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Abstract: An accurate and efficient Differential Quadrature Time Finite Element Method (DQTFEM)
was proposed in this paper to solve structural dynamic ordinary differential equations. This DQTFEM
was developed based on the differential quadrature rule, the Gauss–Lobatto quadrature rule, and the
Hamilton variational principle. The proposed DQTFEM has significant benefits including the high
accuracy of differential quadrature method and the generality of standard finite element formulation,
and it is also a highly accurate symplectic method. Theoretical studies demonstrate the DQTFEM
has higher-order accuracy, adequate stability, and symplectic characteristics. Moreover, the initial
conditions in DQTFEM can be readily imposed by a method similar to the standard finite element
method. Numerical comparisons for accuracy and efficiency among the explicit Runge–Kutta method,
the Newmark method, and the proposed DQTFEM show that the results from DQTFEM, even
with a small number of sampling points, agree better with the exact solutions and validate the
theoretical conclusions.
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1. Introduction

Various algorithms are available for numerical integration of Ordinary Differential Equations
(ODEs). The most commonly used algorithms, derived from Finite Difference Method (FDM), are
the Direct Integration Methods (DIMs), such as the Central Difference Method (CDM), the Newmark
method, and the Runge–Kutta Method (RKM). Feng presented structure-preserving symplectic
schemes for the Hamilton system and illustrated the fundamental cause of energy dissipation of
classical DIM [1].

As is widely accepted, Finite Element Method (FEM) is superior to FDM and has advantages in
space, thus it should also exhibit advantages in time in the mathematical sense. However, Zienkiewicz
doubted if it is possible to use Finite Elements (FEs) in the time domain [2]. Indeed, when the involved
functions are smooth enough, it is not essential to define massive time steps to integrate ODEs, and
the time steps should be as many as the FEs to produce a solution of comparable accuracy. In view of
the increased storage required, the use of Time Finite Elements (TFEs) to solve ODEs is questionable.
However, this problem can be gradually solved due to the rapid development of computer capacity
and advanced solution methods.

In many cases, conventional step-by-step algorithms like CDM may call for a very large number
of time steps. This is especially true when dealing with excitation and material properties changing
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rapidly in time. Comparing with the Finite Difference (FD) based method, a variation-based method,
with its inherent stability and physical origin, may lower the computational effort considerably. Thus,
despite some reservations [2], the extension of FE concept to the time domain is logical.

Many researchers have attempted to employ Time Finite Elements Methods (TFEMs) to discretize
ODEs. Similar to FEMs in spatial domain, one can formulate TFEM based on Hamilton’s variational
principles [3–5], Hamilton’s law of varying action [6,7], Gurtin’s variational principle [8], and weighted
residual methods [9,10]. Almost all of the reported works dealt with one FE interval and repeated
the calculations for subsequent time intervals with new initial conditions. Hence, these TFEMs
lead to a step-by-step or recurrence calculation and are conditionally stable, unlike standard FEMs,
which produce simultaneous solutions of the whole range of interest. The present work introduces a
high-order method, and, generally, the dynamic responses of the whole time domain can be solved in
one shot rather than step by step.

The commonly used trial functions in TFEMs based on variational principles are Hermite
interpolations [3,4,6,11], rarely used linear functions [12], and cubic spline functions [13–15].
The advantage of using Hermite interpolations is that the initial conditions can be imposed in the
same manner as the boundary conditions in standard FEMs, and the resulting time element is C1

continuous [16,17]. Moreover, the solution accuracy increases as the number of elements increases or
the order of trial functions increases. The present TFEM is also based on a variational principle, but
usually the nodes or sampling points in an element are not uniformly located, and nodal velocities are
only for two end nodes rather than for the interior nodes.

As an alternative to variational principles, weighted residual approaches are also widely
used to construct TFEs. The commonly used trial functions in weighted residual approaches are
Lagrange interpolations [18,19], linear/quadratic polynomials [20,21], Taylor series [22,23], and Taylor
formula [9,24]. Zienkiewicz proposed a TFEM based on a weighted residual approach, and gave
recurrence schemes of a single step or multiple steps [2]. Remarkably, as they reported, the mainly
used DIMs can also be derived using weighted residual approaches. Later on, they employed Taylor’s
expansion to form a unified set of single-step algorithms [9], discussed the accuracy and the stability,
and applied the method of backward error analysis to obtain a few general rules to choose parameters.
By separately approximating acceleration, velocity and displacement as linear, quadratic, and cubic
Taylor series, Hoff and Pahl developed a single-step TFEM based on a weighted residual method, and
applied it to linear [25] and nonlinear [22] structural dynamics. Numerical results showed that the
method presents some advantages, especially in accuracy and overshooting behavior. Additionally,
Krishna and Manjeet presented three and four steps of TFEM using the least squares method as well
as Lagrange interpolations for first-order initial-value problems [18]. The drawback of the weighted
residual approaches based on TFEM is the determination of the optimum weighting functions.

TFEMs were based on the assumption that state variables are continuous in the time domain.
However, in the Time-Discontinuous Galerkin Method (TDGM) which was originated by Reed and
Hill [26] and Lesaint and Raviart [27] based on Galerkin weighted residual approach, and in the
TDGM, the unknown variables are continuous within the time element but discontinuous at time
nodes. The TDGM has been employed to solve periodic differential equations and Davey–Stewartson
equations [28,29]. It was first shown by Lesaint and Raviart [27] and Delfour et al. [30] that TDGM leads
to A-stable, higher-order accurate TFEMs. Subsequently, Hughes and Hulbert first applied TDGM
to elastodynamics and structural dynamics to develop space–time finite element methods [31–34]
and TFEMs [5,35], respectively. According to their results, TDGM stability is easily proved, but
the convergence had been proved only for linear elements, therefore the Time-Discontinuous
Galerkin/Least Squares Method (TDGLSM) [36] was developed to solve this problem [31,32,35].
Compared with the continuous Galerkin FEM, the drawback of TDGMs is the usage of a higher
number of degrees, which has been overcome by designing an improved predictor/multi-corrector
algorithm [37] or a suitable adaptive strategy for iterative mesh refinement [38,39].
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According to the above review, the TFEMs in existence certainly have limitations. As is well
known, researchers are always seeking new numerical methods with higher accuracy, efficiency, and
flexibility to promote modeling capabilities. Bellman and Casti proposed the Differential Quadrature
Method (DQM) as a simply and highly efficient numerical technique for initial-value problems [40],
which was regarded as a global and higher-order FD scheme [17,41–43] and could yield accurate
results using a considerably smaller number of sampling points.

The general versatility of DQM has been established in a variety of physical problems. A recent
survey refers to publications [44,45], and an exhaustive list of the literature on DQM up to 1996 may
be found in the survey paper [46]. Although DQM’s numerical accuracy and computational efficiency
has been well demonstrated, its limitations are also significant [46]. In 2009, based on the Differential
Quadrature (DQ) rule, the Gauss–Lobatto quadrature rule, and the total potential energy variational
principle, a DQ Finite Element Method (DQFEM) was proposed by the author and co-workers for free
vibration analysis of thin plates [47], and the authors formulated explicit one- to three-dimensional
(1-D to 3-D) element matrices [48]. The DQFEM uses Lagrange trial functions for C0 and C1 FEs and
possesses high accuracy of DQM and the generality of standard FEM.

In this context, similar to DQFEM for spatial domain [47,48], Hamilton’s variational principle
together with the DQ rule and the Gauss–Lobatto quadrature rule are used to develop a TFEM in the
present work, where the initial conditions can be readily imposed as in standard FEM. This novel
method is called the DQ Time Finite Element Method (DQTFEM). The novelties of the present work
compared with the existing TFEMs can be briefly summarized as follows:

(1) The general form of Hamilton’s variational principle, the DQ rule, and the Gauss–Lobatto
quadrature rule are used to formulate a TFEM for structural dynamic analysis.

(2) The Gauss–Lobatto quadrature points are used as time sampling points or nodes of the time
element, which results in more accurate results with the same number of nodes.

(3) The nodal velocities are only involved at two end nodes of the time element, implying that the
number of Degrees of Freedom (DOFs) is less than that of the existing TFEMs based on the
variational principle and Hermite interpolations.

(4) Lagrange interpolations are employed instead of Hermite interpolations in the construction of
the C1 time element, and the stability and accuracy of DQTFEM are studied in detail.

The outline of the present paper is as follows. In Section 2, the formulation of DQTFEM is
presented for structural dynamic ODEs. In Section 3, the stability and accuracy are studied. Obtained
solutions are compared with analytical solutions, the results of four-order explicit RKM, and the
Newmark Average acceleration Method (NMA) in Section 4. Finally, conclusions are drawn in
Section 5.

2. Basic Formulations

For structural dynamic systems with damping and subjected to external loads, the ODE in a
discrete form can be derived by using the general form of Hamilton’s variational principle [49]:

∫ t2

t1

δ(T −V)dt +
∫ t2

t1

δWdt = 0 (1)

T =
1
2

.
uTM

.
u, V =

1
2

uTKu (2)

δW =
.
uTCδu + fTδu, (3)

where T, V, and δW stand for the kinetic energy, strain energy, and virtual work of damping forces
and external forces, respectively; M = [Mij]n×n, K = [Kij]n×n, and C = [Cij]n×n are the mass, stiffness,
and damping symmetrical matrices, respectively; n is the number of spatial DOFs of the system; u(t)
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and f (t) are the displacement vector and the prescribed load vector corresponding to spatial nodes,
respectively; and a time derivative is denoted by a dot over the letter.

uT = [u1 u2 u3 · · · un], fT = [ f1 f2 f3 · · · fn] (4)

Using the variational principle, Equation (1) yields the ODE of discretized system as

M
..
u + C

.
u + Ku = f. (5)

For the clarity of derivations, the time evolutions of a spatial node “i” are written as

uT
i = [ ui1 ui2 ui3 · · · ui(N−1) uiN ]

fT
i = [ fi1 fi2 · · · fiN ]

(6)

for the time sampling points 1 to N, and N is the number of time sampling points. Note that uij and fij
are the values of ui and fi at time sampling point tj. For a Multiple DOF dynamic system (Equation (5)),
each spatial DOF is the function of time; its derivative with respect to time can be given through DQ
rule as

.
ui = Aui, (7)

where A = [Ajk]N×N is the explicit weighting coefficients matrix [46]. It is noteworthy that the weighting
coefficients are independent of variables, and dependent only on coordinates of time sampling points.
Fung [50] solved Equation (5) by using DQM. However, Equation (1) is discretized using the DQ and
Gauss–Lobatto quadrature rules in this work.

For the development of the present TFEM, all terms of Equation (1) should be dealt with by the
DQ and Gauss–Lobatto quadrature rules, that is,

.
u is expressed in terms of u based on the DQ rule and

the integrals are fulfilled by using the Gauss–Lobatto quadrature rule; then we have

∫ t2

t1

δTdt =
∫ t2

t1

.
uTMδ

.
udt = UTMδU (8)

∫ t2

t1

δVdt =
∫ t2

t1

uTKδudt = UTKδU (9)

∫ t2
t1

δWdt =
∫ t2

t1
(

.
uTCδu + fTδu)dt

=
(

UTC + FTE
)
δU

, (10)

where
U = cs(U), F = cs(F) (11)

UT =
[

u1 u2 · · · un

]
, FT =

[
f1 f2 · · · fn

]
(12)

M =
(
ATCGA

)
⊗M, K = CG ⊗K, C =

(
ATCG

)
⊗ C (13)

CG = diag
(
Cj
)
, E = CG ⊗ E, (14)

where ‘cs’ indicates column expansion of a matrix, ‘⊗’ is the Kronecker product, E is a n × n
identity matrix, and Cj is the coefficient of Gauss–Lobatto quadrature. Diagonal matrix CG = diag(Cj).
Appendix A presents the derivations of Equations (8) to (10). Equation (13) shows that the expanded
mass matrix M and stiffness K are symmetrical, but C is not, even though C is symmetrical.

Substituting Equations (8) to (10) into Equation (1), and noting that δU is arbitrary, we have the
dynamic equilibrium equation in algebraic form as

UT[K−M− C
]
= FTE, (15)
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or in a compact and standard form as
GU = Q, (16)

where
G = K−M− (C)T

, Q = EF. (17)

Equation (16) can also be written in a different form as

KUCG −MUATCGA− CUCGA = FCG (18)

which can be reduced to a Sylvester equation whose solutions can be found by the method of Bartels
and Stewart [51] if we neglect damping. Then it has no row or column expansion of matrix in Equation
(18), or it has no additional storage needed except for A and the diagonal matrix CG when compared
with a step-by-step method.

After deriving Equation (15), a DQTFEM has been formulated, which is different from classical
TFEMs where Hermite interpolations are used and displacement and velocity are involved for all
nodes. From the above derivation, one can see that, in DQTFEM, displacements are the only nodal
parameter at all time sampling points since Lagrange interpolations are used; refer to Equations (11)
and (12). In order to impose initial conditions and satisfy C1-compatible conditions in the present
method, the nodal parameter vector U should be modified to include velocities for all spatial DOFs at
the first time sampling point. To achieve this, an accurate and convenient method is to modify U as

Ũ
T
=
[

u11 · · · un1, u12 · · · un2, · · · , u1(N−1) · · · un(N−1),
.
u11 · · · .

un1

]
, (19)

which is formulated by substituting the displacements u1N , · · · , unN of the Nth time sampling
point by the velocities

.
u11, · · · ,

.
un1 of the first time sampling point. The relation between Ũ and

U can be readily obtained by DQ rule as
Ũ = HU (20)

H = T⊗ E (21)

where T is formed by substituting the first row of A for the Nth row of an unit matrix, that is

T =



1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0

A11 A12 A13 · · · A1(N−2) A1(N−1) A1N


. (22)

From Equations (16) and (20) one can obtain

G̃Ũ = Q (23)

G̃ = GH−1. (24)

It should be noted that the solution Ũ of Equation (23) does not include displacements and
velocities of the Nth sampling point, referred to in Equation (19), but these can be easily obtained
through Equation (20) and the DQ rule, respectively. Rearranging the terms of Equation (23), it is
rewritten as [

G̃ii G̃id
G̃di G̃dd

][
Ũi

Ũd

]
=

[
Qi
Qd

]
, (25)



Appl. Sci. 2017, 7, 138 6 of 16

where subscript ‘i’ indicates the initial conditions, and ‘d’ indicates unknowns. From Equation (25)
we have

Ũd = G̃
−1
dd (Qd − G̃diŨi), (26)

where Ũi is formulated by initial displacements and velocities, thus the initial conditions are dealt with
in a general and convenient way.

It is worth noting that here u1, u2, · · · , un, corresponding to all time sampling points, are solved
concurrently by using the exact initial conditions; this is different from classical step-by-step DIMs, in
which the results of the present time step are the initial conditions of the next time step. That is, only
the initial conditions of the first time step are exact; all others are approximate. However, DQTFEM
can also serve as a step-by-step method; in this situation, a time element is a time step in which there
are N time sampling points. Therefore, the initial conditions except for the first time step are also
approximate, but the approximate initial conditions are highly accurate since the present method is a
high-order method.

Remarks:

(1) Usually for conservative systems, the actual path will be the one for which the integral of
Lagrangian function (T − V) is an extremum, and for the non-conservative system considered
here, the general form of Hamilton’s variational principle is used and the integral still exists;
however, there exists no functional that must be an extremum [49].

(2) The method of imposing initial conditions in the present method is standard and similar to the
one used in the FEM; see Equation (25).

(3) DQTFEM is a new TFEM, since Gauss–Lobatto quadrature and DQ rules are used for the first
time in the construction of a TFEM. The high accuracy and efficiency due to the employment of
Gauss–Lobatto quadrature and DQ rules are validated in the following numerical comparisons;
see Section 4.

3. Stability Analysis

Stability analysis is significant for a new TFEM, and for this analysis a spectral approach is
generally employed because a linear dynamic system can be decoupled into a set of single DOF
systems based on the orthogonality of mode functions or mode vectors. Therefore, in the stability
analysis of the present method, consider a single DOF system as

..
u + (ωh)2u = 0, (27)

where ω denotes the angular frequency. Here, the two dots over u denote the second derivative
with respect to time τ, not to t, where τ = t/h, and h and t stand for time step size and the real time,
respectively. For Equation (27), the displacement vector u in Equation (6) becomes

uT = [ u1 u2 u3 · · · uN ], (28)

where uj (j = 1, 2, . . . N) denotes the displacements at time sampling points, the subscript ‘i’ in
Equation (6) denotes the spatial DOF number and is omitted here since i = 1, and

G = ATCGA− (ωh)2CG, U = u, Q = 0 (29)

The nodal parameter vector in Equation (19) has the form of

Ũ
T
=
[

u1 u2 u3 · · · uN−2 uN−1
.
u1

]
. (30)
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According to Equation (26), one can obtain

Ũd =


u2

u3
...

uN−1

 = −
[

α β
][ u0

.
u0

]
, (31)

where column vectors α and β are extracted from G̃, and u0 and
.
u0 are the initial displacement and

velocity, respectively. Moreover, using DQ rule yields

.
u1 =

.
u0 = A11u0 +

[
A12 · · · A1(N−1)

]
Ũd + A1NuN

.
uN = AN1u0 +

[
AN2 · · · AN(N−1)

]
Ũd + ANNuN

. (32)

From Equations (31) and (32), we have[
uN
.
uN

]
= J

[
u0
.
u0

]
, (33)

which is the recurrence relation between (uN ,
.
uN) and (u0,

.
u0), and the elements of the Jacobi matrix

J are 

J11 = A−1
1N

([
A12 · · · A1(N−1)

]
α− A11

)
J12 = A−1

1N

([
A12 · · · A1(N−1)

]
β + 1

)
J21 = AN1 −

[
AN2 · · · AN(N−1)

]
α + ANN J11

J22 = ANN J12 −
[

AN2 · · · AN(N−1)

]
β

. (34)

According to the relationship between ωh and spectral radius ρ(J), see Figure 1, the first stable
intervals for different N can be obtained as given in Table 1. From Table 1 and Figure 1 we can make
the following observations:

(1) ρ(J) ≥ 1 for any N, and when N becomes larger, the first stable interval also becomes larger.
Although there are several stable intervals with ρ(J) = 1 except for N = 3, the first stable interval
is significant and practical; therefore, only the first intervals are listed in Table 1 whose elements
are obtained by using the criterion (ρ − 1) < 10−6.

(2) ρ(J) < 1 in the TFEM by Hulbert [35], but ρ(J) = 1 in DQTFEM for all stable intervals, hence
DQTFEM is more accurate than that of Hulbert [35] since DQTFEM is a high-order method that
has a smaller phase error than lower order methods. Note that the stability of CDM is ωh ≤ 2,
and ωh ≤ 2

√
2 for four-order explicit RKM, and the stability of the present method is ωh ≤ 2

√
2.

(3) DQTFEM is highly symplectic. If the Jacobi matrix J of a method satisfies Equation (35) as follows
J1 = J11JT

22 − J12JT
21 = I , J2 = JT

11J22 − JT
21J12 = I

J3 = JT
11J21 − JT

21J11 = 0 , J4 = JT
12J22 − JT

22J12 = 0
J5 = J11JT

12 − J12JT
11 = 0 , J6 = J21JT

22 − J22JT
21 = 0

, (35)

then the method is symplectic. For the present single DOF system, all variables in Equation (35)
are numbers and Table 2 shows that the precision of Equation (35) (especially J3~J6) is satisfactory,
which indicates that DQTFEM is a symplectic method. In fact, we have numerically verified that
DQTFEM is symplectic even if it is not stable. For a stable symplectic method, the magnitudes of
all eigenvalues of J are equal to 1, therefore all eigenvalues of J of the present method are equal
to 1 when it is stable.
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(5, 3.055) 2.817 × 10−8 2.817 × 10−8 0 3.018 × 10−8 1.087 × 10−9

(10, 9.404) 3.648 × 10−10 3.648 × 10−10 0 3.821 × 10−10 1.821 × 10−12

(15, 15.70) 1.085 × 10−10 1.085 × 10−10 0 1.663 × 10−10 7.223 × 10−12

(20, 25.11) 3.345 × 10−10 3.345 × 10−10 0 3.598 × 10−10 4.538 × 10−11

(25, 34.55) 1.784 × 10−8 1.784 × 10−8 0 1.999 × 10−8 6.046 × 10−10

(30, 37.69) 4.586 × 10−6 4.586 × 10−6 0 4.939 × 10−6 7.919 × 10−8

(35, 50.25) 3.882 × 10−6 3.882 × 10−6 0 4.051 × 10−6 6.124 × 10−8

Note: max(ωh) indicates the upper limit of ωh for the first stable interval in Table 1.

4. Numerical Results and Discussion

This section aims at demonstrating the high accuracy and efficiency of DQTFEM by comparing
them with RKM and NMA; note that NMA is equivalent to the Euler mid-point symplectic method.
To evaluate the relative computational accuracy of the present method, the relative error for all methods
is defined as

RelErr =
|Exact−Approximate|

‖Exact‖∞
, (36)

where ‘Exact’ denotes the exact solution at each time sampling point, the infinity norm of which
denotes the maximum absolute value of a vector, and the elements of this vector are the exact values at
all time sampling points; ‘Approximate’ is the result of DQTFEM at each time sampling point.

4.1. Free Vibration of a Two-DOF System

Consider the following two-DOF system, its governing equilibrium equation is[
2 0
0 1

][ ..
u1
..
u2

]
+

[
6 −2
−2 4

][
u1

u2

]
=

[
0
0

]
, (37)
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whose angular frequencies ω1 =
√

2 and ω2 =
√

5. The given initial conditions are uT
0 = [ 1 1 ] and

.
uT

0 = [0 0].

4.1.1. Accuracy Comparison

Let time domain be [0, 19], which is taken as an element with N = 33 non-uniform points in
DQTFEM, and 32 uniform time steps are used for both RKM and NMA. The first stable interval for
N = 33 is [0, 43.97], hence the stability is satisfied since 19ω2 = 42.49 < 43.97, and the stability 2

√
2

of RKM is also satisfied by h = 19/32 = 0.59375 since ω2h = 1.3277 < 2
√

2. Additionally, N = 33 and
h = 0.59375 implies that the three methods have the same number of interpolation points in the domain
[0, 19]. The exact solutions used for comparisons are obtained by the mode superposition method.

It follows from Figures 2 and 3 that DQTFEM is much more accurate than RKM and NMA, RelErr
(DQTFEM) is about 10−6, while RelErr (RKM) and RelErr (NMA) are 10−2 and 10−1, respectively; and
it is noticeable from Figure 3 that the errors of RKM and NMA accumulate over time.
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4.1.2. Efficiency Comparison

Computational cost is also a crucial issue for a method. Assume the time domain is [0, 2 × 103]
in this case. In order to achieve the same accuracy of RelErr = 10−6, h = 5 × 10−2 and h = 1 × 10−3
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must be used for RKM and NMA, respectively; that is, RKM needs 4 × 105 time steps and NMA needs
2 × 106 time steps. However, we can achieve the same accuracy by using 1588 elements and each
element of size h = 1.26 ≈ 2.828/ω2 has only three Gauss–Lobatto–Legendre sampling points (N = 3 is
the least number of time sampling points in an element; see Table 2). If N > 3, the accuracy of DQTFEM
is more than 10−6. For example, if N = 20 in an element of size h = 11 ≈ 25.11/ω2, the accuracy will
be 10−9. In other words, the lowest accuracy of DQTFEM is 10−6. This is the reason why the data
corresponding to RelErr = 10−2 are not provided in Table 3, which indicates that DQTFEM is much
more efficient than the other two methods, especially if high accuracy is required. Another observation
is that RKM is more efficient than NMA.

NMA is a symplectic method of second order, in which the amplitude can be rigorously preserved
for linear systems, but its phase error is larger than that of RKM. It is well known that dynamic
responses must be represented by amplitude and phase together; therefore, RKM is more efficient than
NMA for achieving the same accuracy. However, the weakness of RKM is its numerical dissipation
and the weakness of NMA is its larger phase error. For long-time kinematics simulations in which
only amplitude is taken into account, NMA is a better choice.

Table 3. CPU time comparison.

Method
RelErr = 10−6 RelErr = 10−2

h Time Steps CPU (s) h Time Steps CPU (s)

DQTFEM 1.26 1588 0.4932
RKM 5 × 10−2 4 × 105 4.743 0.32 6.25 × 103 0.7843
NMA 1 × 10−3 2 × 106 249.4 4.5 × 10−2 4.445 × 104 1.184

4.1.3. Damping Vibration

For further validation of the present method, Rayleigh damping given in Equation (38) is added
to the system as Equation (37).

C =

[
0.3 −0.1
−0.1 0.2

]
(38)

N = 33 and h = 0.59375 are also used here. The displacement x1 and RelErr are given in Figures 4
and 5, respectively, from which one can see that DQTFEM is also the most accurate: its RelErr reaches
10−6. Therefore, the present method is also applicable to the analysis of damped problems.
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4.2. Free Vibration of a Simply Supported Euler Beam

In order to further explore the accuracy and efficiency of DQTFEM, the free vibration of a simply
supported Euler beam of length L = 3 m is studied in this section; flexural rigidity EI = 1 × 106 N/m
and mass density per unit length ρA = 420 kg/m. The beam is meshed into 16 uniform cubic elements.
All initial velocities and displacements are equal to zero except the initial velocity at mid-span is 1 m/s;
apparently the problem is analogous to the impact problem.

Consider time domain [0, 3.6 × 10−3] s, which is meshed into 10 uniform time elements, that is h
= 3.6 × 10−4 s, and 20 Gauss–Lobatto–Legendre sampling points are involved in each element. Note
that, if the highest frequency is ω33 = 6.967 × 104 rad/s, then ω33h = 25.08 falls into the first stable
interval 0 < ωh ≤ 25.11 for N = 20; see Table 1.

Figure 6 shows an excellent agreement of DQTFEM with the exact method. For reaching the same
order of accuracy, NMA needs 2.110 × 105 time steps and much more CPU time than DQTFEM; see
Table 4. Figure 7 presents the RelErr comparisons between DQTFEM and NMA; it follows that the
error of NMA accumulates while the error of DQTFEM does not.

Appl. Sci. 2017, 7, 138 12 of 17 

 

Figure 6. Displacement comparison of beam. 

 

Figure 7. RelErr comparison between DQTFEM and NMA for xmid-span. 

Figure 6. Displacement comparison of beam.



Appl. Sci. 2017, 7, 138 12 of 16

Table 4. CPU time comparison between DQTFEM and NMA (RelErr = 10−7).

Method h (s) Time Steps CPU (s)

DQTFEM 3.6 × 10−4 10 0.9376
NMA 1.706 × 10−8 2.110 × 105 294.8
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For validating the effectiveness of DQTFEM for long-term simulation, the computational time
changes from 3.6 × 10−3 s to three times the maximum period Tmax = 2π/ω1 = 0.1174 s, where
ω1 = 53.51 rad/s, the number of elements is 3Tmax/h ≈ 978. Figure 8 gives a comparison of
displacements by DQTFEM with the exact solution, which shows that DQTFEM is also highly accurate
for this case and the needed CPU time is only 75.53 s. Nevertheless, the NMA results are not presented
since NMA requires a prohibitively long CPU time.
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5. Conclusions

A highly accurate and highly efficient DQTFEM was developed in the present study by using the
DQ rule, the Gauss–Lobatto integration rule, and the general form of Hamilton’s variational principle
for solving structural dynamic problems involving damping and external forces.

DQTFEM incorporates the high accuracy and efficiency of DQM into the development of
high-order time elements, in which initial conditions can be introduced in the same simple and
general form as in standard FEM. Furthermore, DQTFEM can serve as a step-by-step approach; one
time element of DQTFEM can be seen as one time step of the conventional step-by-step method.
Moreover, it has been shown that DQTFEM is a highly accurate symplectic method.

Extensive numerical comparisons validated the present method, whose solutions can be seen as
benchmarks to validate lower-order DIMs and TFEMs. It is expected that DQTFEM will be practical in
the future.
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Appendix A

The derivation procedure of Equations (8)–(10) is as follows:

∫ t2
t1

δTdt =
∫ t2

t1

.
uTMδ

.
udt =

N
∑

j=1
Cj(Dj)

TMδDj

=
[
(D1)

T (D2)
T · · · (DN)

T
]

C1M
C2M

C3M
C4M

δ


D1

D2
...

DN


= UT(AT ⊗ E)(CG ⊗M)

(
A⊗ E)δU

= UT{(ATCGA)⊗ (EME)
}
δU

= UT{(ATCGA)⊗M
}
δU

(A1)

∫ t2
t1

δTdt =
∫ t2

t1

.
uTMδ

.
udt =

N
∑

j=1
Cj(Dj)

TMδDj

=
[
(D1)

T (D2)
T · · · (DN)

T
]

C1M
C2M

C3M
C4M

δ


D1

D2
...

DN


= UT(AT ⊗ E)(CG ⊗M)

(
A⊗ E)δU

= UT{(ATCGA)⊗ (EME)
}
δU

= UT{(ATCGA)⊗M
}
δU

(A2)
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∫ t2
t1

δVdt =
∫ t2

t1
uTKδudt =

N
∑

j=1
Cj(Uj)

TKδ(Uj)

=
[
(U1)

T (U2)
T · · · (UN)

T
]

C1K
C2K

C3K
C4K

δ


U1

U2
...

UN


= UT

(CG ⊗K)δU

(A3)

∫ t2
t1

δWdt =
∫ t2

t1
(

.
uTCδu + fTδu)dt

=
N
∑

j=1
Cj

{
(Dj)

TC + (Fj)
T
}
δ(Uj)

=
[
(D1)

T (D2)
T · · · (DN)

T
]

C1C
C2C

C3C
C4C

δ


U1

U2
...

UN

+

[
C1(F1)

T C2(F2)
T · · · CN(FN)

T
]
δ


U1

U2
...

UN


= UT

(
AT ⊗ E)(CG ⊗ C)δU + (cs(F))T(CG ⊗ E)δU

= UT{(ATCG)⊗ (EC)
}
δU + (cs(F))T(CG ⊗ E)δU

= UT{(ATCG)⊗ C)
}
δU + (cs(F))T(CG ⊗ E)δU

, (A4)

where

(Dj)
T =

[
N
∑

k=1
Ajku1k

N
∑

k=1
Ajku2k · · ·

N
∑

k=1
Ajkunk

]
(j = 1, 2, · · · , N) (A5)

(Uj)
T =

[
u1j u2j · · · unj

]
(A6)

(Fj)
T =

[
f1j f2j · · · fnj

]
(A7)
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