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Abstract: This paper reports the experimental investigation of the steady-state creep process
for fine-grained asphalt concrete at a temperature of 20 ± 2 ◦C and under stress from 0.055 to
0.311 MPa under direct tension and was found to occur at a constant rate. The experimental
results also determined the start, the end point, and the duration of the steady-state creep process.
The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt
concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress
has a great impact on the specific characteristics of asphalt concrete: stress variation by one order
causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state
of asphalt concrete in a complex stressed condition. The dependence is determined between stress
intensity and strain rate intensity.

Keywords: asphalt concrete; creep curve; steady-state creep; strain rate; viscosity; stress intensity;
strain intensity

1. Introduction

Asphalt concrete is one of the main materials used for highway pavements. Mechanical properties
of an asphalt concrete are highly dependent on temperature and time of loading [1–3]. Therefore, the
determination of the mechanical behavior of an asphalt concrete, taking into account the variation of
the above-mentioned factors, has important practical value.

It is known that the basic methods for evaluating the mechanical behavior of viscoelastic materials
are tests on creep and relaxation [4–6]. Technically, creep test investigations are easy to conduct, and
their results make it possible to construct creep and long-term strength curves. Relaxation curves
can be obtained from the creep curves by using known methods [6,7]. The long-term strength curves
enable us to determine the service life of an asphalt concrete pavement.

The work in Reference [8] analyzes experimentally the process of uniaxial and triaxial creep for
two asphalt concrete types (dense bitumen macadam and hot rolled asphalt) at a temperature range
of 10 to 40 ◦C. It was determined that the creep curve of asphalt concretes has three characteristic
stages, the second of which (steady-state creep stage) has a constant strain rate. The viscosity of asphalt
concretes for this stage of creep curve depends nonlinearly on the stress.

As the result of experimental tests for four asphalt concrete types, Hassan [9] approximated the
first and the second stages of the creep curve by power function. However, an attempt to establish a
linear correlation relationship between an exponent of power function and an exponent of Paris law
was not successful.

Soleimanbeigi et al. [10] obtained results experimentally that demonstrated the creep strain rate
of recycled asphalt shingles with bottom ash (RAS-BA) increased the most with the increase of applied
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stress value. The relationship of creep strain rate with stress is described by the power function and
showed that the strain and the strain rate of creep increased with a temperature increase.

The asphalt concrete test for uniaxial creep at four different temperatures and three levels of stress,
with the purpose of permanent strain evaluation was performed by Mahan [11]. Test results showed
that both stress and temperature impact greatly on creep strain and permanent strain. Having tested
the cylindrical specimens of two asphalt concrete types for uniaxial creep during compression at the
temperatures of 25, 40, and 60 ◦C and three levels of stress, Zhigang et al. [12] also determined that the
creep curve of asphalt concrete had three stages, where the second stage had a constant strain rate.
The authors defined creep strain as a viscous flow deformation, and also called the gradual reduction
of deformation on the first stage and maintenance of strain rate as a constant on the second stage as
the “consolidation effect”. Either temperature or stress greatly impacts creep strain. The greater the
temperature, the less the asphalt concrete resists strain. The greater the stress at a similar temperature,
the faster the damage occurs. The time period for the test was 5000 s. A simple model of creep with
five parameters was determined from a generalized model of Kelvin, and was proposed for the same
maximum duration of deformation.

The work in Reference [13] used the test results of asphalt concretes based on the three point
bending test at different temperatures and levels of stress to develop master curves of stiffness modulus.

In this paper, test results of hot fine-grained asphalt concrete samples on creep are presented.
Creep tests were carried out by a direct tensile scheme until complete fracture of the asphalt concrete
samples was obtained. The test temperature was 20 ± 2 ◦C. The applied stress was changed from
0.055 to 0.311 MPa. Creep curves under different loads of the asphalt concrete were constructed. Three
characteristic stages of creep curves—the unsteady-state, the steady-state, and the accelerating creep
stages—are shown. The first creep curve stage of asphalt concrete was satisfactorily approximated by
Rabotnov’s fractional exponential function [14]. A description of the third creep curve stage should be
carried out on the basis of continuum damage mechanics approach [15,16], which is currently work in
progress. Therefore, the second stage of the asphalt concrete creep curve is described.

2. Materials and Methods

2.1. Bitumen

Bitumen of grade 100–130, which met the requirements of the Kazakhstan standard [17], was
used in this study. The bitumen grade on Superpave is PG (Performance Grade) 64–40 [18]. Basic
standard indicators of the bitumen are shown in Table 1. Bitumen is produced by the Pavlodar
processing plant from the crude oil of Western Siberia (Oil processing plant, Omsk, Russia) by the
direct oxidation method.

Table 1. Basic standard indicators of the bitumen, ST RK: Standard of the Republic of Kazakhstan.

Indicator Measurement Unit Requirements of ST RK 1373 Value

Penetration, 25 ◦C, 100 gr, 5 s 0.1 mm 101–130 104
Penetration Index PI - −1.0, . . . ,+1.0 −0.34
Tensility at temperature: cm - -

25 ◦C - ≥90 140
0 ◦C - ≥4.0 5.7

Softening point ◦C ≥43 46.0
Fraas point ◦C ≤−22 −25.9
Dynamic viscosity, 60 ◦C Pa·s ≥120 175.0
Kinematic viscosity mm2/s ≥180 398.0

2.2. Asphalt Concrete

Hot dense asphalt concrete of type B that met the requirements of the Kazakhstan standard [19]
was prepared with the use of aggregate fractions of 5–10 mm (20%); 10–15 mm (13%); and 15–20 mm
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(10%) from the Novo-Alekseevsk rock pit (Almaty region, Kazakhstan); sand of fraction 0–5 mm (50%)
from the plant “Asphaltconcrete-1” (Almaty city, Kazakhstan); and activated mineral powder (7%)
from the Kordai rock pit (Zhambyl region, Kazakhstan).

The bitumen content of grade 100–130 in the asphalt concrete was 4.8% by weight of dry mineral
material. Basic standard indicators of the aggregate and the asphalt concrete are shown in Tables 2
and 3, respectively. A granulometric composition curve for the mineral part of asphalt concrete is
shown in Figure 1.

Table 2. Basic standard indicators of the crushed stone.

Indicator
Measurement

Unit
Requirements of
ST RK 1284 [20]

Value
Fraction 5–10 mm Fraction 10–20 mm

Average density g/cm3 - 2.55 2.62
Elongated particle content % ≤25 13 9

Clay particle content % ≤1.0 0.3 0.2
Bitumen adhesion - - satisf. satisf.
Water absorption % - 1.93 0.90

Table 3. Basic standard indicators of the asphalt concrete.

Indicator Measurement Unit Requirements of ST RK 1225 Value

Average density g/cm3 - 2.39
Water saturation % 1.5–4.0 2.3

Voids in mineral aggregate % ≤19 14
Air void content in asphalt concrete % 2.5–5.0 3.8

Compression strength at temperature MPa - -
0 ◦C - ≤13.0 7.0

20 ◦C - - 3.4
50 ◦C - ≥1.3 1.4
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2.3. Sample Preparation

Samples of the hot asphalt concrete in the form of a rectangular prism with dimensions
15,050 × 50 mm (Figure 2) were manufactured as follows. First, the asphalt concrete samples were
prepared in the form of a square slab (Figure 3) using a Cooper compactor (model CRT-RC2S, Cooper,
Nottingham, UK) (Figure 4) according to the standard in [21]. The samples were then cut from
the asphalt concrete slabs in the form of a prism. Deviations in sizes of the beams did not exceed
two millimeters.
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2.4. Test

Tests on creep were carried out on hot asphalt concrete samples in the form of a rectangular
prism, according to the direct tensile scheme until complete failure was reached. The test temperature
was equal to 20 ± 2 ◦C, stress was variable from 0.055 to 0.311 MPa. The tests were carried out in a
specially assembled installation (Figure 5). The sample strain was measured by means of two clock
type indicators while data were recorded on a video camera.
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3. Results and Discussion

3.1. Creep Curve

Previous works [14,22,23] showed that an asphalt concrete creep curve—as with most viscoelastic
materials—had three characteristic stages: stage I of unsteady-state creep with decreasing rate; stage II
of steady-state creep with a constant (minimum) rate; and stage III of accelerating creep with increasing
rate which precedes failure. The above studies presented test results of asphalt concrete for creep with
relatively narrow ranges of stress variation. This work includes test results for seven values of stress
from 0.055 MPa to 0.311 MPa. Practically, five samples of asphalt concrete were tested for each value
of stress.

Figure 6 shows the creep curve for asphalt concrete at stress 0.117 MPa. It is clearly seen that the
creep curve contains all three stages. It is important to underline that since the beginning of loading to
the failure moment, the asphalt concrete passes three stages of deformation.
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3.2. Steady-State Creep

To solve practical problems, it is important to describe a creep curve obtained experimentally.
Usually the third stage of the creep curve for the material is not considered in engineering calculations,
as within its range the intensive accumulation of damage occurs, which results in a short life [16].
Therefore, the first and second stages of the creep curve are of main interest for mathematical
description. The first stage of the creep curve for asphalt concrete was described with the use
of Rabotnov’s fractional exponential function [16] and was reported previously by the authors of
Reference [14].
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Analyzing the results for the creep experiment, we can represent the second stage of the creep
curve as a straight line under all applied stresses with high accuracy, i.e., the deformation of asphalt
concrete under constant stress occurs at a constant rate

•
ε2 (Figure 7). Figure 8 shows that the strain rate

depends on the stress, and its dependence is satisfactorily described by a power function. It should be
emphasized that stress impacts greatly on strain rate: the increase of the stress by one order causes the
increase of strain rate approximately by four orders.Appl. 2017, 7, 142  6 of 13 

 

Figure 7. Stage II of asphalt concrete creep curves under stress between 0.084 and 0.260 MPa. 

 

Figure 8. Dependence of steady-state creep rate on stress. 

It is very important to know when steady-state creep starts and finishes, and the length of 

duration. As Figures 9–11 show, the specific time characteristics of asphalt concrete depend on stress 

and are satisfactorily approximated by a power function. It was found that the stress also impacts 

greatly on start point, end point, and steady-state creep duration, where the increase of stress for one 

order increases these time characteristics for 4.3–4.5 orders. 

 

Figure 9. Dependence of start point for the stage of steady-state creep on stress. 

Figure 7. Stage II of asphalt concrete creep curves under stress between 0.084 and 0.260 MPa.

Appl. 2017, 7, 142  6 of 13 

 

Figure 7. Stage II of asphalt concrete creep curves under stress between 0.084 and 0.260 MPa. 

 

Figure 8. Dependence of steady-state creep rate on stress. 

It is very important to know when steady-state creep starts and finishes, and the length of 

duration. As Figures 9–11 show, the specific time characteristics of asphalt concrete depend on stress 

and are satisfactorily approximated by a power function. It was found that the stress also impacts 

greatly on start point, end point, and steady-state creep duration, where the increase of stress for one 

order increases these time characteristics for 4.3–4.5 orders. 

 

Figure 9. Dependence of start point for the stage of steady-state creep on stress. 

Figure 8. Dependence of steady-state creep rate on stress.

It is very important to know when steady-state creep starts and finishes, and the length of duration.
As Figures 9–11 show, the specific time characteristics of asphalt concrete depend on stress and are
satisfactorily approximated by a power function. It was found that the stress also impacts greatly
on start point, end point, and steady-state creep duration, where the increase of stress for one order
increases these time characteristics for 4.3–4.5 orders.
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To show the full strain reached by the start of stage II of the creep curve through ε1, then the
strain of creep for this stage at any time t ,is calculated as:

ε2(t) = ε1 +
•
ε2 · t, (t1 < t ≤ t2), (1)

where ε2(t) is strain of creep at time moment t, %; ε1 is the strain at the start of stage II for creep curve,
%;

•
ε2 is the steady-state creep rate, %/s; t is time, s.
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As a result of processing by the least square method, the following dependence was obtained
between the steady-state creep rate of asphalt concrete and stress (Figure 8):

•
ε2 = 0, 6597 · σ3,9292, (2)

where σ is stress, MPa.
Having substituted the dependence in Equation (2) into Equation (1), we have:

ε2(t) = ε1 + 0, 6597 · σ3,9292 · t, (t1 < t ≤ t2). (3)

As mentioned above, the dependences of start point t1 and end point t2 of steady-state creep on
stress are approximated by power functions, and in particular by the following ones (Figures 9 and 10):

t1 = 0, 1889 · σ−4,465, (4)

t2 = 0, 7996 · σ−4,370. (5)

The strain ε1 can be calculated by the methods described in [14]. Equations (3)–(5) allow the
determination of the creep strain of asphalt concrete for the stage of steady-state creep (stage II) at the
time moment t (t1 < t ≤ t2).

Similar to Newton’s law for ideal viscous liquid, in our case for each creep curve, we can write [24]:

σ = η× •
ε2, (6)

where σ is stress;
•
ε2 is steady-state creep (flow) rate; η is viscosity of steady-state flow.

Additionally, for all considered stress variation limit, we can write the Equation (6) in the
following form:

σ = η(σ) · •ε2(σ). (7)

From Equation (7), we obtain viscosity:

η(σ) =
σ
•
ε2(σ)

. (8)

The dependence of viscosity of asphalt concrete on stress, constructed under the Equation (8)
with the use of experimental results, is shown in Figure 12, which is satisfactorily approximated by a
power function. The stress impacts greatly on the viscosity of asphalt concrete, the increase of stress by
one order reduces the viscosity by three orders.
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3.3. Defining Relations for Steady-State Creep of Asphalt Concrete at Complex Stressed Condition

In the reality of pavement structure, the points of asphalt concrete pavement during the loading
impact of vehicle wheels are in a complex stressed and strained condition [3,25]. Experimental tests for
determining the mechanical characteristics of asphalt concrete, as a rule, are carried out under simple
loading and strain schemes (uniaxial tension, uniaxial compression, three-point bending, four-point
bending) [2]. Therefore, the integration of these experimental results, which are carried out under
simple loading and strain schemes for cases of complex stress and strained condition, is of significant
importance for use in practice [24].

By assuming that (x, y, z) is a Cartesian coordinate system, the stressed condition in point of
asphalt concrete pavement is described by stress tensor [26]: σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 =

 σ0 0 0
0 σ0 0
0 0 σ0

+

 σxx − σ0 σxy σxz

σyx σyy − σ0 σyz

σzx σzy σzz − σ0

, (9)

where

 σxx − σ0 σxy σxz

σyx σyy − σ0 σyz

σzx σzy σzz − σ0

 is the deviator of stress; and σ0 = 1
3 (σxx + σyy + σzz) is the

mean stress.
Strained condition in the point is determined by strain rate tensor:

•
εxx

•
εxy

•
εxz

•
εyx

•
εyy

•
εyz

•
εzx

•
εzy

•
εzz

 =


•
ε0 0 0
0

•
ε0 0

0 0
•
ε0

+


•
εxx −

•
ε0

•
εxy

•
εxz

•
εyx

•
εyy −

•
ε0

•
εyz

•
εzx

•
εzy

•
εzz −

•
ε0

, (10)

where


•
εxx −

•
ε0

•
εxy

•
εxz

•
εyx

•
εyy −

•
ε0

•
εyz

•
εzx

•
εzy

•
εzz −

•
ε0

 is the deviator of strain rates; and
•
ε0 = 1

3 (
•
εxx +

•
εyy +

•
εzz) is

the mean strain.
As seen in Figure 13, the strain of asphalt concrete at the start ε1 and final ε2 of the steady-state

creep depends on the stress and at a minimum stress of 0.055 MPa, does not exceed 1.2% and 1.9%
respectively, i.e., they are very small.
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To describe the steady-state creep of asphalt concrete, we assumed the following three hypotheses:
(1) Material is uncompressible, i.e., the incompressibility condition is true [24]:

•
εxx +

•
εyy +

•
εzz = 0. (11)
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(2) The deviator of stresses is proportional to deviator of strain rates [24]:

σxx − σ0 = ψ
•
εxx, σxy = ψ

•
εxy,

σyy − σ0 = ψ
•
εyy, σyz = ψ

•
εyz,

σzz − σ0 = ψ
•
εzz, σzx = ψ

•
εzx,

(12)

where ψ is the parameter of proportionality depending on stress and strain rates.
Stress intensity:

σi =
1√
2

√
(σxx − σyy)

2 + (σyy − σzz)
2 + (σzz − σxx)

2 + 6(σxy2 + σyz2 + σzx2). (13)

Strain rate intensity:

•
εi =

√
2

3

√
(
•
εxx −

•
εyy)

2
+ (
•
εyy −

•
εzz)

2
+ (
•
εzz −

•
εxx)

2
+ 6(

•
ε

2
xy +

•
ε

2
yz +

•
ε

2
zx). (14)

Having substituted the Equation (12) into Equation (13), we have

σi =
1√
2

√
ψ2
[
(
•
εxx −

•
εyy)

2
+ (
•
εyy −

•
εzz)

2
+ (
•
εzz −

•
εxx)

2
+ 6(

•
ε

2
xy +

•
ε

2
yz +

•
ε

2
zx)

]
. (15)

Comparison of Equation (15) with Equation (14) shows that

σi =
3
2
ψ
•
εi. (16)

From Equation (16), we obtained

ψ =
2
3
σi
•
εi

. (17)

Then, we write Equation (12) again considering Equation (17):

σxx − σ0 = 2
3
σi
•
εi

•
εxx, σxy = 2

3
σi
•
εi

•
εxy,

σyy − σ0 = 2
3
σi
•
εi

•
εyy, σyz =

2
3
σi
•
εi

•
εyz,

σzz − σ0 = 2
3
σi
•
εi

•
εzz, σzx = 2

3
σi
•
εi

•
εzx.

(18)

(3) There is a functional dependence between stress intensity and strain rate intensity, which does
not depend on the type of stressed condition:

•
εi = f (σi). (19)

For uniaxial tension σxx > 0, σyy = σzz = σxy = σyz = σzx = 0. Therefore, from Equation (13), we have

σi = σxx (20)

Considering the condition of incompressibility for the material from Equation (11) for uniaxial
tension is also true,

•
εxx > 0,

•
εxy =

•
εyz =

•
εzx = 0,

•
εyy =

•
εzz = − 1

2
•
εxx.

Then, from Equation (14), we have
•
εi =

•
εxx. (21)
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Taking into account Equations (19)–(21) for the considered asphalt concrete, the relation between
strain rate intensity and stress intensity will have the following form:

•
εi = 0.6597 · σi

3.9292, (22)

where
•
εi is strain rate intensity, %/s; σi is stress intensity, MPa.

Comparing Equations (19) and (22), we have

f (σi) = 0.6597 · σ3.9292. (23)

The previous paper in Reference [22] showed that asphalt concrete is deformed as a plastic
material at 20 ◦C during cyclic loading under scheme “loading—deforming under constant load—rest”.
Thus, keeping the applied stress equal to 0.138 MPa constant for 120 s and keeping the asphalt concrete
sample without load for the following 300 s in each cycle showed that even after four to five cycles the
elastic (recovered) strain was only 5%–6% (Figure 14), i.e., asphalt concrete was deformed plastically.
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The above data emphasized the importance of defining relations for the steady-state creep of
asphalt concrete as seen in Equations (18) and (22); and should also be considered as defining relations
for steady-state plastic flow. By using them we can set the problems and solve them for the modeling
of rutting in asphalt concrete layers of highways (Figure 15).
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4. Conclusions

The results of the experimental investigation into fine-grained asphalt concrete at static loading at
a temperature of 20 ± 2 ◦C and at stress between 0.055 and 0.311 MPa showed the following:

- For creep curve stage II, the asphalt concrete deformation occurred at a constant rate. The strain
rate for this stage is dependent on the stress, and this dependence is satisfactorily described by a
power function. The stress has a great influence on the strain rate where the increase of stress by
one order increases the strain rate approximately by four orders;

- The dependences were constructed for the start point, end point, and the duration of the
stage of steady-state creep on the stress. The stress also impacts greatly on the specified
time characteristics, where the increase of stress by one order increases these characteristics
for 4.3–4.5 orders;

- The values of viscosity for asphalt concrete were determined at various stresses. The dependence
was defined for viscosity on the stress and can also be satisfactorily described by a power function.
In particular, the increase of stress by one order reduces the viscosity by three orders;

- Assuming that asphalt concrete is an incompressible material, then the stress deviator is
proportional to the strain rate deviator. Hence, there is a functional relationship between the
stress intensity and the strain rate intensity, which does not depend on the type of stress condition.
The defining relations were formulated for the steady-state creep of asphalt concrete under
complex stressed conditions.
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