.16 81.42 83.61

CK

Gabor feature 64.97 55.65 63.84 62.99
Geometry feature 88.98 84.18 86.44 87.29

LBP feature 62.43 53.67 59.32 62.71
WLD feature 72.32 65.82 72.32 73.73

Gab + Geo + LBP + WLD 94.65 91.83 85.92 93.52

Table 8. Comparison of recognition results with a simple classifier and multi-classifiers based on AU.

Accuracy (%) Base Classifiers Gabor Feature Geometry Feature LBP WLD

JAFFE

IBK 53.30 64.29 38.87 60.85
MLP 50.27 74.45 48.764 64.42
SMO 50.27 60.16 42.99 60.99

SMO + IBK + MLP 59.62 81.32 46.70 74.04

CK

IBK 53.74 74.79 50.49 58.55
MLP 57.98 87.64 54.94 64.55
SMO 58.90 80.00 58.05 64.97

SMO + IBK + MLP 61.86 89.22 59.53 71.04

7.3. Performance Analysis with a Variety of Single Classifier Performance

As mentioned before, the selected features and classifiers are basic. As we aim to prove the stacked
based fusion scheme, multiple features and multiple classifiers are beneficial to integrate the advantage
of performance and overcome the limitation of a single feature and classifier. Therefore, the overall
performance would be improved if each single source, including features and classifiers, is more
powerful. To demonstrate this, we discuss the performance when changing the performance of the
meta-classifier for facial expression recognition. To do this evaluation, we employ the different types of
SVMs, from linear SVM to kernel SVM, with polynomial and radial basis kernel function respectively
as the meta-classifier. The parameters are configure as default parameters of Weka’s SVM. The first layer
is still fusion of three classifiers (IBK/MLP/SMO) and four features (Gab + Geo + LBP + WLD) for AU
recognition. The experiment result with the 10-fold approach is shown in Table 9.

Table 9. Comparison of recognition results with a simple classifier and multi-classifiers based on AU.

CK Linear Support
Vector Machine

Polynomial Kernel Support
Vector Machine

Radial Basis Function Kernel
Support Vector Machine

Accuracy (%) 91.83% 92.39% 93.24%

The experiment result demonstrates that overall performance improves when we enhance the
single classifier performance. This conclusion could be expended to the first layer doing AU recognition.
If processing with a more powerful classifier or feature, the overall performance will increase. However,
we prefer to employ the basic classifiers and features to prove our fusing strategy and to prove that even
an ensemble with a basic diversity source will, by learning, still achieve the better classification result.

In this part, we discuss the classification performance with the confusion matrix to clarify the
possible reason causing the false prediction. The confusion matrix of facial expression recognition with
the above three SVM as meta-classifiers is shown in Figure 8.
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The above fusion matrix shows that most mixing expressions happen mostly at the same pairs,
for example, the sad–angry pair, the disgust–angry pair, and the fear–happy pair. It is interesting to
find that most situations with the false recognition reduction by the Kernel SVM compare to the linear
SVM. We also find that confusing expressions, such as disgust and angry, are to some extent easily
confused emotions. However, the happy emotion is still confused with fear. We analyse the images.
Some are shown in Figure 9. We can see that one happy expression image and one fear expression
image for the left subject have bigger differences than for the happy and fear expression from the
right subject. We deduct that this false recognition is partly because the images are similar. Therefore,
a more powerful discriminate feature or classifier could help to improve the overall performance.
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7.4. Experiment on AU Weighting Multi-Layer Fusion Expression Recognition Performance Analysis

To test the performance of our fusion expression recognition approach with or without the learned
weights of AU, we did comprehensive experiments to classify six expressions (angry, disgust, fear,
happy, sad, surprise), which will ensure the comprehensiveness of final recognition results. Several
different metrics are used for evaluating algorithm performance, which are the recognition rate, false
positive rate and receiver operating characteristic curve (ROC) area for each expression. Figures 10
and 11 show the results of the multi-layer model with or without AU optimal weight respectively.
From top to bottom, performance comparison on the CK and JAFFE datasets is shown in terms of (a)
recognition rate; (b) false positive rate (FTP) and (c) ROC area(ROCA) for six basic expressions.

Experimental results in Figures 9 and 10 show that the proposed multi-layer face recognition
method with the AU weighted strategy has a significantly increased recognition rate. For six expressions,
the mean accuracy achieved is 96.62% for CK and 94.63% for JAFFE, which exceed, by 2.02% and
2.23%, that without AU weight tuning. The average FTP of the AU optimal weight is 0.103 in CK
and 0.147 in JAFFE, much lower than un-tuning AU weighted. The average of ROCA is 0.94 for CK
and 0.91 for JAFFE, which shows the capability of classifier recognition: the higher the value, the
stronger the performance. We can obviously conclude that our proposed AU optimal weighted fusion
is effective and accurate for facial expression recognition.
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The computational complexity of this approach is much less than for any kind of deep learning
method; input image is 355 for CK and 187 for JAFFE. The classifiers on average took about 0.35 s (CK)
and 0.21 s (JAFFE) to complete classification in a 10-fold experiment. The recognition results using the
highest performance classifiers respectively on CK and JAFFE are shown in Table 10.

Table 10. The recognition results of the best performed classifier on CK and JAFFE.

Database Mean Accuracy (%) Angry Disgust Fear Happy Sad Surprise

CK 96.62% 95.49%
(SMO)

97.18%
(NB)

94.65%
(SMO)

97.46%
(NB)

94.93%
(SMO)

100.00%
(NB)

JAFFE 94.63% 89.61%
(NB)

96.72%
(SMO)

92.90%
(NB)

96.72%
(SMO/NB)

94.54%
(MLP)

97.26%
(SMO)

7.5. Comparison with Several State-Of-The-Art Expression Recognition Methods

We compared our multi-level fusion based expression recognition method with some work in
the current literature using either the CK or JAFFE dataset. Comparisons of recognition accuracies
are shown in Tables 11 and 12. The accuracy rate achieved in our proposed approach is highlighted
in bold.
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Table 11. Comparison with existing methods on CK database.

Reference Accuracy Method

Cohen et al. (2003) [38] 73.2% Geometric feature + tree-augmented-NB
Bartlett et al. (2005) [2] 89.1% Gabor filter + Adaboost + SVM
Shan et al. (2009) [39] 88.9% Boosted-LBP + SVM

Thiago et al. (2013) [26] 88.9% Ensemble Gabor and LBP
Xu et al. (2009) [40] 89.1% ASM + geometry feature + LSVM classifier
Jia et al. (2013) [29] 90.7% Dynamic geometry feature + stacking

Tian Y et al. (2002) [3] 92.7% Gabor wavelets + geometry with FACS
Chen-Chiung Hsieh et al. (2016) [31] 94.7% dynamic face regions + A multi-class SVM

Deepak Ghimire et al. (2013) [23] 95.17% Feature selective multi-class AdaBoost
Our proposed approach 96.62% Multi-layer of optimally weighted AU

Ping et al. (2014) [41] 96.7% Boosted deep belief network
Deepak Ghimire et al. (2013) [23] 97.35% SVM on boosted features

Table 12. Comparison with existing methods on JAFFE database.

Reference Accuracy Method

Bashyal and
Venayagamoorthy (2008) [42] 90.2% Gabor filters + Learning Vector Quantization (LVQ)

Koutlasand Fotiadis (2008) [43] 92.3% Gabor filters + artificial neural networks

Yu et al. (2013) [44] 85.7% WLD + pool + SVM

Kyperountas M et al. (2010) [45] 85.9% Gabor filters + Salient feature and reliable classifier
selection (SFRCS)

Fu (2008) [46] 87.5% Convolution Neural Network (CNN)

Jia et al. (2013) [29] 92.3% Gabor filters + stacking

Ping et al. (2014) [41] 93.0% Boosted deep belief network

Our proposed approach 94.63% Multi-layer of optimal weighted AU

The results in Tables 11 and 12 show that our proposed fusion method outperforms the others in
both CK and JAFFE datasets. Comparing with the deep belief network of Ping et al. [41], our proposed
method achieves a comparative recognition rate only 0.1% less than the current prevalent deep learning
based method. Ping et al. explored a deep learning method to find the discriminative feature and
strong classifiers to recognize expressions. It achieves significantly high recognition results. However,
it has a potential risk of over fitting based on the learning scheme. While our proposed method is
based on fusion of the various typical features, it overcomes the shortage of dependency on datasets.
Actually, the typical features have an advantage in representing the face, as they are derived from
the facial analysis problem, compared with the data-driven based deep learning scheme. By making
full use of the complementary contribution of different typical features, the generalization ability in
representing expression action blocks is improved.

As listed in Table 11, our proposed approach also has a lower accuracy rate compared with the
others, such as that in Deepak Ghimire et al., especially with SVM + boosting feature [23]. This is,
to some extent, due to our feature and classifier selection. In this comparison, Deepak Ghimire et al.
propose a well-designed dynamic feature, whilst we do not make full use of temporal features of
facial expression, which is a significant attribution for expression recognition. In fact, our fusion
solution has the great potential to improve the overall performance by reselecting the powerful
well-designed features or classifiers. From this viewpoint, what we proposed has the advantage of
being a flexible scheme to integrate the different sources, which has no limitation of similar mechanism.
In general, our proposed method performs well in different datasets and displays generally good
recognition performance.
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8. Conclusions and Future Work

Facial expression recognition plays a significant role in intelligent human–computer interaction.
In this paper, we present some performance analyses on the fusion ensemble based facial expression
recognition method with multiple typical features and classifiers. In addition, we propose learning the
contribution of AUs in each facial expression prediction by associating rule learning and optimizing
the AU weights accordingly. In contrast to previous work, we aim to explore the fusion performance
of AU features based on a kappa-error evaluation technique, and design an AU weight optimization
idea based on an a priori algorithm. With the stacking framework, a multi-level calculating model is
estimated. At the base-level, we engage complementary features and multiple classifiers to predict
the probability of AUs’ occurrence; at the meta-level, the model completed the facial expression
classification with AUs’ optimally weighted fusion according to the base-level output. Extensive
experiments show that multi-layers of the AU descriptor obtain the discriminative ability for
six expressions well, and the recognition performance improves by adjusting AU weights. Moreover,
the fusion strategy with several feature descriptors has approximately a 12% higher recognition rate
than any single feature descriptor, and it also verifies that each descriptor plays complementary roles
in AU representation. Each AU has different contribution roles for different expressions. As a result,
our fusion strategy, based on the typical features and classifiers, provides a more stable and better
solution of facial expression recognition. The experiment results also prove that the fusion strategy
not only outperforms the non-fusion strategy, but also achieves higher recognition results than some
state-of-the-art facial expression methods, including one deep learning solution.

In the future, more diverse data, for example, with no lab capturing restriction, will be used for
performance evaluation of the proposed fusion strategy. Furthermore, to improve the system’s
performance, we will analyse the movement of the muscles and global features, minimize the
computation to satisfy the demand for automatic and real-time applications, and overcome the
illumination and gesture changes in facial expression recognition.
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