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Abstract: In order to improve the accuracy of the fault diagnosis of roller bearings, this paper
proposes a kind of fault diagnosis algorithm based on manifold learning combined with a wavelet
neural network. First, a high-dimensional feature signal set is obtained using a conventional feature
extraction algorithm; second, an improved Laplacian characteristic mapping algorithm is proposed to
reduce the dimensions of the characteristics and obtain an effective characteristic signal. Finally, the
processed characteristic signal is inputted into the constructed wavelet neural network whose output
is the types of fault. In the actual experiment of recognizing data sets on roller bearing failures, the
validity and accuracy of the method for diagnosing faults was verified.
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1. Introduction

Roller bearings are critical components of machinery and directly affect the performance of the
whole system [1]. However, bearings inevitably degenerate and break down due to an overload of
repetitive work. According to statistics, 30 percent of faults in rolling machinery originate from bearing
faults; therefore, bearing fault prognostics is an important area of research [2–5]. Recently, studies
on bearing faults prognostics have focused on fault signal feature extraction and fault classification.
Commonly used methods for extracting the features of fault signals are Empirical Mode Decomposition
(EMD), morphology, wavelet transform, signal value decomposition, and principal component
analysis [6–10]. However, features extracted using the above methods are largely redundant, as
bearing fault signals are unstable and nonlinear [11]. Manifold learning, such as Isomap [12], Locally
Linear Embedding (LLE) [13], and Laplacian Eigenmap (LE) [14] can be used to extract effective
features. Bearing vibration signals produce a great deal of noise and the first two methods referred to
are very sensitive to noise. LE has a powerful local keeping ability and is not sensitive to noise [15].
Good results can be obtained with this method to extract features from roller bearings and reduce
dimensionality. The local field selection of manifold learning is the key step and greatly affects
performance [16]. Therefore, we propose an adaptive local field selection system based on Lalacian
mapping to extract features of bearing fault signals. Classifications of fault signals and information
fusion approaches such as firefly neural networks [17], recursive complex networks [18], and fuzzy C
mean clustering [19] are commonly used. Neural networks have a great ability to fit nonlinear data
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and recognize bearing faults. The proposed wavelet neural network with expansion and translation
obtains better freedom and has a greater flexible effective function approximation ability than other
conventional neural networks. It also learns more quickly and can learn from mutation function and
discontinuous signal details.

From the above analysis, it is clear that LE is suitable for use in the nonlinear descending
dimension method. The performance of LE depends greatly on the neighborhoods k. Generally, k
is given according to experience. In this paper, we propose an improved LE that can be changed
adaptively for any given k and obtain good results. We can also attain good characteristic signals using
this method. Additionally, we propose a fault diagnosis method based on a wavelet neural network
model where the merits of wavelet transform are integrated with that of an artificial neural network.
The experimental results prove the effectiveness of the proposed methods.

2. Prognostics Method Based on Manifold Learning and a Wavelet Neural Network

A flow chart of the proposed prognostics method based on manifold learning and a wavelet
neural network is shown in Figure 1. First, common feature extraction methods were used in the time
domain signals to extract features to construct high-dimensional feature signal sets. Next, methods
based on manifold learning were adopted to reduce the dimensionality and obtain effective feature
parameters. Lastly, wavelet neural networks were set up to take feature parameters as inputs and fault
types as outputs, and train networks until the required errors were reached and the prognostics tested.
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High-Dimensional Feature Signal Extraction

The fault prognostics of bearing faults can be considered as a map between two spaces where
one is the fault feature set and the other is the state of faults. It is crucial to accurately find the
corresponding fault features, i.e., feature extraction. Too many or too few features will produce
difficulties in prognostics. In order to obtain fault features from nonlinear and unstable roller
bearing vibration signals, traditional methods such as the Hilbert Huang transform, Fast Fourier
Transformation (FFT), signal envelope, Empirical Mode Decomposition (EMD) and wavelet transform
were taken to extract features from the monitoring time domain vibration signals. It is obvious that
the feature signals extracted by these methods are redundant, nonlinear, and uncertain. Therefore,
manifold learning is utilized to reduce dimensionality. Improved Laplacian Eigenmaps (ILE) are
proposed when considering the local field selection of manifold learning.

3. Materials and Methods

3.1. ILE Algorithm

The idea of graph theory is introduced with the LE algorithm in this paper. By constructing
weighted neighborhood graphs, the relation of the same positions of sample points in local
neighborhoods is maintained in high and low dimensional space [14]. The neighborhoods k in LE is
the key parameter in reducing dimensions. In view of the different characteristics of different manifold
surfaces, it is easy to include the traditional fixed k value with the points in the same neighborhood
graph. This results in the “short circuit phenomenon”, as these points do not belong to the same
manifold area. To solve this problem, an improved Laplace Eigen-mapping method dimensionality
reduction algorithm is proposed and is shown in Figure 2. Detailed step-by-step instructions are
as follows:
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Step 1: Construct weighted neighborhood graphs.

From the k-nearest neighbors of the high-dimensional spatial data point Xi, the adjacency matrix
of the data set is obtained.

1. Set the initial neighborhood value k, according to the principle of KNN for each of the sample

points to determine the neighborhood,
{

X1
i , X2

i , X3
i . . . Xk

i

}
, i = 1, 2, 3 . . . N;

2. For each of the resulting neighborhoods, we can calculate the tangent space coordinates that
correspond to the neighborhood points [20].

Φ(j)
i = VT Ni (I − 1

k
eeT
)

(1)

where Mapping function of neighborhood points to local tangent space coordinates can be
expressed as a Equation (2) based on Taylor series expansion.

‖xij − xi −ViVT
i Ni(I − 1

k
eeT)‖2 ≤ λ‖ViVT

i Ni(I − 1
k

eeT)‖2 (2)

where xi =
1
k ∑k

i−1 xij. λ is the scale factor. Θ is defined as the threshold. When λ < Θ, the local
neighborhood obtained from the k-value is considered to be linearly represented by the tangent
plane, which is in accordance with the characteristics of the ideal neighborhood, Θ ∈ (0, 0.1).

3. Calculate the difference function of a high and low dimension distribution.

The difference function of the high and low dimension distribution of all points in the i-th
neighborhood is defined as follows [21]:

Ci = ∑
i 6=j

pij log
pij

qij
(3)

where pij is the distribution function of the j-th neighborhood point of the i-th high-dimensional
sample point; and qij is the distribution function of the Euclidean distance of the low-dimensional
neighborhood point. The k-value adjustment strategy is shown in Equation (4):

knew
i =


( 1

n

n
∑

i=1
ki −min{k})e−

(Ci−C)2

2 + ki
1
n

n
∑

i=1
ki > ki

−( 1
n

n
∑

i=1
ki −min{k})(1− e−

(Ci−C)2

2 ) + ki
1
n

n
∑

i=1
ki < ki

(4)

where C = 1
n ∑n

i−1 Ci

4. Assume that the neighborhood weights of each sample point is Wk
i =

{
W1

i , W2
i , W3

i . . . Wk
i

}
.

Calculate the weight using the following equation:

Wc
i = max (0, min (1, Wc

i (1 + γΨi,C))) (5)

The initial value of weight is one by default. γ is the adjustment factor, Ψi,C is the update operator,
and the small weight points will be removed as invalid neighborhood points while the remaining
ones will be reserved as effective neighborhood points.

Step 2: Determine the weight of the neighborhood graph edge.

Determine the weight between the points and use the thermal kernel function to determine the
weight size. If the two nodes are adjacent, the weight is one, otherwise the weight is zero.
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Step 3: Calculate the feature map.

Compute the eigenvectors and eigenvalues of the Laplace matrix L:

Ly = λDy (6)

where D is a diagonal matrix, the eigenvectors are outputted as the result of the reduced dimension
that corresponds to the smallest m nonzero eigenvalue.
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3.2. Wavelet Neural Network

The wavelet neural network (WNN) is a forward network, which uses the wavelet basis function
as the neuron activation function [22]. It adaptively adjusts the scaling and translation factors of
the wavelet function, network connection weights, and the approximation function in batch mode.
The fault diagnosis of the bearing based on the wavelet neural network is shown in Figure 3.
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where {x1, x2, . . . , xN} is the bearing fault feature, which can botain by the ILE method proposed.
{y1y2y3y4} is the bearing state ,where y1 is the normal state; y2 the ball failure; y3 the inner ring failure;
and y4 is the outer ring failure four. “1” is in this state, while “0” is not in this state.

Ψ is the wavelet base; its Fourier transform Ψ̂ (ω) satisfies the admissible condition:

CΨ (ω) =
w +∞

−∞
|ω|−1∣∣Ψ̂ (ω)

∣∣2dω < ∞ (7)

By scale scaling and translating for wavelet base functions Ψ (x), the family of wavelet functions
is obtained:

Ψa,b (t) =
1√
|a|

Ψ

(
t− b

a

)
(8)
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where a, b ∈ R, a 6= 0. a and b are scaled translation scale factors, respectively. The wavelet transform is:

(WΨ f ) (a, b) =
w

R
f (t)Ψ∗a,b (t)dt (9)

Discretizing a and b, when a = am
0 , b = nb0am

0 , n, m ∈ Z, then:

Ψn,m (t) = |a0|−
m
2 Ψ (a−m

0 t− nb0
)
, n, m ∈ Z (10)

Equation (10) is the discrete wavelet transform. The discrete wavelet transform is:

(WΨ f ) (a, b) = |a0|−
m
2

w +∞

−∞
f (t)Ψ∗ (a−m

0 t− nb0
)
dt (11)

Select the scaling parameters a > 0, b > 0 to ensure that the wavelet system{
Ψn,m (t)

∣∣ (n, m) ∈ Z2 } satisfies the L2 (R) frame condition:

A‖ f ‖2 ≤ ∑
(m,n)∈Z2

|〈 f , Ψn,m〉|2 ≤ B‖ f ‖2 (12)

In the formula, A, B are the frame boundaries. If Ψ̃n,m, Ψn,m (t) are the dual function, then for any
function f (t) ∈ L2 (R), f (t) can be expressed as a form of wavelet series:

f (t) = ∑
(m,n)∈Z2

〈 f , Ψ̃n,m〉Ψn,m (t) (13)

The function can be expanded by a wavelet basis function and an approximate function:

f (t) = ∑
j∈Z

wj
1
aj

Ψ

(
t− bj

aj

)
(14)

The above equation can be realized by a neural network with a hidden layer, and by adjusting
the weights aj and bj to an approximate function. In the formula, Ψi (t) is the wavelet basis function
(i = 1, 2, . . . , n); yk (k = 1, 2, . . . , n) is the output of the network; and wij, wjk is the connection weight
between the input layer/the hidden layer and between the hidden layer/the output layer.

The wavelet basis function Ψi (t) chose the Mexican Hat wavelet as follows:

Ψ (x) =
2√
3

π−
1
4 (1− x2

)
e−

x2
2 (15)

Take the energy function:

J =
1
2

p

∑
j−1

q

∑
i−1

(
yj

i − ŷj
i

)2
(16)

In this formula, P is the number of samples, y is the actual value, and ŷ is the output of WNN.
The network output layer neuron function takes the Sigmoid function, that is ∅ (x) = 1/ (1 + e−x).
Then, the expression of the network output y is:

yk = ∅(
q

∑
k−1

wjkΨa,b((
m

∑
i−1

wijxi − bj)/aj)) (17)

j = 1, 2, . . . , n, k = 1, 2, . . . , q.
By using gradient descent method:

h (t) = h (t− 1)− η
∂J
∂h

+ α∆[h (t)− h (t− 1)] (18)
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In the formula, h shows that wij, wjk, aj, bj, η is the learning rate, α is the momentum factor, and
η, α ∈ (0, 1). Equation (16) is minimized by adjusting the parameters of the WNN.

4. Application

4.1. Experimental Subject

The bearing data was generated by the Industry/University Cooperative Research Centers
Program (I/UCRC) for Intelligent Maintenance Systems. The test platform is shown in Figure 4.
The rotation speed was kept constant at 2000 RPM by an alternating current motor and at a radial
load of 6000 lbs. Data collection was facilitated by National Instruments Data Acquisition (NI DAQ)
Card 6062E, with the sampling rate set at 20 kHz [23].
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4.2. Roller Bearing Vibration Signals

The test was carried out for 35 days. Figure 5a–d shows the vibration signals for the normal state,
a roller element failure, inner race failure, and outer race failure, respectively [23].
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At first, features were obtained using conventional methods as much as possible. Next, we reduce
dimensions using the ILE method mentioned above. The result of the dimension reduction is shown in
Table 1 where (1) is normal; (2) is a roller element failure; (3) is the inner race failure; and (4) is an outer
race failure. All other characteristic signals found in all types of situations are also shown in Table 1.

Table 1. Fault data set.

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8 State

0.089374 0.047321 0.100898 1.958858 1.606291 1.813402 0.10817 6.301499 1
0.1036 0.04787 0.113916 1.665516 1.419555 1.560898 0.133881 11.49973 1

0.095195 0.046492 0.105729 1.817757 1.529219 1.698434 0.038316 8.864674 1
0.101547 0.047333 0.111828 1.703315 1.449659 1.596429 0.159635 10.19821 1
0.087449 0.047526 0.099293 1.996853 1.625361 1.84549 0.066327 6.246746 1
0.100355 0.046046 0.110214 1.708943 1.463397 1.607167 0.071301 10.474 1
0.097557 0.045718 0.107536 1.760794 1.500416 1.653888 0.157312 8.822157 1
0.088979 0.046411 0.100132 1.941436 1.603238 1.804188 0.037097 6.599557 1
0.103291 0.046228 0.112967 1.648921 1.420006 1.553027 0.116062 11.54525 1
0.091338 0.044016 0.101192 1.841057 1.559724 1.727983 0.124147 6.76533 1
0.114011 0.012182 0.114646 1.161855 1.152177 1.158599 0.102057 17.33023 2
0.114794 0.013028 0.115515 1.162091 1.151164 1.158401 0.132316 17.42503 2
0.11468 0.014126 0.115529 1.185616 1.172517 1.181195 0.097094 17.81285 2

0.114637 0.015178 0.115617 1.185164 1.170044 1.180042 0.125409 17.41817 2
0.114804 0.015979 0.115888 1.197769 1.180885 1.192032 0.116505 17.63886 2
0.113608 0.016515 0.114778 1.219157 1.200454 1.21281 0.099188 17.11847 2
0.11486 0.017319 0.116131 1.217056 1.196951 1.210202 0.137996 17.39344 2

0.113765 0.018268 0.115192 1.233035 1.210016 1.225195 0.091749 17.30835 2
0.113877 0.018827 0.11539 1.233015 1.208609 1.224676 0.126345 16.93885 2
0.114127 0.018397 0.115569 1.227595 1.204454 1.219682 0.1175 17.20449 2
0.002049 0.066937 0.066268 2.726322 1.851256 2.266006 0.001127 0.669745 3
0.004122 0.050691 0.05033 3.423602 2.139655 2.778715 0.107688 0.003864 3
0.00479 0.074184 0.073564 2.079078 1.654904 1.879734 0.048673 1.159074 3

0.008259 0.041219 0.041615 3.851942 2.399057 3.137867 0.099468 0.005723 3
0.002269 0.075672 0.074914 1.906661 1.55103 1.733169 0.060749 1.273057 3
0.015029 0.038022 0.040515 3.256373 2.091815 2.64823 0.031322 0.049579 3
0.00546 0.073968 0.073397 2.030281 1.623696 1.832346 0.001452 1.298614 3

0.009501 0.052639 0.052947 3.744457 2.227701 2.970326 0.014274 0.158361 3
0.007452 0.064623 0.064379 2.708752 1.917112 2.318829 0.084318 0.514988 3
0.002106 0.063102 0.062477 2.822905 1.894306 2.342631 0.001242 0.361359 3
0.114405 0.039467 0.120887 1.788677 1.637389 1.730164 0.15048 16.96202 4
0.116347 0.042593 0.123746 1.848408 1.67213 1.778463 0.149167 18.21358 4
0.109839 0.041349 0.117212 1.861561 1.67939 1.792125 0.120963 14.69025 4
0.116759 0.03221 0.121031 1.592266 1.506494 1.561613 0.182333 18.0051 4
0.115441 0.041217 0.122434 1.764115 1.604478 1.701672 0.152843 17.5869 4
0.112717 0.030918 0.116795 1.634773 1.546062 1.602 0.09182 16.66351 4
0.118077 0.033982 0.122771 1.740657 1.637494 1.702599 0.146755 19.34746 4
0.11363 0.032838 0.118185 1.703288 1.602074 1.666293 0.101843 17.10229 4

0.114089 0.032349 0.118495 1.530019 1.441842 1.497519 0.059789 17.91909 4
0.116349 0.032846 0.120804 1.725601 1.626705 1.688983 0.134462 18.36644 4

4.3. Diagnosis of a Wavelet Neural Network

According to the characteristics and state of the network, we set a wavelet neural network to
include eight input nodes for the eight features and four output nodes to indicate the four types of
state. We selected five groups from every state, with a total of 20 types of groups composed of training
samples and 12 groups as test samples. We set ±0.01 as the training error of the network. Figure 6
highlights the design of the wavelet neural network.
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When the network was trained, this meant that an error had met a demand. Test data was inputted
into the wavelet neural network, and the test results are shown in Table 2.

Table 2. Fault diagnosis results.

Test Sample Idea Output Diagnosis Result

No. y1y2y3y4 y1 y2 y3 y4

1 1 0 0 0 1.0096 –0.0001 –0.0125 0.0030
2 1 0 0 0 1.0025 0.0001 0.0041 –0.0067
3 1 0 0 0 0.9799 0.0000 0.0225 –0.0024
4 0 1 0 0 0.0027 0.9990 –0.0118 0.0097
5 0 1 0 0 0.0004 1.0163 –0.0546 0.0382
6 0 1 0 0 0.0081 1.0044 –0.0011 –0.0114
7 0 0 1 0 0.0025 0.0000 0.9972 0.0003
8 0 0 10 0.0010 0.0000 0.9983 0.0007
9 0 0 1 0 0.0036 0.000 1.0044 –0.0009

10 0 0 0 1 –0.0379 –0.0099 –0.0267 1.0751
11 0 0 0 1 –0.0567 –0.0150 0.0639 1.0751
12 0 0 0 1 –0.0322 –0.0012 –0.0508 1.0844

As shown in Table 2, four states of the bearing can be well separated, with a 100% rate of
recognition. This shows that: (1) the feature extraction is effective; (2) the wavelet neural network can
be used for information fusion; and (3) good classification results can be achieved.

In order to further verify the effectiveness of the proposed method, we compared it with the
methods described in Reference [24] based on the same bearing data. The authors of Reference [24]
used principal component analysis (PCA), local and nonlocal preserving projection (LNPP), linear
discriminant analysis (LDA), and supervised-learning-based local and nonlocal preserving projection
(SLNPP) to extract features, respectively, before using the features as the inputs of k-nearest neighbor
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algorithm (KNN). These results are shown in Table 3, where the proposed method has a higher
recognition rate.

Table 3. Recognition rate of each method.

PCA [24] LNNP [24] LDA [24] SLNPP [24] ILE

93.7% 96.88% 98.44% 98.44% 100%

5. Conclusions

Roller bearing forms the core of rotating machinery, and its monitoring has always been of
significant research interest. As roller bearing fault signals are nonlinear and non-stationary, we have
done two things to resolve the issues of fault identification and fault classification.

(1) The performance of LE depends greatly on the neighborhoods k. Generally, k is valued according
to experience. We proposed an improved LE algorithm that allows for adaptive change for any
given k. The experimental results demonstrated that the proposed method can effectively obtain
k and extract the feature signals of the roller bearings.

(2) Based on the feature signals and the integration of the merits of wavelet transform with that of
an artificial neural network, we constructed a wavelet neural network for fault identification and
classification. The experimental results indicate that this proposed method has excellent clinical
practical value, with a classification accuracy rate of 100%.
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