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Abstract: The past years have witnessed the significant development of the Internet. Numerous
emerging network architectures and protocols have triggered the demand for traffic generators
which stand in stark contrast to previous schemes. Namely, fixed test content is inefficient in the
presence of such a dynamic and realistic demand. Moreover, the requirement of high-performance
has raised the stakes on developing a new concurrent system. In this paper, we present a hierarchical
parallel design for a Web traffic generator on a TILERAGX36 processor, called TGMP. We discuss the
challenges in developing its hierarchical architectural design, and elaborate on its implementation
details. Specifically, in order to generate a realistic network workload over a long and large time scale,
we propose a user-control scheme based on cubic spline interpolation. To better improve the scalability
of the system and satisfy the required flow rate, we adopt techniques, including optimization
of parameters under the Linux kernel, event-driven concurrency, and parallel architectures of
a TILERAGX36 processor. The experimental results demonstrate that TGMP is able to create real
traffic and simulate 50,000 users accessing the Web server simultaneously.

Keywords: scalability; high performance; TGMP; TILERAGX36

1. Introduction

A traffic generator is the major tool to provide network background traffic to evaluate and
verify the performance, protocol, and security of the experimental network. With the continuous
in-depth application of the emerging network architecture, such as SDN (Software Defined Network),
and CCN (Content-Centric Networking), there has been an urgent and ever-increasing demand for
a traffic generator with high-performance, flexibility, low cost and reality. Unfortunately, such a tool
is not easily available, and is usually of much smaller scale than needed. Recent research suggests
that the Web still occupies 15%∼18% of the traffic [1]. Therefore, generating high-performance and
a representative Web traffic generator is crucial for evaluating the emerging network architecture
under different network conditions.

At present, some commonly used tools have been made for a Web traffic generator, of which the
two most typical types are the special equipment based on hardware and the software tool running on
general hardware. The former is generally designed for a particular test scenario which lacks flexibility
and extensibility, such as Spirent Avalanche [2], and Ixia IxLoad [3]. Spirent Avalanche is an application
test which creates real-world dynamic user behavior with advanced browser-to-application-interaction
capabilities. However, it is hard to cope with highly changeable scenarios. Owing to its flexibility
and the simplicity of implementation, the latter provides low-cost and quick deployment. Some other
well-known tools are Webstone [4], ProWGen [5] and GlobeTraff [6]. Compared to the hardware platform,
the software is easier to promote and provides a cross-platform API (Application Programming
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Interface). However, these kinds of tools are inefficient and poor in performance, so it is hard to
satisfy the requirements of a future network. To be specific, take Geist [7] for example, which is
a tool that generates realistic traffic for exercising web-servers and e-commerce front-end servers but
the insufficient performance allows limited access. In a nutshell, common instrumentation usually
provides limited flexibility and available software generators have poor performance. In this paper,
we join both high-performance equipment and programmable software design.

In literature, a huge amount of work exists on the characterization, modeling and simulation of the
network workload such as, live streaming media [8], and YouTube traffic [9]. Unfortunately, we cannot
state the same for the generation of a realistic network workload based on those methods. Many
other studies also have contributed in the field of Web traffic generation. Zinke [10] points out that
the Web traffic generator has two requirements. A real workload is defined as a sequence of requests
which are received from a real world web server. A representative workload is defined as a generated
workload which has the same characteristics as a given real workload. When it comes to the realistic
network workload, numerous researches have been done. In order to formulate different kinds of
traffic, Cheng [11] proposes a HTTP traffic generator to generate user-defined HTTP traffic and analyze
the performance under different network characteristics. Given the representative workload, based on
the characteristics of the present representative workload, Botta [12] proposes a method for the realistic
network workload to study the emerging networking scenarios with multidimensional heterogeneity
and scale. However, most of the related work cannot generate a realistic network workload over a long
and large time scale.

In this paper, aiming to design a Web traffic generator with the characteristics of verifying the
future network architectures, we propose a flexible framework to support arbitrary models. Firstly,
the system should generate realistic web traffic over a large timescale; secondly, a large number of
users can certainly be described; finally, multiple operators can use the platform simultaneously.
The generic Many-Core architectures with lots of cores [13], a remarkable new field, are providing
new opportunities for a high-performance traffic generator. We develop a high-volume parallel design
for a Web traffic generator on Many-Core processors, called TGMP. Unlike other traffic generators,
we concentrate on the hierarchical architectural design, which allows for better control of the traffic and
a more scalable generation. In order to generate a realistic network workload over a large time scale,
we combine the method of user behavior with the user-control method by cubic spline interpolation.

We first explore how the TGMP can be leveraged to efficiently overcome the limitations in current
Web traffic generator architectures with low flexibility, low scalability and high cost. After that,
to break this stalemate, we have tackled two main technical issues. First, we perform large-time-scale
flow simulation. Specifically, we use cubic spline interpolation to handle the traffic self-similarity in
one hour or one day, which keeps the corresponding traffic flow that reflects the real network conditions.
Compared to solutions performed by traffic replay, our solution does not need to capture the packet
in advance. Second, we explore new parallel opportunities provided by Many-Core processors.
More specifically, we propose a parallel design for implementing TGMP on the TILERAGX36.
Our solution is inspired by Jiang [14], who designs a NIDS (Network Intrusion Detection System)
on such processors on which tasks are split and sub-tasks are allocated to run concurrently through
decomposition techniques. The contribution of our work can be listed as follows:

1. The software architecture of a Web traffic generation system is proposed by using the hierarchical
design methodology including the control layer, virtual user layer and traffic generation layer,
to provide high scalability.

2. We present a user-control method using the cubic spline interpolation based on the analysis of
the Web user behavior simulation method of accessing the real server. The method enables the
system to generate the background traffic with the characteristics of a real network over a long
time scale according to the Internet user’s access time in different scenarios.
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3. In order to meet the requirements of concurrency, we have implemented a TGMP prototype.
Three high concurrency strategies are employed, which enable the system to simulate a large
number of virtual users at the same time, and generate more Web traffic.

4. We has been implemented and deployed in the real network at the third floor of the YiFu building
in the CQUPT campus. The experiments show that compared with other systems, TGMP yields
a more satisfactory performance in which 50,000 users access the Web server simultaneously.

The structure of this paper is as follows. The related Web traffic generation systems and the
challenges in developing TGMP are introduced in Section 2. Section 3 presents a layered architecture
of TGMP. Section 4 describes the cubic spline interpolation algorithm. Section 5 focuses on the high
concurrency strategy. Section 6 presents the experimental results. Finally, we conclude this work
in Section 7.

2. Background and Challenges

In this section, we discuss the advantages and the disadvantages of the currently existing traffic
generations. The purpose of the discussion is to make a wise decision in the design of TGMP.

2.1. Overview of the TILEGX36 Architecture

Many-core processors, which are usually equipped with a larger number of cores per processor
(tens to hundreds of cores per processor compared to up to six or eight in existing commodity multi-core
processors), have emerged in the past years. In particular, each core in these processors can run a full
operating system, which provides high flexibility and simplicity for software development.

The TILEGX36 processor is a typical many-core processor with 36 homogeneous cores, which are
organized in a 6 × 6 grid, interconnected using an on-chip network structure as shown in Figure 1.
Each tile is a full-featured computing system that can run independently. The (User Dynamic Network)
UDN is executed in processes or threads, which effectively reduces the power consumption and
communication delay.

Figure 1. Overview of the TILEGX36 architecture.
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2.2. The Existing Approaches of Traffic Generation

Accurate modeling and generation of a realistic network workload are difficult and challenging
tasks because of heterogeneity, scale and complexity of the current Internet. In literature, a substantial
number of works focus on the modeling and simulation of traffic generation. At present, the traffic
generation has the following methods:

1. Traffic Replay [15,16]

Traffic replay tools are used to repeat real traffic scenarios. Traditionally, such a tool relies
on software solutions that capture the whole traffic trace, and send the trace to the test network.
Some special hardware devices should be provided. For instance, Qiao [15] realizes a traffic capture
and replay system based on The Add-on Card, which interprets the detailed logic design of UDP
pipeline on FPGA (Field-Programmable Gate Array). Although the Web traffic generator based on
hardware implementation can produce high-volume test traffic, its poor scalability makes it difficult to
integrate with the experimental network. GoReplay offers us the similar idea of reusing our existing
traffic for testing, which makes it incredibly powerful. Nonetheless, these kinds of approaches can
only reflect a period of time instead of a long and large time scale.

2. Traffic Model [17]

Some existing tools, such as WebStone [4], Web Polygraph [18], and httperf [19] are based on
synthetic models of Web traffic. The network traffic model should be built by the study of the
characteristics of a traffic generator. For example, Xu [17] set each virtual user with a corresponding
configure file, and these files determine the visiting paths, visiting moments and stay time of virtual
users based on the Continuous Time Markov Chain. These models are developed analytically and
then validated experimentally with measurement studies. Although it allows fine-grained control
over behavioral aspects, some serious drawbacks are also inevitable. For instance, it can only reflect
the macroscopic characteristics of the network traffic. In particular, such tools can successfully create
realistic traffic mixes as a function of overall load. However, these tools typically cannot provide
good performance.

3. User Behavior [20,21]

The process of visiting the Web site can be roughly divided into the following three stages: First,
a user starts a conversation by selecting a link what they are interested in; Second, after browsing,
they often click another link, in which they are interested, in a relatively short time; Third, when he
obtains the required information, he will stay for a long time with an inactive state. In particular,
Figure 2 shows the important traffic parameters, including think-time, session-time, etc. In such a case,
traffic characterization must be in line with the behavior of an individual user. In this paper, we first
analyze web workload characteristics such as file sizes, mean think time, and the number of requests
made to an individual file. We utilize the typical ON/OFF [20] internet accessing statistical model
in which its key parameters are procured from real traffic analysis. Thus, it can generate realistic
network traffic.
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Figure 2. User browsing behavior.

2.3. Challenges

Generating high-volume, stable, realistic test traffic is crucial for assessing the performance of
network devices in a reliable way and under different stress conditions. In this paper, we borrow
from the hierarchical architecture design [22] in that it separates control plans and perform plans,
and exposes the functions’ interface to higher layers to deal with the dynamics of the network.

Two main technical challenges should be considered. First, its realistic replication is a challenging
task over the large scale of time. The multidimensional heterogeneity of the current internet exacerbates
the seriousness of the problem. However, the existing schemes can only reflect a period of time or the
previous characteristics of the network. To address this issue, we need to generate the background
traffic with the characteristics of a real network over a long and large time scale according to Internet
users’ access time data in different scenarios. Therefore, we present a method based on the cubic spline
interpolation of the user control method to simulate the characteristics of a real network. Meanwhile,
we generate a realistic network workload by accessing the real server.

Second, existing schedules have mostly been low-efficient due to the limited hardware resources
and inefficient process. To better improve the scalability of the system and satisfy the required flow
rate, the support for high-performance and configurable experiments is greatly needed in such context.
Furthermore, in large-scale networks, tests have to be performed automatically because the size of
the system under test may prevent the manual performance of activities on each and every host
involved in the experiment. Even though existing traffic generators are quite useful, nonetheless,
most of them suffer from the following: (1) It may need special equipment which is expensive or
not commonly used. For example, MoonGen [23] is a flexible high-speed packet generator. A key
feature is the measurement of latency with sub-microsecond precision and accuracy by using hardware
timestamping capabilities of modern commodity NICs (Network Interface Cards); (2) It is not trivial to
generate traffic data in arbitrary spatial regions using existing traffic generators. For example, DPDK
(Data Plane Development Kit) is a set of libraries and drivers for fast packet processing, which is widely
used in the field of traffic generators, such as MoonGen [23], TRex [24]. However, it can only capture
the packet at the data link layer instead of dealing with it at the application layer. In order to generate
real web traffic, the packet must enter the kernel protocol stack. The availability of generic many-core
architectures with tens to hundreds of cores per processor which have the features of low-cost and
feature-rich, is offering new opportunities for parallelization and extensibility. Taking advantage of
the efficient network architecture , a schedule should be designed, which can efficiently address the
challenges of high-performance and improve the efficiency to leverage the Many-Core processors.

3. Traffic Generator Systems Architecture

The development of a control system has attracted significant attention. Supporting software,
which needs to be highly adaptable to changeable network scenarios, remains one of the greatest
obstacles to a Web traffic generator. In this section, we will present the layered architecture of our
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traffic generator and its main components. Figure 3 gives an overview of TGMP architecture and the
layered system architecture mainly includes an application layer, a control layer, a virtual user layer,
and a traffic generation layer. The traffic generation experiments can be achieved by the coherent
cooperation of these layers; whenever a traffic experiment is initiated, by calling northbound APIs,
the experiment parameters and system setups can be forwarded to the lower layers including control
layer, virtual user layer and traffic generation layer. Also, using southbound APIs, the real-time
feedback information of the traffic generation tasks would be transmitted from the lower layers,
virtual layer and traffic generation layer. Each of the components will be presented in detail in the
following sections.

Figure 3. The layered system architecture of TGMP.
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(1) System Components

Application layer contains abundant user-customized traffic generation applications which
are designed as scheduled traffic generation experiments. North Bound application programming
interfaces (APIs), provided by the control layer, are called by the application layer to enable its message
exchange ability and system state monitoring function.

Control layer is assembled by the process management module, configuration module and
remote management module. The process management module is responsible for process creation,
multi-process parallelization settings, event-driven initialization and signal event registration.
The configuration module provides the ability of setting the prerequisite parameters for the system to
initiate unerringly. The remote management module monitors and handles the requests and messages
from the application layer.

Virtual user layer provides the user management module, user behavior and load balance module.
The user management module is responsible for virtual users’ resource scheduling, allocation and
isolation in each defined traffic generation task or experiment; the user behavior module is in charge
of the complete implementation of the Web user behavior model, controlling each virtual user’s web
browsing actions; the load balancing module is to assign the amount of work that traffic generation
has to do between two or more processes, so that more work can be done in the same amount of time.

Traffic generation layer can be divided into the request management module, HTTP processing
module and log processing module. The management module is responsible for the requested object’s
creation; management of the resource pool; acquiring the target URL and HTTP request message
parsing and structure; the establishment of a TCP connection; and network I/O event registration and
callback processing. The HTTP processing module as the data processing module, mainly completes
HTTP response message asynchronous parsing and discards the HTTP response entity. The log
processing module will complete the process of user access log records and periodically access the log
pushed to the log database.

(2) Use Cases

A use case is employed in order to have an overview of how the structure works. As the
centralized management maintaining multiple connections for each experimenter, the web server
provides the opportunity to achieve deployment and configuration, which allows many operators
to use the Web Site at the same time. The simulation process for a Web traffic generator as shown in
Figure 3, mainly contains the following steps:

In the first phase, the experimenter sends the simulated service message to the control layer,
which includes the number of simulated users, the number of http sessions, interval time between
sessions, the number and frequency of web clicks.

In the second phase, the control layer receives messages from the application layer, and then
encapsulates it into a specific message format, which is sent to the virtual user layer. What is more,
it keeps active until the processing result arrives from virtual user layer.

In the third phase, the virtual user layer parses the messages which are sent by the control layer
and assigned to the corresponding resource (such as the virtual user resource). Each virtual user is
activated and the corresponding timed events are registered. Notably, when a virtual user’s timer is
triggered, its callback function is called to send a request message to the traffic generation layer.

Last, the traffic generation layer obtains the specified URL according to the request message,
then establishes a connection with the target Web server. When an event is triggered, a readable or
writeable I/O event is assigned. In this case, data interaction can easily be manipulated by many event
mechanisms. Finally, the request process is pushed into the database in a certain format.

4. User Control Method by Cubic Spline Interpolation

This system requires the generation of realistic Internet traffic from a test scenario’s perspective
without having to emulate network components or protocols. The method based on user behavior
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supports self-similarity by making each user equivalent in an on–off process. However, in the larger
time scales (e.g., one hour or one day), the change is relatively stable. Based on the statistics of online
time distribution by Baidu statistical traffic institute [25], this experiment covers more than 1.5 million
sites. Figure 4 shows the number of Internet users in a single day, which obviously demonstrates a clear
time of day diurnal pattern. The main implementation problem here is how to have the clearest time
of day diurnal pattern base on the characteristics of the aggregate traffic without having to observe
any obvious changes with time of day effect.

Figure 4. Internet users vs time of day.

In this section, we discuss the cubic spline interpolation algorithm in Table 1, which achieves
the user time curves of refinement and keeps the change trend of users. We firstly finish the
data pre-processing, then construct the cubic spline interpolation model, and subsequent sample
refinement, then lastly carry out user control. More specifically, we assume the number of virtual
users is Nv. According to the actual online user percentage in Figure 4, we obtain virtual online user
percentage V(x) in 24 time slots. In step 3, discrete V(x) is interpolated in chronological order to obtain
a continuous function S(x) by the cubic spline interpolation algorithm. In steps 4–10, we take a more
accurate sampling for S(x) and obtain the virtual user reference set B. In steps 11–18, we continuously
adjust the number of active virtual users in each time slot based on B. Finally, this algorithm achieves
the user time curves of refinement and maintains the user’s changing trend. In this way, we can obtain
a more reliable load for Web traffic generation. We have built a prototype system to verify how our
algorithm can generate traffic effectively in a field test.
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Table 1. The numbers of users versus time curve, processed by Cubic Spline Interpolation.

Algorithm 1. Cubic Spline Interpolation Algorithm.

Input: the number of actual users N, actual online user percentage T(x).
Output: the virtual user reference set B, the number of active virtual user A.
1. Compute the number of virtual users Nv which satisfies Nv ≥ N ∗ max[T(xi)]

where i = 0, 1, · · · , 23;
2. Obtain virtual users-time percent data V(xi) in each time slot i calculated as

V(xi) = N ∗ T(xi)/Nv, (i = 0, 1, ..., 23);
3. Use the cubic spline interpolation algorithm, and compute continuous time

function S(x) based on interpolation processing V(x);
4. Identify the time slot j which divides 24 h into 30 s;
5. Initialize j = 0;
6. while xj ≤ 24 h do
7. B[j] = S(xj);
8. j ++;
9. end while
10. Obtain the virtual user reference set B in chronological order;
11. Assume the number of active virtual user Aj in time slot j;
12. while xj ≤ 24 h do
13. if Aj > B [j] ∗ Nv then
14. Delete Aj − B [j] ∗ Nv out of active users.
15. else
16. Add B [j] ∗ Nv − Aj extra active users.
17. end if
18. end while

5. The High Concurrency Strategy

In this section, we explore the concurrency strategy of TGMP systems on Many-Core architectures [26].
The plan includes three strategies. We first modify the Linux kernel parameters to provide basic
conditions for high concurrency. For the purpose of evaluating high-traffic, we have integrated
the event-driven programming [27] into our proposed design. Furthermore, to take advantage of
the particular feature of the TILERAGX36 hardware, we break the bottlenecks by using the task
decomposition and task mapping on TILERAGX36 platforms to improve the parallel processing.

5.1. Optimization of Parameters

The default Linux kernel parameters are the most common scenario, which obviously does not
support high concurrent processing of a traffic generation system. Therefore, some parameters should
be reconsidered in terms of their size and usage. Three aspects are mainly be considered, including
file descriptor, port numbers, and TCP parameters. Based on the capabilities of the operating system,
the right parameters can be set manually.

5.2. Event-Driven

Currently, the high concurrency strategy of the operating system follows two different design
concepts: multi-threaded and event-driven [28]. Multi-threaded applications can be performed
simultaneously on a single process by sharing the process resources, which makes it easy to
communicate. The multi-threaded concept aims to increase the utilization of a single core by using
thread-level as well as instruction-level parallelism. The event-driven concept, as a new method of
programming, is not triggered by the sequence of events but is random, which is employed in many
high performance open architectures, such as Nginx [29], and Memcached [30]. In an event-driven
application, there is generally a main loop that listens for events, and then triggers a callback function
when one of those events is detected. Motivated by this, in order to satisfy the special requirement of
the high concurrency and avoid redundant processing, a wise decision must be made. In the following
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paragraphs, to juxtapose the performance on the TILERAGX36 processor, an abstract application
scenario is described.

First, a process is bound to the designated tile on the Tile-Gx36 processor. Second, we assume a task
that achieves from 1 to n of the cumulative calculation, where n is selected from a group of random
numbers ranging from 10,000 to 20,000. Third, event-driven and multi-threaded applications perform
10 times respectively. To characterize the processing performance of the two different strategies,
the task execution time and the total number of CPU clock are measured.

Figure 5a shows that the task execution time keeps consistent when the task number is less than
5000. When it is higher than 5000, the multi-threaded approach increases significantly. When it comes
to CPU utilization, it can be observed that the multi-threaded approach grows faster in Figure 5b.
The event-driven application is processed in order, thus expensive context switching between tasks is
not necessary. Motivated by these observations, the event-driven application is an effective method
to adopt.

Figure 5. Compare the event-driven and multi-threaded applications.

5.3. Parallel Architectures on TILERAGX36

At a high throughput level, more processes or threads may be required than that in the traditional
platform in order to support the platform efficiently. This section describes how to design the parallel
architectures on TILERAGX36 platforms. To reduce the contention of hardware resources, a reasonable
allocation of tasks should be assigned in different cores. Since our goal is to reduce the energy
consumption of processes generated mostly from inter-process communication (IPC), the IPC schemes
will be discussed. Meanwhile, dynamic load balancing is a particularly important method to control
the performance.

5.3.1. Task Decomposition

As described in Section 3, the system architecture is layered and centralized. Task decomposition
can be considered as parallel processing of the basic strategy. It is used to solve complex computational
problems by splitting them into sub-tasks quickly on a multiprocessor to achieve operation
simultaneously. To demonstrate the processes of every layer in real-world settings, the implementation
is shown in Figure 6. Blue, green and purple denote the control layer, virtual user layer and traffic
generation layer, respectively.
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Figure 6. Parallel processing.

Taking full advantages of the TILERAGX’s parallel processing ability, we use one control process
as the father process to fork its child processes. The implementation method of parallel processing in
this system, based on multiple processes, can be divided into the control process, virtual user processes,
log processing and traffic generation process. It has been shown that a multi-threaded application has
comparatively better event processing capabilities in terms of meeting processing deadlines than that
of a multi-process application [28]. Task processing, user scheduling and load balancing all belong
to the virtual users layer, so the multi-threaded application is utilized, with other modules executing
a multi-process application. Since it is difficult to complete the assignment with a single engine, it is
compulsory to move the traffic generation task to numerous engines.

According to the descriptions of use cases in Section 3, the first and second phase are relatively
simple; we mainly describe virtual users layers and traffic generation in detail and explain the
interaction process between them.

A. Virtual users layer

As a middle-level, the virtual users layer is mainly responsible for the management of virtual
users, which needs both to handle the message that was sent by the control layer, and also deliver
requests to the traffic generation layer. It is necessary to achieve flexible user management and resource
allocation so as to make it available to multiple experimenters at the same time. According to the
demand of experimenters, virtual users were divided into different users groups.

The user management module is responsible for implementing the experimenter’s experiments
while, at the same time, involving more virtual users of the resource allocation, user behavior
parameter configuration and scheduling. In each experiment, the experimenter usually needs to
create a large number of virtual users and the corresponding user’s group, while these resources must
be free at the end of the operation. The frequent memory operations can lead to a lot of overhead,
and are easy to cause memory leaks and other issues. By establishing a resource pool and a set of
connections, the use management strategy can be effective to avoid frequent resource creation and
release overhead. This module designs user_pool, group_pool and epm_pool based on the given object
pool technology implemented.
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Task processing: During the simulation task message processing, some modules must be
initialized according to the contents of the message. Firstly, we initialize the free queue (free_q)
and active queue (live_q) , and then obtain the specified number of virtual users from user_pool and
insert them into free_q; If the message contains scene parameters, the scene parameters are processed
using the cubic spline interpolation algorithm described in Section 4.

User scheduling: User scheduling, which is responsible for scheduling a large number of
users to achieve and generate the request message to join the request queue, can be divided
into two sub-processes: user activation and user number control. If the task queue is not empty,
the scheduler can scan the task queue for a certain period of time and activate the users in each group
with a certain frequency to join live_q. If the user group contains scene parameters, it will be processed
by the user control process when the number of active users reaches the number of scene start points.
It controls the number of active users based on the user profile. Otherwise, all users in the group are
activated, and the user behavior module controls the behavior of each user.

Load balancing: The numerous deployments of traffic generation engines offer the opportunity
to exploit multiple accesses to the improvement of the concurrent performance. The load balancing
module assigns the request queue messages to each traffic generation engine.

B. Traffic generation layer

Request management module: In order to ensure concurrency, asynchronous programming has to
be used. In this module, the theory of finite-state machines is introduced. The description of the global
state machine at this level is shown in Figure 7. The blue line represents the general state transition
process, which shows that this state may takes several asynchronous processes to complete; the green
line indicates that there is a pending URL transfer process; others denote the transition of the error
condition during status processing. When a request message is received to indicate the start state,
then a request object is fetched from the request pool and a page URL (a URL containing a plurality of
embedded resources) accessed by this request is acquired. Finally, the result will be sent to the log
processing module while the request object is reclaimed.

Figure 7. The global state transition.

HTTP processing module: We do not care about the specific content of the HTTP response, and there
is no need to parse the content of the Web document. The HTTP processing module only parses the
HTTP header to determine the length of the response entity, the coding and server information.

Log processing module: It is used to push the log into a database. When a new log is coming,
using bulk inserts is a convenient way to improve efficiency. In addition, timing events can be used
effectively to enhance concurrency.



Appl. Sci. 2017, 7, 154 13 of 23

5.3.2. Task Mapping

On the TILERAGX36 platform, by binding on the designated CPU rather than any CPU for
a certain task or process that implements task mapping, each core in the processors can run a full
operating system, which provides high flexibility and simplicity for software development. Under
these circumstances, scheduling that process to execute on the same processor can improve its
performance by reducing performance-degrading events. Additionally, it can effectively improve the
cache hit ratio and reduce the number of memory accesses.

Furthermore, when a process or thread is bounded with one CPU, Linux kernal would not take
it into the CPU schedule any more. As a result, the execution expense of the program would be
largely reduced. For the Tile-Gx36 platform, the CPU affinity [31] is set by the following steps. Firstly,
procuring the affinity set of the program; secondly, bounding the task process with a specific CPU
according to its unique index in CPU affinity. The details can be described in Table 2.

Table 2. The details of the CPU affinity.

//procuring the CPU affinity
cpu_set_t cpus;
if (tmc_cpus_get_my_affinity(&cpus) != 0)

tmc_task_die(“tmc_cpus_get_my_affinity() failed.”);
//bind to the allocated CPU
if (tmc_cpus_set_my_cpu(tmc_cpus_find_nth_cpu(&cpus, rank)) < 0)

tmc_task_die(“tmc_cpus_set_my_cpu() failed.”);

Referring to the methods mentioned above, we can bound the decomposed tasks with multiple
cores of Tile-Gx36. The control engine, virtual user engine and log engine are assigned with their own
individual cores for processing. Each traffic generation engine is bounded with one core, thus the
number of the traffic generation engine should be adjusted dynamically according to the restriction of
the number of total cores. Moreover, Figure 8 describes the schematic diagram by specifying a CPU
affinity setting for each process.

Figure 8. Parallel design on TILERAGX36.

5.3.3. IPC Scheme

Not only task decomposition and mapping process, but also the IPC scheme is assigned in
Many-Core processors. Pipe, message queues, Unix socket, signal and shared memory are currently
the most widely used genre of IPCs. The Tile-Gx36 processor provide a new method, the UDN, which is
used to improve data transfers among tiles. However, the UDN is used to send small packets with the
size of no more than 128 bytes. If the packet is too large or receives buffer overflow, the system will
lead to a deadlock.
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In our real-time processing tasks, each layer requires good two-way communication to ensure
better supervision and process scheduling. The Unix socket exhibits a very low transmission latency
and meanwhile supports full duplex mode, which provides a much better bi-direction communication.
Figure 9 shows the communication between each engine, which consists of two parts. One-way
communication is adopted in the traffic generation module, control module and log processing
module, while others use dual-way communication.

Figure 9. Based on Unix socket.

5.3.4. Dynamic Load-Balancing Based on the Minimum Number of Requests (DMR)

Due to the multiple traffic generation engines, dynamic load balancing is an important step to
condition the parallel performance [32]. When the virtual users engine produces a mass of requests, it is
necessary to predict which traffic generation engine to respond. To overcome this issue, very common
approaches need to be raised based on the polling algorithm, weighting algorithm and hash algorithm
to solve the load-balancing problem [33].

When the node performance of the traffic generation engine is basically the same, we can use
a simple polling algorithm for load balancing. However, the traffic generation engine is based on the
request object as a basic management unit, and the life cycle of each request object is not the same,
leading to the evolution of the load being unpredictable. Furthermore, fast recovery of load-balancing
can be very inefficient using a simpler approach, especially when it comes to a sudden increase in
traffic or an abnormal process. In this paper, we present a dynamic load-balancing algorithm which
accepts the dynamic change of the traffic generation engine based on the minimum number of requests
(DMR). Each traffic generation process sends its own number of active requests to the virtual user
layer in real-time. Then the load-balancing module updates the history record, and selects a traffic
generation process with the smallest number of requests to send request messages. It can be classified
as the weight class algorithm. The weight factor is the number of active requests in the process and the
lower the weight, the higher the probability of selection.

6. Evaluation

In this section, we implemented and deployed TGMP in a real network to understand the
performance of our system by conducting four groups of experiments, instances of its usage and
directions for our future work.

6.1. Experimental Setup

TGMP has been implemented and deployed in a real network at the third floor of the YiFu
building in the CQUPT campus. As shown in Figure 10, the deployment consists of Tile-Gx36, Nginx
Web Service, LNMP (Linux + Nginx + Mysql + PHP) Web Server, etc. Nginx Web Service which
has high concurrency performance was set up in many computers to conduct a comprehensive test
on Web traffic. The Web Manage server provides a visual interface for the experiments. When the
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experimenter sends the simulated service message to Tile-Gx36, the TGMP deals with the task, and
then sends a request to Nginx Web Service to generate real traffic. Furthermore, all equipment is
restricted to within the deployment in the local area network (LAN) due to the limited bandwidth in
the experimental scene. We also deployed many random test experiments that perform different tasks.
The TGMP is implemented in C and the Web management interface is realized in PHP. Notice that
the design concept of the whole system is based on Nginx, which has focused on high performance,
high concurrency and low memory usage. Additional features on top of the web server functionality,
such as load balancing, caching, access and bandwidth control, and the ability to integrate efficiently
with a variety of applications, have helped to make Nginx a good choice for modern architectures.

Figure 10. The deployment of the prototype system.

6.2. The Traffic Self-Similarity

Many studies [34,35] have reported on traffic characteristics with trends in self-similarity.
This section presents whether the cubic spline interpolation of the user-control method has a large-scale
of traffic self-similarity. Similar to [36], we also adopt the Hurst index which is the key indicator to
evaluate the self-similarity of network traffic, whose length should be 0.71∼0.89 to judge the traffic
self-similarity. Therefore, we select the stress test software, http_load, to compare with the network
traffic based on user behavior. We construct the background traffic and grab the packets, and then
compute the Hurst parameter to check the self-similar degree of network traffic by adopting the
variance-time method [37] and the R/S method [38].

Figure 11 shows that the Hurst index of http_load is far from that of the theoretical value
(0.71∼0.89). The green line means that the generated traffic self similarity and the red line stands for
theoretical traffic self-similarity. Thus, the gap between these two lines can be used to measure the
realistic characteristic of generated traffic. It means that the smaller the gap could be, the more realistic
the generated traffic would be and the better the traffic generation system would be. In a comparison
in Figure 12—the Hurst index is 0.87 and 0.83 respectively—the result indicates that the similarity
improves. In this paper, the ON/OFF-based user behavior model is adopted, and multiple ON/OFF
source overlays can generate traffic that is more consistent with the actual network [39]. The weak
self-similarity of http-load traffic is mainly caused by the smaller size of the requested resource and
the smaller frequency of requests.
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Figure 11. The Hurst index of http_load.

Figure 12. The Hurst index of TGMP.

To evaluate the effect on self-similarity based on the Cubic Spline Interpolation algorithm,
we further study the realistic network workload over a long and large time scale. The experimental
scene is shown to demonstrate the large-scale of flow simulation. To be specific, we assume a network of
100,000 users, and the executed User control is in accordance with Baidu statistics in February 2016 [25].
A shell script is executed per-minute in 24 h to collect the network traffic data. By contrast, we observed
that there is a strong correlation in Figure 13a with the cubic spline interpolation algorithm. As expected,
it can be seen that the system can control the number of virtual users effectively to achieve large-scale
traffic generation which is more similar and in line with the actual network.
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Figure 13. The large-scale of flow simulation.

6.3. Load Balancing

The main goal of load-balancing schemes is to improve resource utilization efficiently and provide
a high concurrency performance system. We start a traffic generation process and bind it to the tile 3
allowing the CPU usage to remain at about 80%. When the system is stable, we add another traffic
generation process binding on tile 4, and then capture the two data of the respective CPU utilization
every 0.001 s. In order to describe the change of the CPU utilization more clearly, the full data set is
split across 1500, using every 100 data points, to calculate the average rate of the segment at a time.
We have established the test scenarios which include DMR and Polling.

As can be seen from Figure 14a,b, when we add a new traffic generation process, the DMR
algorithm achieves load synchronization for two processes in one cycle, while the Polling algorithm
takes two cycles. This is mainly because the DMR can dynamically feedback the real-time access to
each process of the real load situation, but Polling can only be completed with the request. In addition,
the Polling has a greater variability than the DMR, which is mainly caused by the lifecycle of each
request object. When a process is assigned to a larger lifecycle of the request message, it will take up
more CPU resources, resulting in greater volatility. The DMR, however, can reduce the volatility by
dynamic feedback function. Through the above two aspects of the comparative analysis, we can see
that the proposed DMR has better performance.

Figure 14. DMR vs Polling.

6.4. Concurrent Performance

In this experiment, the most important index, called concurrent performance, is evaluated,
which can reflect the efficiency. The test mainly includes two aspects: first, we put a single traffic
generation process into Tile-Gx36 and compare it with Nginx which has a high-level process
architecture and can handle multiple connections within a single process under the same test scenarios.
Second, we change the number of traffic generation processes and observe the phenomenon.
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In order to ensure the consistency of the platform, we install Nginx in another Tile-Gx36 platform,
and open a single work process model. Figure 15a shows the comparison of CPU utilization which
remains basically the same. Thanks to the adoption of HTTP long connection, the change of the
traffic and the number of connections along with the number of virtual users are in a simple linear
model as reflected in Figure 15b,c. We observe that the change of the memory is small in Figure 15c.
Furthermore, when the CPU utilization is around 80%, a single traffic generation process can support
more than 7000 active virtual users, resulting in a traffic size of approximately 80 MB/s (640 Mb/s)
and total of 2.3 GB.

Figure 15. A single traffic generation process comparing the concurrency with Nginx.

The change of the number of virtual users is shown in Figure 16 when using many traffic
generation processes. As observed in the previous experiment, all of those increase with the number
of traffic generation process changes. Meanwhile, in Figure 16a, the number of virtual users has
a strong but not a perfectly linear relationship, which may be caused by the response time. To be
more specific, if the number of connections increases, mass traffic can lead to the response time of the
server being lengthened in Figure 16d. In particular, when the number of traffic generation processes
is more than eight, the response time of the server increases rapidly. As for increasing accessing users,
the Web server processing time will increase dramatically. However, the CPU utilization is lower than
we imagine. On the other hand, if there is a higher-performance Web server, the bottleneck will be
greatly reduced. Above all, the traffic generation system has a good overall concurrency performance,
which can simulate more than 50,000 users at the same time, and the flow rate is as high as 4 Gbps.
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Figure 16. Many traffic generation processes.

6.5. System Stability

The stability test of the system is mainly to verify whether the system can run stably under the
condition of a large load. The main specific test ideas are as follows: the system starts with opening
20 traffic generation processes and the number of analogue users is set to 5 million. At the same time,
the test assignment continues to run for 24 h, so that all virtual users have been active. As shown
in Figure 17a, the network traffic can be relatively stable. Figure 17b shows that the system’s CPU
utilization does not increase over time when fluctuating. The system which has a very slight volatility
of memory can avoid a memory leak situation, as shown in Figure 17c. In summary, the system which
has strong stability can produce long-term and stable flow.
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Figure 17. The stability of the system.

6.6. Comparison with Existing System

In order to understand the performance aspects of our traffic generator, we have compared it with
some existing well-known tools in Table 3. Comparing with current proposed traffic generator systems,
our parallel design on TILERAGX36 achieves a good performance for simulating 50,000 users accessing
the Web server simultaneously. The obtained performance looks very promising. As it is possible to
have up to two TILERAGX36 many-core processors on the same board, we can expect to almost double
the attained performance in practice. Note that the main difference is the platform; MoonGen [23]
and TRex [24] must rely on a special configuration. Moreover, the power consumption of the TILERA
processor is 50 W at 1.2 Ghz which is much lower than others [14]. Another promising aspect of our
design is that it adopts task decomposition and task mapping by binding on the designated CPU
which enables our design to easily adapt and be extended to upgrades, especially as future processors
will have an increasing number of cores.

Table 3. Compared with well-known tools.

Tools Performance Method Scalability Technology Platform

TRex 200 Gb/s Traffic Replay Good DPDK
Intel DPDK 1/10/40 Gbps

interface support

TGMP Simulate 50,000 users
User Behavior User Behavior Good

Many-core
processor TILERAGX36

MoonGen Up to 178.5 Mpps
at 120 Gbit/s Traffic Model General DPDK

Modern commodity
NICs is support for

multi-core CPUs

7. Conclusions

A traffic generator plays an indispensable role in the research of network architecture,
new network protocol, network services, etc. The lack of scalability and efficiency in existing schedules
motivates us to design an efficient general framework. The emerging Many-Core Processors, which are
a revolutionary operation mechanism, can be leveraged to enhance performance. In this paper,
we have presented the TGMP system, which is the first practical Web traffic generator operating
on the TILERAGX36 processor. More specifically, a scalable, flexible and extensible layered system
architecture, is designed for coping with highly changeable scenarios.
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We adopt the design principles of cubic spline interpolation to generate a realistic network.
In order to solve the problem of a representative workload, three high concurrency strategies are
designed and TGMP is implemented in a real network to evaluate its efficiency. The experiment
shows that TGMP can yield comparable efficiency with existing tools, but with much less cost and
maintenance effort. Due to the limited space, this paper only considered the traffic of Web, therefore we
will extend the system so that it is able to generate other types traffic, such as, video traffic, P2P traffic,
etc. Furthermore, the idea of the design proposed in this paper could also be enlightening.

Supplementary Materials: The application is available at: https://github.com/FNRC/TGMP.
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