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Abstract: Agent-based intelligent manufacturing control systems are capable to efficiently respond
and adapt to environmental changes. Manufacturing system adaptation and evolution can be
addressed with learning mechanisms that increase the intelligence of agents. In this paper a
manufacturing scheduling method is presented based on Timed Colored Petri Nets (CTPNs) and
reinforcement learning (RL). CTPNs model the manufacturing system and implement the scheduling.
In the search for an optimal solution a scheduling agent uses RL and in particular the Q-learning
algorithm. A warehouse order-picking scheduling is presented as a case study to illustrate the
method. The proposed scheduling method is compared to existing methods. Simulation and state
space results are used to evaluate performance and identify system properties.

Keywords: agent-based manufacturing scheduling; colored petri nets; reinforcement learning;
Q-learning

1. Introduction

Flexibility, cost reduction, production efficiency, improved inventory control, and ability to
respond to fluctuations in demand are among the drivers for innovative automated solutions to all
members of a supply chain. Manufacturing scheduling is the optimization process of assigning a
limited number of resources within a temporal horizon to a set of manufacturing processes of a plan
subject to a set of constraints [1]. Computation time to obtain a global optimum increases exponentially
with problem size, as such scheduling is generally considered NP-hard (non-polynomial hard) [1–3],
whereas integrated process planning, scheduling and control, and dynamic response to emergence
increase the complexity of manufacturing scheduling. New generation real-time control systems allow
optimal performance under different conditions for flexible, autonomous, and adaptive manufacturing
systems, generally called intelligent manufacturing systems, such as multi-agent systems (MAS) and
Holonic Manufacturing Systems (HMS) [2]. The application of agent technologies in manufacturing
supports distributed control and execution, and provides robustness, reconfigurability, and re-usability.
The new generation of manufacturing control systems may exhibit self-organization and emergent
behavior in order to respond to environmental changes [2]. Learning is a key method used for this
purpose in agent-based manufacturing systems [4].

Various definitions for the term “agent” exist. In Wooldridge [5], “an agent is a computer system
that is situated in some environment and that is capable of autonomous action in this environment
in order to meet its design objectives”. The most important properties of an agent for manufacturing
systems are autonomy, intelligence, adaptation, and co-operation [2]. An agent can increase its
intelligence through learning. Reinforcement learning (RL) is a procedure for an agent to learn to act
optimally to achieve its goals through interaction with its environment. For scheduling, the learning
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task is to produce a scheduling action that will lead to minimize (or maximize) the related performance
measure. A widely used RL algorithm is Q-learning [6,7].

Petri Nets (PNs) and Colored Petri Nets (CPNs) are a discrete-event graphical and mathematical
modeling tool applicable to systems characterized as being concurrent, asynchronous, distributed,
parallel, nondeterministic, and/or stochastic [8,9]. As such, they have been used extensively for
modeling, scheduling, and control of Flexible Manufacturing Systems (FMS). Their main features for
this purpose can be described as a powerful modeling ability to describe concurrent, synchronous,
conflict, and casual behavior; logic properties (such as boundedness, liveness) and control logic code
generated directly from PNs [10]; and the performance evaluation of the system [10,11], including the
ability to represent many states concisely, as well as to model precedence relations, deadlocks, conflicts,
and resource constraints [12,13]. CPNs can represent parts with attributes as well as temporal activities
(Timed Colored Petri Nets, CTPNs). CPN is a discrete-event modeling tool combining PNs with the
functional programming language Standard ML [14]. As a graphical-oriented high-level language,
it is used for the modeling and validation of systems in which concurrency, communication, and
synchronization play a major role. This is why it finds many applications in the area of distributed
artificial intelligence (AI) where agents come from.

Combinations of PNs- and AI-search based techniques have found applications to manufacturing
scheduling, where PNs model the system and a heuristics based search through the reachability
graph finds an optimal or near-optimal solution. However, these methods are not as efficient for large,
complex manufacturing systems in changing environments. Moreover, CPNs are more suitable for
modeling complex manufacturing systems. In this paper a CTPN-based manufacturing scheduling
method is presented. CTPNs model an agent-based system and the Q-learning RL algorithm is used by
the scheduling agent as a guide to obtain an optimal solution. In order to evaluate the proposed method,
it is compared to existing scheduling methods applied to known job shop benchmark examples. A
warehouse order-picking scheduling is used as a case study to illustrate the applicability of the method.

The rest of the paper is organized as follows. A literature review is given in Section 2.
The scheduling method is presented in Section 3. It is illustrated with a case study in Section 4.
In Section 5 the performance evaluation and verification of PN-related system properties are given
using simulation and state space report results. Conclusions are presented in Section 6.

2. Literature Review

2.1. PNs and CPNs Combined with AI Techniques for Manufacturing Scheduling

CPNs are a discrete-event graphical language used to construct models of distributed, concurrent
systems, and discover their properties. PN and CPN models consist of places, transitions, and arcs
(joining places and transitions). Transitions and arcs represent events that could cause state changes
and their interactions, respectively. Tokens reside in PN places and their number controls the firing of
transitions (i.e., system changes). The distribution of tokens on the places, i.e., the marking, represents
the state of the system. However, for large complex systems, the size of the PN system model becomes
too large to be tractable. CPNs overcome this limitation by the use of color tokens, i.e., tokens with
attached data types, and by the use of hierarchical CPNs. Hierarchical CPNs are used to model complex
systems by structurally decomposing system modules to submodules. CPN simulation modeling
enables investigation of the system behavior by studying the various ‘what-if’ system scenarios.
Time integration (deterministic or stochastic time) in the system model allows the investigation of
simulation-based performance measures, such as delays and throughput, as well as modeling of
real-time systems. While the graphical aspect of CPNs allows visualization of the modeled system, the
mathematical aspect of CPNs allows the set-up of mathematical models governing the behavior of the
systems [9] and verification of system properties by means of state space analysis methods. State space
analysis identifies all possible reachable states and state changes of a system model, and visualizes the
results as a directed graph where nodes represent system states, and arcs represent occurring events.
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It allows verification of behavioral properties of the system, such as boundedness, home properties,
liveness, and fairness. State space exploration allows the automatic detection of all events in a system
state, analysis of the cause–effect event relationship, as well as control of system behavior [15].

CPNs provide a modeling formalism that can support the decision-making process of logistics
systems, i.e., systems with stochastic, asynchronous, and dynamic behavior [15,16]. Manufacturing
scheduling is an optimization process, considered as NP-hard problem. Reviews of PN/CPN
applications in modeling of FMS and production scheduling have been presented (e.g., [13,17]).
Scheduling and control schemes based on combinations of AI techniques and PNs/CPNs aim to
explore the advantages of both techniques. AI techniques used for PN based manufacturing scheduling
include heuristic rule based methods, heuristic search algorithm methods, mathematical programming
methods, expert systems and knowledge-based systems, and distributed AI methods based on MAS
and HMS.

In heuristic rule-based methods, PNs model the manufacturing system, whereas heuristic rules
aim to resolve the scheduling conflicts. However, they were developed for specific classes of problems
(e.g., [18,19]). Exploration of state space methods, i.e., expansion of the reachability graph, in order to
find an optimal solution is difficult due to the state space explosion problem even for small systems.
Modeling approaches that have been introduced to handle the state space explosion include stochastic
well-formed colored nets (SWNs) [20] and Markovian Agents [21]. SWNs were introduced together
with a symbolic reachability graph construction algorithm that allows reduction of the Markov
chain obtained by CPNs or other classical High-level PNs by exploiting the system symmetries.
In Castiglione et al. [21] an analytic modeling technique based on the use of Markovian Agents and
Mean Field Analysis has been proposed that allows the effective modeling of concurrent Big Data
applications. In heuristic search algorithm methods, PNs model the system and a search algorithm
based on a heuristic function is used to expand a portion of the reachability graph, containing the
most promising nodes that leads to an optimal scheduling solution [3,22–36]. The heuristic function
must be admissible in order to obtain the optimal solution. In Lee and DiCesare [3] a heuristic search
algorithm based on the A* algorithm, a branch and bound type algorithm, was introduced to limit the
search in the PN reachability graph in order to find the optimal solution for FMS scheduling problems.
Modified and improved versions of the A* based heuristic search method have been presented in the
literature [25–36]. In order to reduce the search time, non-admissible heuristic functions were proposed
in [31,32]. A heuristic search method for FMS scheduling based on combination of admissible and
non-admissible heuristic functions in the A* algorithm was presented in [33].

In the area of agent-based systems and HMS both PNs and CPNs have found applications.
A predicate/transition net model for a robotic MAS planning has been presented in Murata et al. [37].
A formal methodology for the modeling and validation of the ADACOR-holonic architecture has been
proposed in Leitao et al. [38], aiming to improve the performance of control systems in industrial
scenarios. A framework to model and control HMS has been suggested in Hsieh [39] based on fusion
of CPNs and multi-agent system theory. The problem of managing and controlling automatic guided
vehicles (AGVs) in manufacturing shop floor systems using an agent-based PN model has been
addressed in Giglio and Paolucci [40]. PN modeling of FMS with random recipes and control with an
agent-based architecture has been proposed in Castelnuovo [41]. The model was implemented in the
agent platform JADE. A CPN model to represent relative dynamic factors in agent-based scheduling
and planning systems that can analyze future states of a system has been proposed in Bai et al. [42].
A PN model to represent the interaction protocols between order and resource agents in a holonic
manufacturing execution system, and a game theoretic approach to analyze the possible outcomes
of the negotiation process have been presented in [43]. A CTPN-based method was presented in
Drakaki and Tzionas [44] to model an agent-based warehouse control system in order to evaluate
system properties and performance. The method was applied to a dynamic resource allocation of an
order-picking process.

A new class of PNs, object-oriented knowledge-based PNs, incorporating knowledge-based
expert systems and fuzzy logic into ordinary PNs, was introduced and used for integration of design
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and assembly planning processes in manufacturing in Huang [45]. A fuzzy PN model to represent the
fuzzy production rule of a rule-based system has been proposed in Chen et al. [46]. Applications of
PNs in AI have been explored in Joseph [47] and an application was shown to a rule-based production
system. A knowledge PN-based AI protocol that integrated knowledge based expert system and
fuzzy logic with ordinary PNs was defined and used for intelligent integration of product design [48].
In Zha et al. [49] a fuzzy expert PN method was presented that integrated knowledge-based systems,
fuzzy logic, and artificial neural networks. A generic expert PN model of a single neuron was presented
using the method. Knowledge Attribute PNs were introduced in Jávor [50] enabling mobile knowledge
bases attached to tokens. By using the combination of PNs and AI, the method aimed to enhance the
effectiveness of modeling and simulation in applications including FMS.

2.2. Reinforcement Learning

Intelligent agents are composed of a perception mechanism, a cognition system, and an action
module. They receive messages from the environment using the perception mechanism, evaluate the
messages using the cognition module, and produce actions by the action module [5,51,52]. Learning
and evolving are key mechanisms in intelligent agents. RL is a widely used method for this purpose.
RL is the procedure by which an agent learns from interaction with its environment to achieve a goal,
in general to obtain its own optimal control policy. A complete specification of an environment defines
a task. At each time step, the agent receives some representation of the environment’s state, from the
set of possible states, and on that basis selects an action from the set of available actions. One time
step later, in part as a consequence of its action, the agent receives a numerical reward, and finds itself
in a new state. At each time step, the agent implements a mapping, called a policy, from states to
probabilities of selecting each possible action. RL methods specify how the agent changes its policy as
a result of its experience. The agent’s goal is to maximize the total reward it receives over the long
run [6].

RL problems can be solved using dynamic programming (DP) algorithms, although the time
required for large problems may make their solution infeasible. Q-learning is a model-free RL algorithm
that approximates DP [7]. The Q-learning algorithm estimates the value functions, Q(s,a), of state-action
pairs. Q(s,a) is a discounted sum of future rewards. Once these values have been learned, the optimal
policy, π*(s), from any state is the one with the highest Q-value. This algorithm converges to the
optimal value functions, Q*(s,a), representing the optimal policy, for RL tasks that satisfy the Markov
property, called Markov Decision Processes (MDPs). For Markovian environments the current state
summarizes the history of past states, thus all the information an agent needs to take an action and
make a transition from its current state to a next state is stored in its current state. If an agent learns
the Q-values, then it can make optimal decisions at each state.

RL has been applied to manufacturing scheduling [51,53–59]. A single machine agent used
Q-learning to determine if it could learn commonly accepted dispatching rules for three example cases
in which the best dispatching rules had been previously defined in Wang and Usher [53]. Agents
were trained to an RL algorithm, called Q-III, used for dynamic job shop scheduling to select the most
appropriate priority rule according to the shop conditions in real time in Aydin and Oztemel [51].
The temporal difference algorithm TD(λ), an RL algorithm, has been applied to job shop scheduling
involving the scheduling of the various tasks that had to be performed to install and test the payloads
placed in the cargo bay of the NASA space shuttle for each mission [54]. The objective was to schedule
a set of tasks without violating any resource constraints while minimizing the total duration. An RL
algorithm, called SMART, was developed and applied to the case of optimal preventative maintenance
in a production inventory system [55,56]. SMART was applied to the problem of optimizing a three- and
four-machine transfer line, respectively, producing a single product type [57,58]. The system goal was to
maximize the throughput of the transfer line while minimizing work-in-process and failures. Dynamic
control policies were obtained for a stochastic lot production scheduling problem using an RL-based
approach implemented by a multi-agent control architecture [59]. A Neural Network-based approach
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was used to approximate the reinforcement value function. In Gabel and Riedmiller [60] a production
scheduling method was presented where the scheduling problems were modeled as multi-agent RL
problems. Resource agents made independent job dispatching decisions and improved their decisions
by employing RL. The RL algorithm was based on neural network-based value function approximation
and an optimistic inter-agent coordination scheme. In Csáji et al. [61] an agent-based market-based
production control system was presented with learning and cooperative agents. A triple level learning
mechanism was proposed, including simulated annealing, RL, and an artificial neural network.

3. Methodology

The method is based on hierarchical CTPNs. Scheduling is done by a single agent. The agent
interacts with its environment in order to do the scheduling. At each step, t, the agent observes the
state st, s ∈ S, of the environment, follows a policy πt, and selects an action at ∈ A(s). As a result of its
action, it receives an immediate reward rt ∈ R, and the state of the environment changes to st+1 ∈ S [6].
The policy, πt, is a mapping from states to action probabilities: πt(s,a) = probability that at = a when
st = s. The agent’s goal is to obtain an optimal policy, π*.

The value of a state, Vπ(s), under a policy π, is the expected reward the agent receives, when it
starts from that state, s. The action-value (Q-value), Q(s,a), is the expected reward the agent receives
under policy π, when it chooses an action a at state s, The agent follows π thereafter. The optimal
action-values Q*(s,a) are obtained when the agent follows an optimal policy, π*. There is a unique
solution for the value of a state under an optimal policy, V*(s), V*(s) = maxaQ*(s,a). If a* is an action
that maximizes Q*(s,a), then π*(s) ≡ a* = arg(maxaQ*(s,a)) [7].

The top CTPN model page includes the submodels of the scheduling agent and the simulation
environment. The simulation environment submodel consists of the set of jobs, job data and job
characteristics and set of machines. The scheduling agent submodel consists of a heuristics rule base
submodel and an intelligent part submodel. The heuristics rule base submodel may be used depending
on the scheduling problem.

The intelligent part submodel consists of a perception module, a Q-learning module and an action
module. The perception module perceives the current state of the environment. The information about
the current state is received by the Q-learning module. The Q-learning submodel selects a policy action,
a, for the current state, s, from a set of available policy actions. As a result of the agent’s action, the
environment arrives at a new state, s′. The agent perceives the new state and receives an immediate
reward, r, by the perception submodel. In each scheduling cycle the Q-learning is implemented by the
agent to guide it to the optimal scheduling decision. The implementation is based on the following
steps [7]:

(1) The agent perceives the current state, s and selects an action a. Based on its action it receives an
immediate reward, r and arrives at the next state, s′.

(2) Q(s,a) values are updated as

Q(s, a) := Q(s, a) + α(r + γmax
b

Q(s′, b)−Q(s, a)). (1)

(3) Go to (1) until s is a terminal state,

where α is the learning rate and γ, 0≤ γ < 1, is the discount factor. Steps (1)–(3) are steps of one episode
which ends when a terminal state is reached. A number of episodes take place. The Q(s,a) values
represent the long term reward. The learning rate determines the influence of the old Q(s,a) values on
the new ones. The discount factor determines whether the agent takes into account immediate rewards
more strongly than rewards received previously. The agent has the option of following an ε-greedy
method in the training period, i.e., to randomly select an action for a percentage of time defined by ε.

The agent tries to maximize its long-term reward, i.e., the Q(s,a) values for each state action pair,
thus the immediate reward guides the agent as to what action to take next. The minimal makespan is
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the scheduling objective considered as the optimality criterion in this paper. Makespan, i.e., Cmax ,
maxj∈J

{
Cj
}

, where J = {1, . . . , n} is the set of n jobs, and Cj is the completion time of job j, is a widely
used manufacturing scheduling objective.

The state of the system is the criterion taken into account by the agent in order to decide its next
policy action. Available policies are modeled as CTPN models. The calculated makespan extracted from
simulation is used as the state determination criterion. A number of policy states are generated, whereas
policy actions implement related scheduling rules, such as dispatching rules (e.g., Shortest Processing
Time (SPT), Longest Processing Time (LPT), First-in, First-Out (FIFO)), for job shop scheduling).
Each policy action is a generation of a complete schedule by the agent. Each generated schedule is
a possible solution. It corresponds to a path from the initial marking to a final marking in the CPN
reachability graph, as well as a node in the calculated state space. During the training period, the
agent is trained using the Q-learning for 1000 cycles (episodes). Each cycle (episode) is associated
with a model index ranging from 1 to 1000. The value of each index along with the associated starting
and end times of jobs, the makespan, and the environmental state are stored in a list (a knowledge
base). During the 1000 cycles the Q-learning converges to a predefined (dummy) terminal state
corresponding to the optimal makespan solution a number of times. At the end of 1000 cycles, the
indices and the corresponding makespan values of the dummy terminal state are retrieved. Then, the
lowest makespan value is chosen and the scheduling that led to the minimal makespan is retrieved
from the knowledge base.

4. The Case Study

4.1. The Order-Picking Process

A high-volume small parts spread buffer order-picking scheduling system is presented as a case
study to illustrate the method. In this class of picker-to-goods order picking systems, item retrieval
is decoupled from order assembly by a pick-to-buffer (P2B) technology [62]. In a P2B system items
retrieved from pick locations are placed into a pick buffer. Items are deposited automatically into
an order container placed on a conveyor when all items of an order have been picked. The physical
layout of the order-picking system consists of four pick zones with a common conveyor. Robotic
order-picking is considered. Each pick zone is assigned to a gantry robot. A pick zone consists of
30 product totes with each tote having 40 compartments. A compartment can accommodate 20 product
units of one Stock Keeping Unit (SKU) type. The order-picking process is a sequential zone picking
with batching. The order containers of each batch pass sequentially from one pick zone to the next one
and all items to be picked in each zone are picked in one pass. Gantry robots can pick one product item
at a time and deposit it in the nearest buffer. Customer orders are organized in five batches of 28 order
containers each. Each order container contains a single customer’s order and can have multiple line
items. One SKU type is collected in every order-picking process. A line item is a single unit of product.
The conveyor speed is constant. Randomized storage is assumed. Figure 1 shows the layout of a pick
zone (after [63]).
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4.2. The Order-Picking Scheduling

The scheduling problem consists of two parts, i.e., order batching including routing, and
sequencing. A system assumption is that the SKUs are high demand products distributed in each zone,
each one located in two pick locations in each zone.

4.2.1. Order Batching

Order batching is calculated based on the following two-step heuristic [44]. The agent’s goal, in
this stage is a balanced workload among robots.

Step 1: The first incoming order to the system goes to the first batch. The second order goes to the
second batch, until each batch has one order. The next order goes to the batch with the least workload.
All the remaining orders are assigned following this rule.

Step 2: The average workload per pick zone is calculated. Next, for each batch, orders are assigned
to pick zones 1 through 4, so that the workload per pick zone does not exceed the average workload,
starting from pick zone 1.

4.2.2. Order Sequencing

Order-picking sequencing involves the generation of the order-picking sequence for each robot
by the agent. In this scheduling step, the agent employs the Q-learning in order to make the optimal
decision. The agent’s goal that guides it to the optimal scheduling decision is to achieve the minimal
total robot travel time for each batch of orders.

Picker travel time is an important parameter in the design of order picking systems. For the
system under consideration robot travel time impacts the learning capability developed by the agent,
i.e., the optimal order sequencing. It is a parameter affecting the environment’s state and immediate
reward calculation, thus the Q-values. Robot movement is characterized by the Chebyshev metric.
A gantry robot is characterized by linear movement, thus its position is specified using the Cartesian
coordinate system. Independent motors permit simultaneous movement in both horizontal and
vertical planes. If the robot moves between two points in the pick area (xy plane), with coordinates
(x1, y1) and (x2, y2), according to the Chebyshev metric it travels a distance equal to max(|x2 − x1|,
|y2 − y1|). Thus, the travel time between two points depends on the maximum of the horizontal and
vertical movement times [63]. The robot pick travel time for the P2B system consists of the time it takes
to move from a pick location to the closest empty buffer (loaded travel movement) and the time it
takes to move from the buffer to the next pick location (empty travel movement). The parameters used
in the system simulation for robot travel time calculation are: horizontal movement speed = 1.5 m/s,
vertical movement speed = 0.4 m/s, length of a zone = 45 m, height of a zone = 2.4 m.

The Q-learning is employed by the agent for 1000 cycles in order to do the order sequencing for the
current batch of orders. In each cycle the agent produces an order sequencing solution implemented
by the CTPN system model. In each cycle, since each line item is located in two pick locations, the
agent chooses randomly between the two possible locations and makes a list of the pick locations for
each robot. Each agent policy action is the generation of the ordered list/sequence of the pick locations
for each robot in the current batch by the agent. The agent can take one of the following two available
policy actions in order to produce the order sequencing in each state:

(1) use the X-coordinate based heuristic [63]. The sequencing of orders in each zone is done based
on the increasing order of the X-coordinates of the SKU type locations, assuming that the length
of each zone is much longer than its width.

(2) Choose randomly the pick locations in each zone.

The state of the system is the criterion taken into account by the agent in order to decide its
next action. For the order-picking scheduling case study, the total travel time of all robots for the
current batch of orders, ttot, is the state determination criterion. It is calculated from the CTPN model



Appl. Sci. 2017, 7, 136 8 of 22

simulation in each scheduling cycle. The scheduling policy includes 10 states, and two dummy states,
shown in Table 1. The Q-values for all states were initialized to a value of zero, since no prior knowledge
is known for any state. Robot travel times are calculated using the pick location information and the
Chebyshev metric. The average total travel time used by the agent in order to perceive the current
state is calculated from the average total travel time value, ttot,aver, calculated from 1000 replications of
total travel time values of random lists of pick locations (pick tote and pick compartment locations)
corresponding to the total line item number of the current batch of orders. The order sequencing for the
calculation of average total travel time is done using the X-coordinate based heuristic. More specifically,
it is assumed that the pick locations are not close to each other, thus since the length of the zone is
much greater than the width, the horizontal movement times are longer than the vertical movement
times. Therefore order sequencing is done based on the increasing order of the X-coordinates of the
SKU type locations. The dummy terminal state corresponds to an optimal or near optimal solution.

Table 1. Policy table for the scheduling agent.

State State Definition X-Coordinate Based
Heuristic-Q(s,a) Pair

Random Pick Location
Selection-Q(s,a) Pair

Dummy Initial state: total robot travel time (ttot) = 0 0 0
Dummy Terminal state:0.98 × ttot,aver ≤ ttot ≤ 1.02 × ttot,aver 0 0

1 0.95 × ttot,aver ≤ ttot ≤ 1.05 × ttot,aver Q(1,1) Q(2,1)
2 0.9 × ttot,aver ≤ ttot ≤ 1.1 × ttot,aver Q(2,1) Q(2,2)
3 0.85 × ttot,aver ≤ ttot ≤ 1.15 × ttot,aver Q(3,1) Q(3,2)
4 0.8 × ttot,aver ≤ ttot ≤ 1.2 × ttot,aver Q(4,1) Q(4,2)
5 0.75 × ttot,aver ≤ ttot ≤ 1.25 × ttot,aver Q(5,1) Q(5,2)
6 0.7 × ttot,aver ≤ ttot ≤ 1.3 × ttot,aver Q(6,1) Q(6,2)
7 0.65 × ttot,aver ≤ ttot ≤ 1.35 × ttot,aver Q(7,1) Q(7,2)
8 0.6 × ttot,aver ≤ ttot ≤ 1.4 × ttot,aver Q(8,1) Q(8,2)
9 0.55 × ttot,aver ≤ ttot ≤ 1.45 × ttot,aver Q(9,1) Q(9,2)
10 0.55 × ttot,aver > ttot, ttot > 1.45 × ttot,aver Q(10,1) Q(10,2)

Each time the agent takes an action, it receives an immediate reward (or a penalty), r, as a result
of its action, and the Q-values are updated according to Equation (1). The immediate rewards should
reflect the scheduling optimality criterion, i.e., the long term goal of the agent when it decides its next
action. The immediate reward values, shown in Table 2, are related to the total travel time of all robots,
ttot, for the current batch of orders, range from −4.0 to 4.5, and were chosen by trial and error.

Table 2. Immediate reward (r) values.

If 0.95 × ttot,aver ≤ ttot ≤ 1.05 × ttot,aver then r = 4.5
If 0.9 × ttot,aver ≤ ttot ≤ 1.1 × ttot,aver then r = 4.0

If 0.85 × ttot,aver ≤ ttot ≤ 1.15 × ttot,aver then r = 3.0
If 0.8 × ttot,aver ≤ ttot ≤ 1.2 × ttot,aver then r = 2.5

If 0.75 × ttot,aver ≤ ttot ≤ 1.25 × ttot,aver then r = 2.0
If 0.7 × ttot,aver ≤ ttot ≤ 1.3 × ttot,aver then r = 1.0

If 0.65 × ttot,aver ≤ ttot ≤ 1.35 × ttot,aver then r = −1.0
If 0.6 × ttot,aver ≤ ttot ≤ 1.4 × ttot,aver then r = −2.0

If 0.55 × ttot,aver ≤ ttot ≤ 1.45 × ttot,aver then r = −3.0
If 0.55 × ttot,aver > ttot, ttot > 1.45 × ttot,aver then r = −4.0

The learning rate, α, and the discount factor, γ, are taken equal to 0.1 and 0.9 accordingly [6,53].
The agent can follow an ε-greedy method, with ε = 0.2, i.e., 20% of the time it randomly selects
an action.

After the completion of the 1000 cycle period the agent selects the scheduling that minimizes the
total travel time of all robots for the current batch of orders. In particular, in each scheduling cycle,
the agent stores in a knowledge base a list the cycle index and the corresponding order sequencing.
A separate list holds the cycle index and the corresponding total travel time of all robots. After the end
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of the scheduling cycle period the agent retrieves the minimal total travel time of all robots, and the
associated cycle index. Finally, using the cycle index it retrieves the corresponding order sequencing.

4.3. The Implemented CTPN System Model

The hierarchical CTPN system model has been implemented using CPN Tools [64]. The top page
of the implemented CTPN model shown in Figure 2 includes the Scheduling Agent and the Simulation
Environment submodels as substitution transitions. Basic color set declarations of the CTPN model
are shown in Table 3.
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Table 3. Basic color set declarations of the CTPN system model.

colset INTT = INT timed; colset REALT = real timed;
colset Order = record orderno:INT*prodno:INT*itemno:INT*AT:INT;
colset ORDER_STREAM = list Order timed;
colset ORDER_SCHEDULE = list ORDER_STREAM;
colset ORIGWORKLDn = record robot1:INT*wkld1:INT*robot2:INT*wkld2:INT*
robot3:INT*wkld3:INT*robot4:INT*wkld4:INT;
colset ORIGWORKLD_SCHEDULE = list ORIGWORKLDn;
colset BATCH_INFO = record batch_ord:INT*batch_wkld: ORDER_STREAM* batch_itm_cnt:INT;
colset BATCH_LIST = list BATCH_INFO;
colset ORDERinBATCH = record orderid:INT*prodno:INT*lnitmno:INT*pickzono:INT;
colset BATCH_of_ORDERS = list ORDERinBATCH;
colset ORDER_STREAM_SCHEDULE = list BATCH_of_ORDERS;
colset PZ1_LOC_LIST = list INT timed;
colset TOTE_LOC_LIST = PZ1_LOC_LISTxPZ2_LOC_LISTxPZ3_LOC_LISTxPZ4_LOC_LIST;
colset COMPT_LOC_LIST = PZ1_LOC_LISTxPZ2_LOC_LISTxPZ3_LOC_LISTxPZ4_LOC_LIST;
colset QVAL = list REAL timed;
colset CYCLE_SCHEDULE_INFO = list REALxINTxREALxREALxREALxREAL;

A substitution transition Order Arrivals in the simulation environment submodel generates the
orders. A total of 140 orders are generated in discrete time steps. The order inter-arrival times are
exponentially distributed with a mean inter-arrival time of 100 time units. The order color token is a
record with fields: orderno (the order number), itemno (the number of line items), and AT (arrival time).
The order size follows the binomial distribution function, with a mean of one to four line items. The list
of orders, a token of color set ORDER_STREAM, is placed in place Order Stream Queue (place P1 in
the top model page).

The Scheduling Agent submodel is shown in Figure 3. When the Scheduling Heuristics
substitution transition receives the list of orders in place P6, it implements the order batching heuristic.
The Scheduling Heuristics substitution transition includes the Create Batch Workload substitution
transition and the Batch Routing substitution transition in order to implement the order batching
heuristic. The Create Batch Workload substitution transition generates a list of five batches, a token of
color set BATCH_LIST. BATCH_LIST, is a list of color set BATCH_INFO, a record with fields: batch_ord
(the number of the batch of orders), batch_wkld (the list of orders included in the current batch), and
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batch_itm_cnt (the total number of line items included in the current batch). The Batch Routing
substitution transition generates the routing for the batches of orders. The Scheduling Heuristics
output tokens are placed in places P7, Batch Workload and P8, Order Stream Schedule (places P2 and
P3 in the top model page, respectively). Place Batch Workload holds the workload per pick zone for all
five batches. Place Order Stream Schedule holds the schedule for all five batches. Each customer order
in the Order Stream Schedule output token is represented by a record with fields orderid (the order
entry number, prodno (SKU type), lnitmno (number of line items), and pickzono (pick zone number).Appl. Sci. 2017, 7, 136  11 of 23 
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Figure 3. The implemented hierarchical CTPN model of the Scheduling Agent substitution transition.

The Scheduling Heuristics output token for a batch of orders is placed in place P9. The pick zone
knowledge base substitution transition is then enabled. Its output tokens, held in places P10 and P11,
are the possible pick locations (tote number and compartment number) for the line items to be picked
from each zone. Pick locations are generated using the discrete uniform distribution. discrete(1,30)
generates the available pick zone tote locations and discrete(1,40) generates the available compartment
locations for each line item. Line items can be retrieved from two possible locations in each zone.

The Order Sequencing substitution transition is then enabled. The scheduling agent starts the
scheduling cycles (a total of 1000) for the current batch of orders. Place P12 generates the Scheduling
cycle index, a token of color set INT, ranging from 1 to 1000. The Order Sequencing substitution
transition is shown in Figure 4. The Policy action 1 and Policy action 2 substitution transitions output
pick locations to places P21 and P22 respectively. Pick locations are chosen for each line item from
the corresponding input lists, held in places P17 and P18, representing available pick zone tote and
compartment locations. Either Policy action 1 or Policy action 2 substitution transition is enabled,
depending on the value of the policy action index token (places P19 and P20). The policy action index
takes the values 1 or 2, depending on the action that the scheduling agent decides to take in each
state based on the policy table (Table 1). The Perception substitution transition, shown in Figure 5,
receives the calculated robot travel times in each zone, a result of the chosen policy action by the agent.
Then, the Model of the Environment transition, T1, fires and outputs the new state color token, i.e.,
the new state, of color set INT, calculated based on the policy table state definitions (Table 1). Next
the Calculate Reward transition, T2, fires and calculates the immediate reward, a token of color set
REAL, based on the immediate reward value definitions (Table 2). Perception outputs to place P23 of
the Order Sequencing substitution transition a cycle scheduling information token, a list with elements
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the cycle index and the order sequencing for each pick zone. The immediate reward and new state
Perception output tokens are input tokens (in P27 and P28 places, respectively) to the Q-Learning
substitution transition.Appl. Sci. 2017, 7, 136  12 of 23 
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The Q-Learning substitution transition, shown in Figure 6, implements the Q-learning strategy.
It contains the look-up tables of Q(s,a) values for states 1 to 10, as color tokens of color set QVAL, a list
of REAL, stored in places P46 to P65, corresponding to the available policy state-action pairs (Table 1).
The immediate reward and new state tokens are input tokens to the transition T3, stored in places
P39 and P40 respectively. T3 fires to calculate the maximum Q-value for the new state, to be used
in Equation (1) and the next policy action, held as color tokens in places P42 and P41 respectively.
The next policy action token is used as input token to the Order Sequencing substitution transition
(held in places P19, P20, and P25 of the Order Sequencing). Transition T4 updates the Q-value of
the current state, using Equation (1). Transition T5 updates the tokens in the look-up table places of
Q(s,a) values P46 to P65. T5 outputs to the Order Sequencing substitution transition a cycle scheduling
information token, held in place P39, a list with the scheduling cycle index or indices corresponding to
the terminal dummy environment state. At the end of the 1000 cycles, the Order Sequencing output
tokens, held in place P13 and P14 in the Scheduling Agent subnet, are input tokens to the Final Order
Sequencing Calculation substitution transition.
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Final Order Sequencing Calculation substitution transition finds the minimal total robot travel
time for the current batch of orders and retrieves the corresponding cycle index. Using the cycle index
value, the corresponding order sequencing is retrieved and transferred to the Scheduling Agent as
the final order sequencing, held in places P15 (tote location list) and P16 (compartment location list)
(places P4 and P5 in the top scheduling system model page).

5. Simulation and State Space Results

5.1. Validation of the Scheduling Method

Verification of the proposed scheduling method has been done by comparing simulation results
for makespan obtained in this study with published literature results. Validation of the method has
been supported by the state space results of modeled system properties. The method was tested by
applying it to known job shop benchmark examples, i.e., ft6 (six resources and six jobs) [65], as well
as the example introduced by Xiong and Zhou [26] with lot sizes (1,1,1,1), (5,5,2,2), and (10,10,6,6).
The scheduling goal was to obtain the minimal makespan. A total of 10 states were included. Two
dummy states represented the initial state and the terminal state. The terminal state was reached when
the obtained makespan was not larger than 5% of the known optimal makespan. The scheduling agent
could choose between two possible actions in each state. The first policy action corresponded to a
restricted CTPN scheduling model of the benchmark example under investigation, such as the one of
the SPT rule, whereas the second policy action was an unrestricted CTPN scheduling model. Each
simulation experiment was run for 1000 replications.

Replication results were averaged for each simulation experiment. Simulation results are shown
in Table 4. When the Q-learning was implemented with ε = 0 the agent always favored the second
policy action, i.e., the unrestricted CTPN scheduling model, except for the first scheduling cycle where
the initial condition was guiding it to choose the first policy action. When the agent followed an
ε-greedy policy, i.e., a policy with ε = 0.2, it was choosing both policy actions, e.g., in one simulation
run of the ft6 benchmark example with ε = 0.2, the best obtained solution was 57, whereas the agent
chose the first policy action 97 times and the second policy action 903 times. The first policy action, i.e.,
the implementation of the SPT rule led to a makespan of 93, whereas the second policy action led to a
makespan of 57. The Q-learning algorithm always converged to the optimal solution for the examples
introduced in [24]. The best solution obtained for the ft6 benchmark example was 57.

State space was extracted for the CTPN scheduling system model of the job shop example
introduced in [26] with lot size (1,1,1,1). One scheduling cycle was taken in the system model. State
space analysis results for home, liveness, deadlock exploration, and fairness properties, as well as
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occurrence graph (OG) (reachability graph) and strongly connected graph (SCC) statistics are shown in
Figure 6. Full state space has been calculated. 18 dead markings were identified. Using the OG graph
marking information, it was found that all dead markings correspond to the final system state reached
when the scheduling was completed. They differ in the combinations of individual job completion
times and makespan. Dead transition instances (TIs) are shown in Figure 7. However they correspond
to the transitions of the second policy action submodel, i.e., Policy Action 2 submodel in Figure 4. Since
the implemented state space system model allowed one scheduling cycle and the initial condition
guided the agent to choose the first policy action, the Policy Action 2 subnet was not enabled. When
more than one scheduling cycle was included in the model, there were no dead Tis; however the
number of dead markings as well as the number of nodes increased. The absence of dead TIs indicates
that there are no deadlocks in the system, since a deadlock would appear if a transition could not be
enabled, blocking the occurrence of a possible system state. There are no live TIs as well, since there
are dead markings. Additionally, there are no infinite occurrence sequences, thus the system always
terminates, a result that is further supported by the identical number of nodes and arcs for the state
space and SCC graphs. It should be noted that the number of nodes in the presented method, i.e.,
559 nodes, is less than the expanded markings (i.e., 598) found in Xiong and Zhou [26].

Table 4. Simulation comparison results for the makespan of job shop benchmark examples. The number
in parentheses corresponds to the percentage of the scheduling agent Q-learning visits to the best
obtained solution in 1000 cycles, i.e., in one simulation experiment.

Benchmark Example Optimal
Makespan

Xiong and
Zhou [26]

Huang
et al. [33]

Yu
et al. [30]

Gabel and
Riedmiller [60]

This
Study

Xiong and Zhou (1998)-lot size (1,1,1,1) [26] 17 17 17 17 - 17 (50%)
Xiong and Zhou (1998)-lot size (5,5,2,2) [26] 58 58 58 58 - 58 (52%)

Xiong and Zhou (1998)-lot size (10,10,6,6) [26] 134 134 134 134 - 134 (42%)
Fisher and Thompson (1963)-ft6 6x6 [65] 55 - - - 57 57 (0.1%)
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5.2. Case Study Performance Evaluation

Simulation results were obtained for five batches of 28 orders each, with mean order size (i) twoline
item per order; (ii) three line items per order; and (iii) four line items per order. The Q-learning was
employed for a training period of 1000 cycles. Each simulation experiment was run for 100 replications.
Replication results were averaged for each simulation experiment. Simulation results for the scheduling
of the first batch of orders for each considered case are shown in Table 5 and Figure 8. Simulation
results in Table 5 show the scheduling rule followed by the agent, the number of agent Q-learning visits
to each state, and the total robot travel time, ttot, of the obtained scheduling. Results in Table 5 show
that the agent selects the first policy action, i.e., the X-coordinate based heuristic in the considered
cases. The X-coordinate based heuristic is expected to yield optimal solutions when the length of each
zone is much longer than its width. Thus, the agent was trained to select the action that yields an
optimal solution. Figure 8 shows the number of agent visits to each state. Approximate analytical
model travel time expressions for a robotic P2B system with randomized storage were presented in
Khachatryan and McGinnis [62]. The expected item travel time is bounded by the height in time of the
pick zone in the analytical model. For the simulated system this limit is equal to 6 s. The simulated
mean item travel time results in Table 5 are close to the 6 s limit. Results in Table 5 indicate that
the scheduling agent visits the terminal dummy state, as well as states 1 to 4. It rarely visits higher
number states; however, these states were kept in the policy table (Table 1) for different problem cases.
The Q-learning converges to an optimal solution in all cases. Results also show that as the mean order
size increases the number of agent visits to the terminal state increases during the 1000 cycles.

Table 5. Simulation results for the scheduling of one batch of 28 orders, with mean order size (i) 2 line
item per order; (ii) 3 line items per order; and (iii) 4 line items per order. The number in parentheses
shows the calculated average total robot travel time, ttot,aver, from 1000 simulation replications.

Total Number
of Line Items

in Batch

Policy
Action

Number of
Visits to

Terminal State

Number
of Visits
to State 1

Number
of Visits
to State 2

Number
of Visits
to State 3

Number
of Visits
to State 4

Total Robot
Travel Time, ttot,

(ttot,aver)

56 line items 1 67 118 261 279 182 341.84 (340.92)
84 line items 1 193 270 334 153 42 514.14 (513.68)

112 line items 1 272 346 300 67 11 685.18 (684.72)
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Late order arrival has been considered in order to evaluate the performance of the scheduling
method in emergence. Four late orders of one line item each were added to the normal workload of
five batches of 28 orders each with mean order size (i) three line items per order; and (ii) four line
items per order. The scheduling policy in case of late order arrivals, shown in Table 6, consists of
10 states, and two dummy states. The immediate reward values, shown in Table 7, take into account
the total travel time, ttot as well as a balanced workload among robots. The symbol ∧ represents the
logic AND operation in Tables 6 and 7, whereas ttot,roboti , represents the total robot travel time of robot
i, i = 1, 2, 3, 4. In each state the agent could select between two actions: (1) to pick all four emergency
orders from pick zone 1; or (2) to pick two emergency orders from pick zone 1 and two emergency
orders from pick zone 2. The agent followed the X-coordinate based heuristic to implement the order
sequencing after the action selection. The Q-learning algorithm was employed by the agent for a
training period of 1000 cycles. Each simulation experiment was run for 100 replications. Replication
results were averaged for each simulation experiment. Table 8 shows the order picking workload
distribution among pick zones, under the different policy actions, for one batch of orders with mean
order size 3 line items per order and 4 emergency orders. Simulation results were obtained for different
implementations of the Q-learning. In one implementation the scheduling agent fully exploited the
Q-learning method, i.e., employed the Q-learning with ε = 0, whereas in a different experiment it
followed an ε-greedy policy, with ε = 0.2.

Table 6. Policy table for the scheduling agent.

State State Definition 4 Late Orders Assigned
to Robot 1 —Q(s,a) Pair

2 Late Orders Assigned to Robot 1 and
2 Late Orders to Robot 2 —Q(s,a) Pair

Dummy Initial state: total robot travel time (ttot) = 0 0 0

Dummy Terminal state: 0.85 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧
ttot,robot3 ∧ ttot,robot4 ≤ 1.15 × ttot,aver

0 0

1 0.8 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.2 × ttot,aver Q(1,1) Q(2,1)
2 0.75 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.25 × ttot,aver Q(2,1) Q(2,2)
3 0.7 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.3 × ttot,aver Q(3,1) Q(3,2)
4 0.65 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.35 × ttot,aver Q(4,1) Q(4,2)
5 0.6 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.4 × ttot,aver Q(5,1) Q(5,2)
6 0.55 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.45 × ttot,aver Q(6,1) Q(6,2)
7 0.5 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.5 × ttot,aver Q(7,1) Q(7,2)
8 0.45 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.55 × ttot,aver Q(8,1) Q(8,2)
9 0.4 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.6 × ttot,aver Q(9,1) Q(9,2)

10 0.4 × ttot,aver > ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4, ttot,robot1 ∧
ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 > 1.6 × ttot,aver

Q(10,1) Q(10,2)

Table 7. Immediate reward (r) values.

If 0.85 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ttot,robot4 ≤ 1.15 × ttot,aver then r = 4.5
If 0.8 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 t ≤ 1.2 × ttot,aver then r = 4.0
If 0.75 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.25 × ttot,aver then r = 3.0
If 0.7 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.3 × ttot,aver then r = 2.5
If 0.65 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.35 × ttot,aver then r = 2.0
If 0.6 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.4 × ttot,aver then r = 1.0
If 0.55 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.45 × ttot,aver then r = −1.0
If 0.5 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.5 × ttot,aver then r = −2.0
If 0.45 × ttot,aver ≤ ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 ≤ 1.55 × ttot,aver then r = −3.0
If 0.45 × ttot,aver > ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4, ttot,robot1 ∧ ttot,robot2 ∧ ttot,robot3 ∧ ttot,robot4 > 1.55 × ttot,aver then r = −4.0

Table 8. Order picking workload distribution (number of orders per pick zone) among pick zones
under emergence, for the different policy actions, for one batch of 28 orders with mean order size
three line items per order and four emergency orders. Workload distribution under normal conditions
(i.e., in the absence of emergency orders) has been included.

Scheduling
Rule

Pick
Zone 1

Pick
Zone 2

Pick
Zone 3

Pick
Zone 4

Number of Orders per Pick
Zone under Normal Conditions

Policy action 1 25 21 21 21 21
Policy action 2 23 23 21 21 21
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Simulation results for the scheduling of the first batch of orders for each considered case are
shown in Table 9 and Figures 9–14. Simulation results in Table 9 show the scheduling rule followed
by the agent and the number of agent visits to each state for the scheduling of one batch of 28 orders
with mean order size three line items per order and four emergency orders. The Q-learning was
implemented with ε = 0. Figure 9 shows the number of agent visits to each state for the scheduling of
one batch of 28 orders with mean order size (i) three line items per order; and (ii) four line items per
order and four emergency orders, when the agent selected the second policy action. The Q-learning
was implemented with ε = 0. The results in Table 9 and Figure 9 show that Q-learning converged to
an optimal solution in all cases. The agent was trained by the Q-learning to achieve the scheduling
goal, i.e., a minimal robot travel time as well as a balanced workload among robots. The balanced
workload is better achieved when the agent follows the second policy action (Tables 6 and 8), thus the
agent was trained to achieve the optimal solution, since it favored the second policy action. Figures 10
and 11 show the number of agent visits to each state for the scheduling of one batch of 28 orders with
mean order size (i) three line items per order; and (ii) four line items per order and four emergency
orders, respectively. Figure 10 shows the results of Table 9. Figures 12–14 show similar results to the
ones in Figures 9–11, where the agent followed an ε-greedy Q-learning strategy with ε = 0.2. Results
in Figures 9 and 12 show that the differences in the number of agent visits to each state for different
mean order sizes have decreased with the ε-greedy Q-learning strategy. Results from Figures 12–14
also indicate that Q-learning converged to an optimal solution in all cases. The agent was trained to
achieve the optimal solution, since it favored the second policy action when it followed the ε-greedy
Q-learning strategy.

Table 9. Simulation results for the scheduling under emergence of one batch of 28 orders with mean
order size three line items per order and four emergency orders. Q-learning was implemented with
ε = 0.

Scheduling
Rule

Number of
Visits to

Terminal State

Number
of Visits
to State 1

Number
of Visits
to State 2

Number
of Visits
to State 3

Number
of Visits
to State 4

Number
of Visits
to State 5

Policy action 1 6 11 23 24 9 1
Policy action 2 181 265 325 122 27 4
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emergency orders, with mean order size (i) three line items per order; and (ii) four line items per order,
when the agent selected the second policy action. The agent followed a non-ε-greedy policy with ε = 0.
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emergency orders, with mean order size four line items per order. The agent followed a non-ε-greedy
policy with ε = 0.
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Figure 12. The number of agent visits to each state for the scheduling of one batch of 28 orders and four
emergency orders, with mean order size (i) three line items per order; and (ii) four line items per order,
when the agent selected the second policy action. The agent followed an ε-greedy policy with ε = 0.2.
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Figure 13. The number of agent visits to each state for the scheduling of one batch of 28 orders and four
emergency orders, with mean order size three line items per order. The agent followed an ε-greedy
policy with ε = 0.2.
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Figure 14. The number of agent visits to each state for the scheduling of one batch of 28 orders and
four emergency orders, with mean order size four line items per order. The agent followed an ε-greedy
policy with ε = 0.2.

Figure 15 shows the top page of the implemented CTPN model for the scheduling of five batches of
28 orders each with order size of two line items per order. The color tokens show the order sequencing
from top to bottom, with the list of tote pick locations and compartment pick locations, as well as the
cumulative workload schedule.
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Figure 15. Top page of the implemented CTPN model for the scheduling of five batches of 28 orders
each with order size of two line items per order. The color tokens show the order sequencing from top
to bottom, with the list of tote pick locations and compartment pick locations, as well as the cumulative
workload schedule.

6. Conclusions

A manufacturing scheduling method is presented based on hierarchical CTPNs and RL. CTPNs
model the system and implement the scheduling. Since the manufacturing scheduling is NP-hard,
in the search for an optimal or near-optimal solution a single scheduling agent employs the
Q-learning algorithm. The proposed method is an alternative hybrid approach in the context of
the complementarity of methods used to handle the scheduling. CPNs can efficiently model the
complexity and dynamic behavior of FMS, and evaluate its performance, whereas an intelligent agent
with learning capabilities searches for an optimal scheduling solution by using RL. The method does
not depend on state space exploration for the scheduling; however, state space analysis can be used
to identify and verify system properties. While PNs have been combined with AI techniques in the
literature, the potential of the method lies in the exploration, development, and evaluation of the
agent’s learning capabilities with respect to the manufacturing scheduling objectives in a CTPN-based
modeled system. A warehouse order-picking scheduling is presented as a case study to illustrate
the method. The proposed method has been tested under different scheduling objectives. It has
been compared to existing methods in order to illustrate its validity and applied to known job shop
benchmark examples. Besides simulation results, state space results have supported the validation of
the method. State space results have indicated a deadlock-free system model.

The optimal scheduling solution was based on the criteria set in the policy table, i.e., in the model
of the environment. The number of state-action pairs, as well as the agent training period number of
cycles, influences the state space size as well. State space explosion is a main limitation in PN-based
scheduling. Similarly, the large number of environmental states poses limitations in the accuracy of
the employed RL method. These parameters can change depending on the case studied.

Future research could explore a distributed scheduling method, in which each resource is linked
to its own agent in order to further control the CTPN model execution. Under this scheme, a system
state could be defined by the remaining operations for each resource and their precedence relationships,
whereas actions could be defined by the set of enabled operations for the resources. The Q-learning
would be implemented by each agent in order to obtain an optimal or near optimal solution.
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