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Abstract: A new electromechanical coupling model was built to quantitatively analyze the tuning
fork probes, especially the complex ones. A special feature of a novel, soft tuning fork probe, that the
second eigenfrequency of the probe was insensitive to the effective force gradient, was found and
used in a homemade bimodal atomic force microscopy to measure power dissipation quantitatively.
By transforming the mechanical parameters to the electrical parameters, a monotonous and concise
method without using phase to calculate the power dissipation was proposed.
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1. Introduction

Quartz tuning forks are widely used in clocks, watches, and digital circuit frequency standards.
By taking advantage of their extreme stability in frequency, their self-sensing and self-actuating
capabilities, their high quality factor, and the ease with which the vibration signal may be obtained
with fewer components than the conventional scanning probe microscopy (SPM) probes, etc., they
can be used as force sensors in SPM [1–5]. The tuning fork probes are typically realized in two forms
(Figure 1). The tip of the probe could be a carbon nanotube, an optical fiber, a conventional Atomic
Force Microscopy (AFM) cantilever, or another type of stylus. With the development of some complex
tuning fork probes [6,7], the quantitative use of the data (in terms of amplitude, phase, and frequency
shifts) becomes challenging for these sophisticated probes. In this article, a kind of electromechanical
coupling model with multistage coupling is proposed and used to describe a complex probe.
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1. Introduction 

Quartz tuning forks are widely used in clocks, watches, and digital circuit frequency standards. 
By taking advantage of their extreme stability in frequency, their self-sensing and self-actuating 
capabilities, their high quality factor, and the ease with which the vibration signal may be obtained with 
fewer components than the conventional scanning probe microscopy (SPM) probes, etc., they can be used 
as force sensors in SPM [1–5]. The tuning fork probes are typically realized in two forms (Figure 1). 
The tip of the probe could be a carbon nanotube, an optical fiber, a conventional Atomic  
Force Microscopy (AFM) cantilever, or another type of stylus. With the development of some complex 
tuning fork probes [6,7], the quantitative use of the data (in terms of amplitude, phase, and frequency 
shifts) becomes challenging for these sophisticated probes. In this article, a kind of electromechanical 
coupling model with multistage coupling is proposed and used to describe a complex probe. 
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2. Modelling

The tuning fork probe can be seen as a mechanical oscillator in interaction with the surface by the
tip. However, the output signal is current caused by the tuning fork’s piezoelectric effect. Tuning fork
probes can be described by electromechanical coupling models [8–10].

A system’s differential equation of motion is

m
..
X(t) + b

.
X(t) + kX(t) = F(t) (1)

A circuit’s differential equation is

I(t)
C

+ L
..
I(t) + R

.
I(t) =

.
U(t) (2)

By comparing the Equations (1) and (2) after Laplace transformation as shown in Equation (3),
the corresponding relationship of the electrical and mechanical parameters are shown in Table 1.

ms2 + bs + k = F(s)
X(s) =

F(s)s
v(s)

Ls2 + Rs + 1
C = U(s)s

I(s)

(3)

Table 1. The corresponding relationship of the electrical and mechanical parameters.

Electrical Mechanical

Inductance (L) Mass (m)
Capacitance (C) Reciprocal spring constant (1/k)
Resistance (R) Damping (b)

Voltage (U) Force (F)
Current (I) Velocity (v)

The coupling can be regarded as an ideal transformer. According to the principle of the ideal
transformer as shown in Figure 2a, the equivalent impedance Z′ in the left part is:

U2
1

Z′ =
U2

2
Z

Z′ = U2
1

U2
2

Z = m2Z
(4)

And the relation between Z and Z′ in Figure 2b is

2U2
1

Z′ =
U2

2
Z

U1
U2

= m
2

Z′ = 2U2
1

U2
2

Z = m2

2 Z

(5)
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2.1. The Model of Normal Tuning Fork Probes

At first, the multistage coupling model as shown in Figure 3 is utilized to specify normal tuning
fork probes. The feature of the new model is two mechanical coupling stages are added to describe the
cantilever (or the tip) and the sample respectively. The couplings are regarded as ideal transformers.
All the mechanical parameters will be transformed to electrical parameters in an RLC circuit using the
principle of ideal transformers.
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Figure 3. The electromechanical coupling model of normal probes.

This electromechanical coupling model consists of three parts: a typical electromechanical
coupling part describing the tuning fork, a mechanical coupling part representing the connection
between the cantilever (or tip) and the tuning fork, and another mechanical coupling part explaining
the contact between the cantilever tip and the sample. In the model, the parameters, b, k, m, F, v,
with different subscripts, denote damping, spring constant, mass, force, and the velocity of the tuning
fork (subscript tf), and cantilever (subscript cl), respectively; Cp is the parasitic capacitance; i is the
current; Vin is the excitation voltage; p is the electromechanical coupling factor; n, bsa, and keff are the
mechanical coupling factor, the damping, and effective force gradient between the tip and the sample.
If the normal tuning fork’s tip is regarded as a rigid body, the spring constant (kcl) of the tip is infinite
and the damping (bcl) is zero. The coupling factor between the tip and the tuning fork, and the factor
between the tip and sample (factor n in Figure 3) are one because the tip is adhered to the tuning fork
directly, vtf = vcl = vtip. So the model can be transformed to:

With Equation (4), the model in Figure 4 can be transform to a simple RLC circuit as shown in
Figure 5.
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And the parameters in Figure 5 are

Rprobe = p2(btf + bsa)

Lprobe = p2(mtf + mcl)

Cprobe = 1
p2(ktf+keff)

(6)

So the frequency shift after contact is

∆ f = f ′ − f0 = 1
2π

√
LprobeC′probe

− 1
2π
√

LprobeCprobe

= 1
2π

√
LprobeC′probeCprobe

(
√

Cprobe −
√

C′probe)

= f0√
C′probe

(
√

Cprobe −
√

C′probe)

(7)

∆ f
f0

=

√
Cprobe
C′probe

− 1

=
√

ktf+keff
ktf
− 1

=
√

1 + keff
ktf
− 1

⇒ (∆ f
f0
)

2
+ 2(∆ f

f0
) = keff

ktf

(8)

For ∆f << f 0,

keff ≈ 2
∆ f
f0

ktf (9)

where ktf is the spring constant of the tuning fork’s prong, ∆f is the frequency shift, f 0 is the resonance
frequency without contact. This equation is the same with the conclusion that regards the prong as
a cantilever [11,12]. That means this model is correct to describe the normal tuning fork probes.

2.2. The Electromechanical Coupling Model of the Akiyama Probe

This kind of model also can be used to describe the tuning fork probes with complex structures.
The Akiyama probe symmetrically couples a long, soft, U-shaped cantilever to a quartz tuning fork [7]
(Figure 6). In this article, an electromechanical coupling model (Figure 7) with similar symmetrical
structure is built to realize the quantitative analysis of the Akiyama probe.
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Figure 7. The electromechanical coupling model of an Akiyama probe.

This electromechanical coupling model consists of three parts: a typical electromechanical
coupling part describing the tuning fork, a mechanical coupling part representing the connection
between the cantilever and the tuning fork, and another mechanical coupling part explaining the
contact between the cantilever tip and the sample. In the model, the parameters, b, k, m, F, v,
with different subscripts, denote damping, spring constant, mass, force, and the velocity of the tuning
fork (subscript tf), and cantilever (subscript cl), respectively; Cp is the parasitic capacitance; i is the
current; Vin is the excitation voltage; p is the electromechanical coupling factor; n, bsa, and keff are the
mechanical coupling factor, the damping, and effective force gradient between the tip and the sample.
The ends of the tuning fork prongs and the cantilever are stuck together, therefore, the coupling factor
between the tuning fork and the cantilever is one.

2.2.1. The Transformation of the Model

With Equation (4), the cantilever part in Figure 7 can be transformed to the tuning fork part as
shown in Figure 8.
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With Equation (5), the sample part in Figure 8 can be transformed to the probe as shown in
Figure 9.
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With Equation (4), the mechanical part in Figure 9 can be transformed to the electrical part as
shown in Figure 10.
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As the two parts of the circuit are in parallel, the tuning fork prong’s electrical parameters are:

Rtf =
p2

2 btf

Ltf =
p2

2 mtf

Ctf =
2

p2ktf

(10)

where btf, mtf, ktf are damping, spring constant, mass of one of the tuning fork prongs. Factor p is the
electromechanical coupling factor.

The cantilever’s electrical parameters are:

Rcl =
p2

2 bcl

Lcl =
p2

2 mcl

Ccl =
2

p2kcl

(11)

The sample’s electrical parameters are:

Rsample = n2 p2bsa
4

Csample = 4
n2 p2keff

(12)

The model can therefore be deemed equivalent to the circuit shown in Figure 11.
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The electrical parameters of the equivalent circuit can be calculated as:

Rprobe = Rtf + Rcl + Rsample = p2

2 btf +
p2

2 bcl +
p2n2bsa

4

Lprobe = Ltf + Lcl =
p2

2 (mtf + mcl)

Cprobe = 1
1

Ctf
+ 1

Ccl
+ 1

Csample

= 1
p2
2 ktf+

p2
2 kcl+

n2 p2
4 keff

(13)

The final RLC circuit is shown as Figure 5.
So when keff = 0, the resonant frequency of the probe without contact is:

f0 =
1

2π
√

LprobeCprobe

=
1

2π

√
p2
2 (mtf+mcl)
p2
2 (ktf+kcl)

=
1

2π

√
ktf + kcl

mtf + mcl
=

1
2π

√
kprobe

mprobe
(14)

The resonant frequency after touching the sample is:

f ′ =
1

2π

√√√√ kprobe +
n2

2 keff

mprobe
(15)

2.2.2. The Verification of the Model

For proving the validity of this electromechanical coupling model of an Akiyama probe, finite
element analysis (FEA) software (ANSYS, 14.0, ANSYS Inc., Canonsburg, PA, USA, 2011), is used to
simulate the contact between the tip and the sample [13]. The parameters of the Akiyama probe used
to build the model are shown in Table 2.

Table 2. The parameters of ANSYS simulation.

Parameters Tuning Fork Cantilever

Length/µm 2400 175
Thickness/µm 220 31.9

Width/µm 103.7 3.7
Density/kg·m−3 2290 2300

Young modulus/GPa 78.7 180

The contact between the tip and the sample is simulated by a spring as shown in Figure 12
and the spring constant represents the effective force gradient between the tip and the sample (keff).
Where keff is

keff = 〈∇Fts〉 (16)

Appl. Sci. 2017, 7, x 7 of 14 

The electrical parameters of the equivalent circuit can be calculated as: 
2 22 2

probe tf cl tf cl

2

probe tf cl tf cl

probe 2 2 2 2

tf cl
tf cl

2 2 4

( )
2

1 1
1 1 1

2 2 4

sa
sample

eff
sample

p n bp pR R R R b b

pL L L m m

C
p p n pk k kC C C

= + + = + +

= + = +

= =
+ + + +

 (13) 

The final RLC circuit is shown as Figure 5. 
So when keff = 0, the resonant frequency of the probe without contact is: 

probetf cl
0 2

tf cl probeprobe probe
tf cl

2

tf cl

1 1 1 1
2 22π

( )
22π

( )
2

kk kf
m m mL C p m m

p k k

+= = = =
+

+

+

π π
 

(14) 

The resonant frequency after touching the sample is: 

2

probe eff

probe

1 2'
2π

nk k
f

m

+
=  (15) 

2.2.2. The Verification of the Model 

For proving the validity of this electromechanical coupling model of an Akiyama probe, finite 
element analysis (FEA) software (ANSYS, 14.0, ANSYS Inc., Canonsburg, PA, USA, 2011), is used to 
simulate the contact between the tip and the sample [13]. The parameters of the Akiyama probe used 
to build the model are shown in Table 2. 

Table 2. The parameters of ANSYS simulation. 

Parameters Tuning Fork Cantilever
Length/μm 2400 175 

Thickness/μm 220 31.9 
Width/μm 103.7 3.7 

Density/kg·m−3 2290 2300 
Young modulus/GPa 78.7 180 

The contact between the tip and the sample is simulated by a spring as shown in Figure 12 and 
the spring constant represents the effective force gradient between the tip and the sample (keff). Where 
keff is 

eff tsk F= ∇  (16) 

 
Figure 12. The ANSYS model of an Akiyama probe. Figure 12. The ANSYS model of an Akiyama probe.



Appl. Sci. 2017, 7, 121 8 of 14

The Fts is the force between the tip and sample, it can be described as follows in DMT model:

Fts =


F0

(1− a0−z
a0

)
2 , z ≥ a0

− 4
3 E∗
√

R(a0 − z)
3
2 + F0, z < a0

(17)

where F0 is the adhesive force, z is the distance between the tip and sample, a0 is the radius of the
atom, R is the radius of the tip, and E* is

1
E∗

=
1− v2

s
Es

+
1− v2

t
Et

(18)

where Es, Et are the Young’s modulus of the sample and the tip, vs, vt are the poisson ratio of the
sample and the tip.

In the simulation, a constant keff is used, which means the maximal Fts is

Fmax = keff A (19)

where A is the amplitude of the cantilever.
The results of the non-contact simulation are shown in Table 3.

Table 3. The results of ANSYS simulation.

Resonance Frequency/Hz Tuning Fork Amplitude Dtf/m Charge q/C Cantilever Amplitude Dcl/m

52,888 1.26 × 10−7 3.73 × 10−13 3.36 × 10−6

Coupling factors, p and n, can therefore be calculated as:

p = 2vtf
i = 2ωDtf

ωq = 2Dtf
q = 6.76× 105 m/C

n =
vtip
vtf

=
ωDtip
ωDtf

=
Dtip
Dtf

= 26.67
(20)

The tuning fork prong is always represented by rectangular cantilever, the spring constant,
and effective mass can be calculated as:

k = 1
4 Ew( t

l )
3
= 1571.55 N/m

m = 0.24ρwtl = 3.01× 10−8 kg
(21)

The resonant frequency with contact can be expressed as:

f ′ =
1

2π

√
f 2
0 +

n2keff
2mprobe

(22)

The effective mass of the U-shaped cantilever is difficult to calculate. If this mass is 0.001mprobe
for example, the error in the resonant frequency after ignoring this mass will be:

f 2
1 − f 2

2 =
1

4π2 (
n2keff
mprobe

− n2keff
1.001mprobe

) < 0.001× 1
4π2

n2keff
mprobe

(23)

f1 − f2 =
f 2
1 − f 2

2
f1 + f2

< 0.001× 1
4π2

n2keff
mprobe

1
2 f0

(24)

When the value of keff is small enough, 0.01 N/m for example, the error is less than 1 Hz,
so the effective mass of the U-shaped cantilever can be ignored during the calculation of the resonant
frequency and the spring constant of the probe is given by:
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kprobe = ktf + kcl = 4π2 f 2
0 mtf = 3323.84 N/m (25)

Using the parameters calculated above, the resonant frequencies for different values of keff can be
obtained from Equation (15). Compared with the results of ANSYS simulation as shown in Table 4,
the revised electromechanical coupling model can describe the Akiyama probe correctly when the
value of keff is small. For an average force, between the tip and sample, in tapping mode of typically
less than 1 nN, keff is less than 0.001 N/m in this simulation: the electromechanical coupling model of
the Akiyama probe is accurate as evinced by simulation data.

Table 4. The results of ANSYS simulation with different values of keff.

keff (N/m) ANSYS/Hz n Model/Hz Deviation/Hz

0 52,888 13.38 52,888 0
0.001 52,890 12.92 52,891 1
0.005 52,896 11.18 52,898 2
0.01 52,901 9.49 52,902 1
0.02 52,909 7.15 52,904 −5

2.2.3. The Measurement of the Coupling Factors

The calculation of the real probe’s electromechanical coupling factor uses the vibration amplitude
of the tuning fork and the output current of the probe. The factor n is calculated by measuring the
amplitude of the tuning fork and the cantilever. All the vibration amplitudes are measured by laser
Doppler vibrometer (OFV-3001, Polytec, Waldbronn, Germany). The measured points of the tuning
fork and the cantilever are shown in Figure 13.
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2.3. Feature of the Second Eigenmode

In Equation (15), the coupling factor n determines the influence of keff on the frequency modulation
(FM) mode sensitivity. If n > 1, the influence is magnified, otherwise, it is reduced. In the first
eigenmode as simulated above, n = 26.67, implying that the resonant frequency is quite sensitive to
the value of keff; but in the second eigenmode (Table 5), n < 1, and the sensitivity thereto is very low,
and the simulation results show that the resonance frequency will not change as keff increases.

The second eigenfrequency of the Akiyama probe is not sensitive to keff, which means that the
eigenfrequency is stable when the tip makes contact with the sample. This is a drawback when
studying the relationship between the second eigenfrequency and the contact stiffness. However,
the constant resonant frequency means that the amplitude is related to energy dissipation directly.
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Table 5. The second eigenmode results: ANSYS simulation with different values of keff.

keff (N/m) Resonance Frequency/Hz Charge/C Tuning Fork Amplitude/m Cantilever Amplitude/m

0 206,153 2.07 × 10−13 2.93 × 10−8 1.03 × 10−9

0.0001 206,153 2.07 × 10−13 2.93 × 10−8 1.03 × 10−9

0.001 206,153 2.07 × 10−13 2.93 × 10−8 1.03 × 10−9

0.01 206,153 2.07 × 10−13 2.93 × 10−8 1.03 × 10−9

0.1 206,153 2.07 × 10−13 2.93 × 10−8 1.03 × 10−9

The amplitude change in amplitude modulation (AM) mode can be divided into two parts as
shown in Figure 14. If the resonant frequency is constant, ∆Ak = 0, ∆A = ∆Ab, the amplitude change is
caused only by the energy dissipation.
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2.4. The Calculation of the Power Dissipation

With the electromechanical coupling model of an Akiyama probe, the power dissipation caused
by damping effects in the sample under test is:

Pdis =
1
2

bsaD2
tipω

2 =
1
2

bsav2
tip =

1
2

bsa(
1
2

pni)
2
=

1
2
(

1
4

p2n2bsa)i2 =
1
2

i2Rsample (26)

Given the definition in Equation (13), with parasitic capacitance (Cp) compensation, the impedance
of the circuit in Figure 5 is:

Z(ω) = Rprobe + jωLprobe +
1

jωCprobe
=

jωRprobeCprobe + [1− ( ωω0
)2]

jωCprobe
(27)

When the circuit is resonance oscillating,ω =ω0, the non-contact impedance is:

Z(ω0) = Rprobe =
p2

2
(btf + bcl) (28)

The contact impedance is:

Z′(ω0
′) = Rprobe + Rsample =

p2

2
(btf + bcl +

1
2

n2bsa) (29)

As mentioned above, the resonant frequency is not changed, so ω0 = ω0
′, and the change in

current is given by:

∆I =
U

Z(ω0)
− U

Z′(ω0 ′)
= U

Rsample

Rprobe + (Rprobe + Rsample)
= I′

Rsample

Rprobe
(30)

where U is the input voltage, I′ is the current after contact. With Equations (26) and (30), the power
dissipation is given by:

Pdiss =
1
2

I′2Rsample =
1
2

I′2
∆I
I′

Rprobe =
1
2

I′∆IRprobe =
1
2

UI′(I − I′)
I

(31)
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where I is the current without contact.
The classical equation using phase to calculate the power dissipation is [14]:

Pdiss =
1
2

kω
Q

(A0 A sinϕ− A2 ω

ω0
) (32)

where k is the spring constant of the probe, Q is the quality factor, A0 and A are the amplitude
with or without contact, ω is the exciting frequency, ω0 is the resonance frequency, ϕ is the phase.
Whenω =ω0, the equation become:

Pdiss =
1
2

kω0

Q
(A0 A sinϕ− A2) (33)

For
Q =

√
km
b

k = ω2
0m

(34)

Then,
Pdiss =

1
2 bω2

0(A0 A sinϕ− A2)

= 1
2 b[(A0ω0)(Aω0) sinϕ− (Aω0)

2]

= 1
2 b(v0v sinϕ− v2)

(35)

where k is the spring constant of the probe, Q is the quality factor, A0 and A are the amplitude with
or without contact,ω is the exciting frequency,ω0 is the resonance frequency, ϕ is the phase, b is the
damping of the probe, v0 and v are the velocity with or without contact. When the probe is kept at
resonance,ϕ = 90◦, and with the corresponding relationship in Table 1, the two methods are equivalent.

Pdiss =
1
2

b(v0v− v2)⇔ 1
2

Rprobe(I I′ − I′2) (36)

By electromechanical coupling, Equation (31) is equivalent to Equation (32) when the excitation
frequency is kept at the resonance frequency during the scanning as the feature of the Akiyama probe
is working in the second eigenmode. So Equation (31) is correct.

3. Measuring System

The bimodal AFM measuring system based on the Akiyama probe shown in Figure 15 is built
to utilize this feature to measure the power dissipation. Two lock-in amplifications (LIA) excite the
probe and demodulate the output signal. The first eigenmode signal amplitude is sent to the feedback
system to control the PZT (piezoelectric ceramic transducer) to keep the distance between the tip and
the sample constant as normal tapping mode, the position of the PZT describes the morphology of the
sample. The second eigenmode signal amplitude is recorded, as mentioned above, this is related to the
power dissipation therein.

The setpoint of the first eigenmode signal is 0.6 A01, the amplitude ratio of the two signals is
A01/A02 = 0.723 V/0.503 V ≈ 1.437, where A01 and A02 are the amplitude of the first and the second
eigenmode signals without contact. Parameters of the probe: the eigenfrequencies are f 01 = 46.162 kHz,
f 02 = 202.646 kHz, cantilever spring constant k ≈ 5 N/m, quality factors: Q1 = 1154, Q2 = 6776.
The scanning speed is 250 nm/s. There are 220 measured points along the length of 8760 nm.
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4. Results and Discussion

The sample consists of Au wire on a SiO2 substrate, the height of the Au wire is about 150 nm.
The sample is coated with a 20 nm thick Cr layer as shown in Figure 14 to obtain the similar surface
Young’s modulus (SiO2 substrate: 113.665 ± 4.031 Gpa, Au substrate: 119.382 ± 12.734 Gpa, measured
by a nano indenter, Agilent Technologies Inc., Santa Clara, CA, USA). Figure 16 shows the results of
a line on the sample and all the lines’ results are averaged and listed in Table 6.
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Table 6. The results of tests on the Micro-Electro-Mechanical System (MEMS) sample at intervals of 1 µm.

Substrate Au/nW SiO2 Deviation

Line 1 0.599 0.609 10
Line 2 0.594 0.599 5
Line 3 0.591 0.596 5
Line 4 0.589 0.598 9
Line 5 0.585 0.597 12

Average 0.591 0.600 8
Standard Deviation 5 10 3

For the uniform surfaces of the two parts, the difference of power dissipation is only caused by the
different substrates. The deviation between the two parts are stable in Table 6, the power dissipation
of the Au substrate is less than the SiO2 substrate. The repeatable results mean this method is credible.
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5. Conclusions

In conclusion, with the help of an electromechanical coupling model, a special feature of a tuning
fork probe with complex structure is found and utilized to measure power dissipation. According to
the model, the insensitive second eigenfrequency and the relation between the output current and the
power dissipation are illustrated. In Equation (31), there are no mechanical parameters of the probe
and the electrical parameters are easy to measure. Different to the complex and non-monotonous
method using phase to calculate the power dissipation, the Equation (31) is not necessary to calibrate
the probe’s spring constant which is still hard to measure accurately. With the monotonous relation
between the current and the sample’s damping, the contrast of the image is stable.
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