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Abstract: We demonstrated that a phenylalanine-rich peptide molecule, (FEFEFKFK)2, could be
used for the biofunctionalization of graphene oxide (GO) and the bioinspired synthesis of silver
nanoparticles (AgNPs) for the creation of functional GO–AgNPs nanohybrids. The successful
synthesis of GO–AgNPs nanohybrids was proven by the characterizations of atomic force
microscopy, transmission electron microscope, and X-ray photoelectron spectroscopy. The fabricated
electrochemical H2O2 sensor based on the synthesized GO–AgNPs nanohybrids showed high
performances with a linear detection range 0.02–18 mM and a detection limit of 0.13 µM. The design
of graphene-binding peptides is of benefit to the biofunctionalization of graphene-based materials,
the synthesis of novel graphene–peptide nanohybrids, and the potential applications of graphene in
biomedical fields.
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1. Introduction

Carbon and metallic nanomaterials have shown wide applications in various fields from
electrocatalysis [1,2], energy materials [3] and biosensors [4], to biomedical materials [5]. Graphene
is a two-dimensional (2D) carbon material with monolayered hexagonal sp2 hybridized carbons.
It has attracted increasing attentions due to its uniform 2D structure, high conductivity, unique
mechanical property, and large surface area [6–8]. To extend its potential applications in materials
science, nanotechnology and biomedicine, many nanoscale building blocks such as nanoparticles
(NPs) [2,9–11], quantum dots [12,13], biomolecules [4,14], polymers [15,16], and others have been
utilized to conjugate with graphene to form graphene-based hybrid nanomaterials, which showed
enhanced performances in comparison with sole graphene materials.

Both covalent and noncovalent methods could be used for the functionalization of graphene for
further synthesis of graphene-based hybrid nanomaterials [17–20]. As the irreversible nature of these
covalent bonds formed in the covalent modification process would potentially hinder the electronic
properties of graphene, the noncovalent modifications, by using both π–π and electrostatic interactions,
offer promising ways to achieve the plane-specific functionalization of the graphene surface [21–23].
Previously, a few sequence-designed peptides such as EPLQLKM, YWYAF, and GAMHLPWHMGTL
with highly specific graphene-binding ability have been discovered through both experimental and
theoretical studies [24–27]. In addition, the formed graphene–peptide nanohybrids have shown high
potentials to fabricate graphene-NPs [23,28] and graphene-hydroxyapatite [22,29] nanohybrids for
various biomedical applications.

In this work, we demonstrated that a phenylalanine (F)-rich peptide molecule with the amino
acid sequence of (FEFEFKFK)2 shows high binding affinity with graphene oxide (GO) nanosheets
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by the noncovalent π–π interaction, which promotes the formation of a dense network-like peptide
structure on both sides of GO nanosheets. The conjugated peptide molecules not only provide the
nucleation and growth templates for the bioinspired synthesis of silver nanoparticles (AgNPs), but
also serve as the bridges for connecting GO with the formed AgNPs to create GO–peptide–AgNPs
nanohybrids. The synthesized GO–peptide–AgNPs nanohybrids were directly used to modify a glass
carbon electrode (GCE) to fabricate a nonenzymatic electrochemical hydrogen peroxide (H2O2) sensor,
which reveals high sensing performance with a detection limit of 0.13 µM and a wide linear range
from 0.02 to 18 mM.

2. Materials and Methods

GO synthesized by the Hummers method was dissolved and dispersed in ultrapure water to a
final concentration of 0.1 mg/mL. Peptide (>90% purity, JPT Company, Berlin, Germany) was dissolved
in ultrapure water to a final concentration of 0.2 mg/mL. The typical process of peptide-mediated
synthesis of GO–peptide–AgNPs nanohybrids is shown in Figure 1. Firstly, 5 mL GO and 1 mL peptide
solutions were mixed under stirring, and then 4 mL ultrapure water was added into the mixed solution
to keep the final volume at 10 mL. Secondly, after two hours, the mixed solution was centrifuged at a
speed of 13 K to remove the unbound peptide, and the product was dissolved with ultrapure water
to 5 mL. Then, 0.1 mL AgNO3 with a concentration of 0.1 M was added to the GO–peptide solution
under stirring and the pH of the mixed solution was adjusted to 2.0. Thirdly, after another two hours,
the mixed solution was centrifuged again to remove the excessive Ag+ and ultrapure water was added
to keep the volume at 5 mL. Then, freshly prepared NaBH4 (1%, m/m) was added drop by drop into
the mixed solution to synthesize GO–peptide–AgNPs nanohybrids. After 10 min, the product was
centrifuged and dissolved with water to a final volume of 2 mL for further characterizations and
electrochemical tests.
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Figure 1. Schematic presentation on the peptide-mediated biomimetic synthesis of
GO–peptide–AgNPs nanohybrids.

For the preparation of GO–peptide–AgNPs nanohybrids modified GCE, 0.1 mL
GO–peptide–AgNPs nanohybrids solution was directly transferred onto the GCE surface and
dried for cyclic voltammograms (CV) and amperometric response tests. All the electrochemical tests
were carried out on an electrochemical workstation (CHI760D, Chenhua Company, Shanghai, China)
with the conventional three-electrode system.

Atomic force microscopy (AFM) was conducted with a NanoWizard 3 NanoScience atomic force
microscope (JPK Instruments AG, Berlin, Germany) at taping mode. Transmission electron microscope
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(TEM) characterization was carried out with a Tecnai G220 transmission electron microscope (FEI,
Beijing, China) with an accelerating voltage of 200 kV. The chemical state of GO–AgNPs nanohybrids
was measured by X-ray photoelectron spectroscopy (XPS, ThermoVG ESCALAB 250, Waltham,
MA, USA).

3. Results

AFM was utilized to identify the successful binding of F-rich peptide onto the GO surface firstly.
Figure 2a shows the typical AFM height image of peptides by dropping 10 µL peptide solution
(20 µg/mL) onto the freshly cleaved mica surface. The adsorbed peptide molecules on the mica surface
reveal dispersed sphere-like structure and the corresponding section analysis indicates that the height
of peptide molecules is about 1.8 ± 0.2 nm. Figure 2b gives an AFM height image of GO nanosheets
that deposited onto the mica surface, and the section analysis reveals that GO is in a monolayer with a
uniform height of 1.2 ± 0.1 nm, which is in accordance with the previous report on the shape and size
of GO nanosheets [30]. After binding peptides onto the GO surface, the mixed GO–peptide solution
was still highly dispersed. The mono-dispersed GO–peptide nanohybrids were further observed
with AFM (Figure 2c), and the section analysis shows that the formed GO–peptide has a mean height
of 4.6 ± 0.3 nm, which is equal to the sum height value of monolayer GO (1.2 ± 0.1 nm) and two
peptide molecules (1.8 ± 0.2 nm). Therefore, we suggest that the F-rich peptide molecules were bound
onto both sides of GO due to the excessive amount of peptide and the high binding ability of F-rich
peptide with GO. In addition, we found that a network-like peptide structure was formed on the GO
surface (inset of Figure 2c), which means that the binding of peptide onto the GO surface changed the
conformation of peptide and promoted their inter-molecular interactions.
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(b) GO; (c) GO–peptide, the inset is the zoomed area of the red box; and (d) GO–peptide–AgNPs;
(e) TEM image of AgNPs formed on the GO surface; (f) corresponding statistical analysis of the size of
nanoparticles in (e).
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Besides the biofunctionalization of GO, the bound peptides could also serve as nucleation and
growth sites for the bioinspired synthesis of metallic nanoparticles [23]. Figure 2d shows the typical
AFM height image of the created GO–peptide–AgNPs nanohybrids. It can be found that a lot of AgNPs
were formed on the surface of GO nanosheets. The corresponding section and statistical analysis
indicate that the synthesized AgNPs have a mean size of 5.4 ± 1.1 nm. TEM measurement was further
utilized to observe the size of AgNPs that formed on the GO surface (Figure 2e), and the statistical
analysis shows that the formed AgNPs have a mean size of 4.8 ± 1.4 nm (Figure 2f), which is in good
agreement with the above AFM data.

It is very important to know the amount of peptide and AgNP loading on the GO surface in
order to understand the interactions between the peptide and GO. We suggest that ultraviolet-visible
spectrophotometry (UV-vis) may be a potential technique to measure the peptide loading on the GO
surface by centrifuging the samples after peptide binding. In addition, it is also possible to know the
loading of AgNPs onto the GO surface by simply measuring the mass of samples before and after
adding Ag+ and subsequent chemical reduction. All the data could be of benefit for the understanding
of the adsorption kinetics of peptide onto the graphene surface.

XPS measurement was further utilized to prove the formation of GO–peptide–AgNPs
nanohybrids. Figure 3 shows the XPS peaks of C1s, Ag3d, and N1s of the peptide-bioinspired
GO–peptide–AgNPs nanohybrids. The strong C1s peak at 283.7 eV comes from the C contents of both
GO and peptide molecules, and the appearance of the N1s peak at 398.8 eV is ascribed to the amino
acid residue of peptide molecules [30]. In addition, two sharp peaks at 367.0 and 372.9 eV were found,
which are assigned to the Ag3d5/2 and Ag3d3/2 peaks of AgNPs, respectively [31].
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In the current study, the potential application of GO–peptide–AgNPs nanohybrids for the
fabrication of electrochemical H2O2 sensor was explored. To obtain an optimal applied potential
for the sensor test, we measured the CVs of the fabricated GO–peptide–AgNPs/GCE by adding
H2O2 with different concentrations (Figure 4). It can be found that a strong reduction peak at
about −0.51 V appeared, which was then selected as the applied potential for the next current–time
(I–T) measurement.
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different concentrations.

Figure 5a displays a typical I–T curve with GO–peptide–AgNPs/GCE on successive additions of
H2O2. It is clear that the addition of 20 µM H2O2 into the system caused a rapid current response. The
corresponding calibration of the obtained I–T data indicates a regular response towards H2O2 with a
linear detection range from 0.02 to 18 mM (Figure 5b). According to the linear fit, a detection limit
of 0.13 µM with a sensitivity of 3.6 µA·mM−1 was calculated (S/N = 3). To make it more clear, we
compared the sensing performance of our H2O2 sensor based on GO–peptide–AgNPs nanohybrids
with several reported sensors based on graphene-NPs [23,32–36], as shown in Table 1.
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Table 1. Comparison of electrochemical H2O2 sensors based on graphene-NPs nanohybrids.

Materials Linear Range Detection Limit Reference

RGO–peptide nanofiber–AgNPs 0.05–5 mM 10.4 µM [23]
RGO–Polymer–AgNPs 0.1–40 mM 28 µM [32]

RGO–AuNPs 0.5 µM–0.5 mM 0.22 µM [33]
RGO–AgNPs 0.1–100 mM 31.3 µM [34]

Graphene/Au/horseradish peroxidase/chitosan 0.005–5.13 mM 1.7 µM [35]
Hb/AuNPs/ZnO/RGO 0.006–1.13 mM 0.8 µM [36]

GO–peptide–AgNPs 0.02–18 mM 0.13 µM This work

Figure 5c shows the anti-interference test of the fabricated electrochemical sensor by adding three
relevant electroactive species, dopamine (DA), ascorbic acid (AA), and uric acid (UA). It can be found
that the addition of all species did not cause any current response, which identifies the high selectivity
of the fabricated sensor based on GO–peptide–AgNPs nanohybrids towards the detection of H2O2.
In addition, the reuse stability of the fabricated H2O2 sensor was investigated (Figure 5d). After using
for seven times, the current response towards the same H2O2 concentration still kept more than 95% of
the original value.

The further long-term stability test indicates that the fabricated H2O2 sensor based on
GO–peptide–AgNPs nanohybrids can be stable stored at 4 ◦C for at least 13 days (Figure 6). Based on
the above results, it can be concluded that this H2O2 sensor based on GO–peptide–AgNPs nanohybrids
reveals high performances with low detection limit, strong selectivity, good reuse capability, and
long-term stability.
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We suggest that there are a few advantages to using this kind of sequence-designed peptide for
biofunctionalization of GO or reduced GO (RGO) and subsequent bioinspired synthesis of NPs. Firstly,
the design of peptide molecules with specific amino acids is helpful for the facile biofunctionalization
of GO and RGO. Secondly, the introduction of peptide onto the GO or RGO surface can greatly improve
the solubility and biocompatibility of graphene, and extend their biomedical and nanotechnological
applications. Thirdly, the bound peptide molecules could serve as nucleation and growth templates
for the formation of metallic or metallic oxide nanoparticles for electrochemical sensors and catalysis.
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4. Conclusions

In summary, we demonstrated a facile green strategy to functionalize GO and synthesize
GO–peptide–AgNPs nanohybrids by using an F-rich peptide. It can be found that this F-rich peptide
not only shows high binding affinity with GO, but also serves as the nucleation and growth template for
bioinspired synthesis of AgNPs. The fabricated electrochemical H2O2 sensor with the peptide-inspired
GO–peptide–AgNPs nanohybrids exhibited high performance with a detection limit of 0.13 µM.
It is expected that the strategies shown in this work such as the design of peptide structure, the
biofunctionalization of GO, and the bioinspired synthesis of nanomaterials will be of benefit to the
synthesis and applications of graphene-based hybrid nanomaterials in biomedical fields.
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