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Abstract: This paper presents the realization of a resistorless third-order quadrature oscillator
using two multiple-output current controlled current conveyor transconductance amplifiers
(MO-CCCCTAs) and three grounded capacitors. The proposed circuit provides two quadrature
voltage outputs, two high-impedance quadrature current outputs, and one high-impedance
amplitude-controllable current output. The proposed oscillator satisfies the industrial requirement
for amplifier and modulation signals and phase shift keying signals, when the input bias current
of the second MO-CCCCTA is used as a modulating signal. Its oscillation condition and oscillation
frequency can be adjusted independently by two different bias currents of MO-CCCCTAs. The
structure of resistorless and only grounded capacitors suggests that the proposed oscillator can be
easily implemented in an integrated circuit.
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1. Introduction

A quadrature sinusoidal oscillator is a very important active element for communication,
instrumentation, and measurement systems, and can be employed in a quadrature mixer and a
single-sideband modulator of telecommunications [1,2]. In communication systems, a sinusoidal
oscillator can generate an amplitude-controllable sinusoidal signal, which can be used to apply the
carrier signal for amplitude modulation (AM) and amplitude shift keying (ASK) signal systems [3].
Recently, current conveyors are receiving considerable attention due to their potential advantages, such
as inherently wide bandwidth, high slew-rate, good linearity, wide dynamic range, simple circuitry,
and low power consumption [4]. This interesting active element, based on second-generation current
conveyor transconductance amplifiers (CCIITA) [5], has been introduced to provide new possibilities
in the realization of a class of analog signal processing circuits. This CCIITA can provide flexibility in
operating both current and voltage modes, and can enable a variety of circuit designs and provides
electronic tuning ability through its transconductance gain, gm. However, the CCIITA cannot control
the parasitic resistance, RX, at X port. Hence, when the CCIITA is used in some circuits, it must
unavoidably require some external passive components, especially with the resistors. In contrast,
the introduced current-controlled current conveyor transconductance amplifier (CCCCTA) [5,6] has
two electronically adjustable ports, whereas the CCIITA has only one electronically adjustable port.
The parasitic resistance, RX, at current input port of the CCCCTA can be adjusted by an input bias
current, which does not require a resistor in practical applications. Intuitively, the CCCCTA is a
versatile active building block, which provides the possibility of utilizing its transconductance gain,
gm, and its equivalent input resistance, namely parasitic resistance, RX, to create a resistorless oscillator
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scheme. The multiple current output terminals of the CCCCTA can be easily obtained by adding
additional current mirrors at these output terminals.

Electronically tunable active components are receiving more attention as traditional electronic
components may have deviations in fine-tuning the tolerances of the electronic components [7].
The electronically tunable active components of the previous second-order oscillators include second
generation current controlled conveyors (CCCIIs) [8,9]; operational transconductance amplifiers
(OTAs) [10]; current differencing buffered amplifiers (CDBAs) [11,12]; the CCIITA [13]; current
differencing transconductance amplifiers (CDTAs) [14–19]; multiple-output current controlled current
conveyor transconductance amplifiers (MO-CCCCTAs) [20]; and voltage differencing transconductance
amplifiers (VDTAs) [21]. These circuits were used to design the second-order quadrature current
outputs, quadrature voltage outputs, or both quadrature current and voltage outputs. In addition to
all of the above second-order quadrature oscillators, several third-order quadrature oscillators have
also been proposed [22–32].

The third-order oscillators have higher accuracy, higher quality factor, and lower harmonic
distortion than the second-order oscillators [22,23]. However, the third-order oscillator in Figure 7
of Reference [22] uses three OTAs and three grounded capacitors. The third-order oscillator in
Reference [23] uses four multiple-output second-generation current-controlled conveyors (MO-CCCIIs)
and three grounded capacitors. The third-order oscillator in Figure 1 of Reference [24] uses three
second-generation current conveyors (CCIIs), five grounded resistors and three capacitors. The
third-order oscillator in Reference [25] uses two MO-CCCCTAs and three grounded capacitors.
The third-order oscillator in Figure 3 of Reference [26] uses three voltage controlled differential
voltage current conveyors (VC-DVCCs) and three grounded capacitors. The third-order oscillator in
Reference [27] uses three MO-CCCIIs and three grounded capacitors. The third-order oscillator
in Reference [28] uses three multiple-output current differencing transconductance amplifiers
(MO-CDTAs) and three grounded capacitors. Although the third-order oscillator in Reference [29]
uses two multiple-output second-generation current conveyors (MO-CCIIs), three resistors, and
three grounded capacitors, one of the resistors is a floating connection. The third-order oscillator in
Reference [30] uses three multiple-output differential voltage current conveyors (MO-DVCCs), three
resistors, and three grounded capacitors; however, one of the resistors is also a floating connection.
The oscillator in Figure 2 of Reference [31] uses three operational transresistance amplifiers (OTRAs),
four resistors and three capacitors; however, not all of the resistors and capacitors are grounded.

In 2015, two new third-order quadrature oscillators were proposed [32], which employed two
multiple-output differential voltage current conveyor transconductance amplifiers (MO-DVCCTAs),
one/two resistors, and three grounded capacitors. However, these circuits [22–32] suffered from one or
more of the following drawbacks: (i) the inclusion of three/four active components [22–24,26–28,30,31];
(ii) the lack of both a voltage-mode and current-mode quadrature oscillator in one circuit topology [22–25,31];
(iii) the lack of a resistorless oscillator [24,29–32]; (iv) the lack of an independently electronically
tunable for the oscillation condition and frequency [22,24,30,32]; (v) the lack of amplitude-controllable
for output current signal [22–32]; and (vi) the lack of quadrature voltage outputs, quadrature current
outputs, and a high-impedance amplitude-controllable current output in one circuit topology [22–32],
especially, the electronically controllable amplitude of the sinusoidal current output signal that can be
easily used in AM/ASK systems.

In this paper, a new approach to realize third-order quadrature oscillators using a lossy
integrator and two lossless integrators is proposed. The proposed third-order quadrature resistorless
oscillator employs two MO-CCCCTAs and three grounded capacitors. The proposed third-order
quadrature oscillator has the following seven advantages simultaneously: (i) it contains only two
active components and three grounded capacitors; (ii) it has both voltage-mode and current-mode
third-order sinusoidal quadrature oscillator in the same topology; (iii) it achieves quadrature voltage
outputs, quadrature current outputs, and a high-impedance amplitude-controllable current output in
one circuit topology; (iv) it has independent electronically tunable characteristics for the condition of
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oscillation (CO) and the frequency of oscillation (FO); (v) it provides a high-impedance current output
of adjustable magnitude, without effecting the CO and FO and is suitable for AM/ASK modulations;
(vi) it uses only grounded capacitors; and (vii) it holds low active and passive sensitivity performances.
Tables 1 and 2 compare the main features of the proposed circuit with previous third-order sinusoidal
oscillators [22–32].

Table 1. Number of component and number of output signal comparisons with previous
third-order oscillators.

Reference
No. of Components Used No. of Output Signals Used

Active Elements C/R/Resistorless Structure Voltage Current

[22] Figure 7 3 OTAs 3/0/yes 1 0
[23] 4 MO-CCCIIs 3/0/yes 0 4

[24] Figure 1 3 CCIIs 3/5/no 2 0
[25] 2 MO-CCCCTAs 3/0/yes 0 2

[26] Figure 2 3 MO-DVCCs 3/3/no 5 2
[26] Figure 3 3 VC-DVCCs 3/0/yes 3 2

[27] 3 MO-CCCIIs 3/0/yes 2 4
[28] 3 MO-CDTAs 3/0/yes 2 2
[29] 2 MO-CCIIs 3/3/no 2 2
[30] 3 MO-DVCCs 3/3/no 2 4

[31] Figure 3 3 OTRAs 3/5/no 2 0
[32] Figure 4a 2 MO-DVCCTAs 3/1/no 3 3
[32] Figure 4b 2 MO-DVCCTAs 3/2/no 3 3

This work 2 MO-CCCCTAs 3/0/yes 2 3

Table 2. Characteristic comparisons with previous third-order oscillators.

Reference Electronic Tuning FO
without Disturbing CO

Independent Control
of CO and FO

Controllable Amplitude
of AM/ASK

[22] Figure 7 no no no
[23] yes yes no

[24] Figure 1 no no no
[25] yes yes no

[26] Figure 2 no yes no
[26] Figure 3 yes yes no

[27] yes yes no
[28] yes yes no
[29] no yes no
[30] no no no

[31] Figure 3 no yes no
[32] Figure 4a no yes no
[32] Figure 4b no no no

This work yes yes yes

2. Proposed Method

The proposed realization of a third-order quadrature oscillator is shown in Figure 1, and consists
of a current-mode lossy integrator and two current-mode lossless integrators. The system can be
analyzed as:
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Equation (1) shows the functions of one current-mode inverting lossy integrator and two
current-mode non-inverting lossless integrators in the functional block diagram. Substitute Equation
(1) into Equation (2), and obtain the relationship between I1 and I4 currents as:

I1

I4
=

I1

(1 + b
s )I2

=
c
s

(3)



Appl. Sci. 2017, 7, 179 4 of 18

Rearrange Equation (3), and yield the transfer function between I1 and I2 currents as follows:

I1

I2
= (1 +

b
s
)(

c
s
) = (

s + b
s

)(
c
s
) (4)

Then, the characteristic equation of the functional block diagram in Figure 1 can be expressed as:

s3 + as2 + acs + abc = 0 (5)

From Equation (5), the CO and the FO are obtained as follows:

CO: a = b (6)

FO : ωo =
√

bc (7)
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Figure 1. Functional block diagram for realizing third-order quadrature oscillators. 
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The CCCCTA device integrates a CCCII and an OTA into a versatile component to facilitate the 
implementation of analog signal-processing circuits. The CCCCTA does not need a resistor in 
practical applications, as its transconductance gain, gm, and parasitic resistance, RX, are electronic 
adjustable. Figure 2 shows the symbol of a multiple-output CCCCTA (MO-CCCCTA) [33]. The MO-
CCCCTA properties can be expressed as VX = VY + IXRX, IZ = IZC1 = IZC2 = IX and IO1 = IO2 = gmVZ, where 
RX is the parasitic resistance of the X-terminal, and gm is the transconductance gain of the  
MO-CCCCTA. The bias currents, IS and IB, of MO-CCCCTA can control the parasitic resistance, RX, 
and the transconductance gain, gm, respectively [33,34]. Figure 3 shows the proposed schematic of the 
resistorless third-order quadrature oscillator, which consists of two MO-CCCCTAs and three 
grounded capacitors. The only grounded capacitors without a resistor structure in the proposed 
circuit are easily integrated into a single chip. In Figure 3, the transfer function, B/A, realizes  
a current-mode lossy integrator, and the transfer functions, C/B and D/C, realize two current-mode 
lossless integrators. 
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3. Circuit Descriptions

The CCCCTA is an active building block, which is useful in simplifying the circuit design.
The CCCCTA device integrates a CCCII and an OTA into a versatile component to facilitate the
implementation of analog signal-processing circuits. The CCCCTA does not need a resistor in practical
applications, as its transconductance gain, gm, and parasitic resistance, RX, are electronic adjustable.
Figure 2 shows the symbol of a multiple-output CCCCTA (MO-CCCCTA) [33]. The MO-CCCCTA
properties can be expressed as VX = VY + IXRX, IZ = IZC1 = IZC2 = IX and IO1 = IO2 = gmVZ,
where RX is the parasitic resistance of the X-terminal, and gm is the transconductance gain of the
MO-CCCCTA. The bias currents, IS and IB, of MO-CCCCTA can control the parasitic resistance, RX,
and the transconductance gain, gm, respectively [33,34]. Figure 3 shows the proposed schematic of the
resistorless third-order quadrature oscillator, which consists of two MO-CCCCTAs and three grounded
capacitors. The only grounded capacitors without a resistor structure in the proposed circuit are easily
integrated into a single chip. In Figure 3, the transfer function, B/A, realizes a current-mode lossy
integrator, and the transfer functions, C/B and D/C, realize two current-mode lossless integrators.Appl. Sci. 2016, 6, 179 5 of 18 
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Let D = A, and the close-loop circuit analysis provides the following system characteristic equation.

s3C1C2C3RX1RX2 + s2C2C3RX2 + sC2 + gm1 = 0 (8)

and the CO and FO can be obtained as:

CO: gm1RX1 =
C2

C1
(9)

FO: ωo =

√
gm1

RX2C2C3
(10)

As indicated by Equations (9) and (10), the CO can be adjusted by RX1 without disturbing the
FO, and the FO can be controlled by RX2 without affecting the CO. In other words, the CO and FO are
controlled independently by the bias currents, IS1 and IS2, respectively. As the parasitic resistances, RX1

and RX2, of the MO-CCCCTA can be electronically controlled by IS1 and IS2, respectively, both the CO
and FO are independently and electronically controllable. In a steady state, the two voltage outputs
and two current outputs in Figure 3 are:

Vo1 = −jk1Vo2, Io1 = jk2 Io2 (11)

where k1 = ωoC2RX1, and k2 = ωoC2
gm1

.
Equation (11) shows that the proposed circuit can obtain the quadrature voltage outputs and the

quadrature current outputs simultaneously. The magnitude ratios of the quadrature voltage outputs
and the quadrature current outputs are the function of the operating frequency. Thus, the value of
RX2 will affect the oscillation frequency and the magnitude ratios of the generated quadrature signals.
However, this problem can be solved by using C1 = C2 = C3, RX1 = RX2, and letting the product
gm1RX1 = 1. Subsequently, the amplitude of voltages and currents in Equation (11) are equal and
ensure k1 = k2 = 1.

The output current, Io3, can be given as follows:

Io3 = gm2Vo1 (12)

where the gm2 of the second MO-CCCCTA can be independently tuned by the bias current, IB2.
This means that the gm2-value can be tuned by IB2, without disturbing the CO and FO. Thus, if a
modulating signal is applied to IB2, then the AM/ASK signals can be obtained from Io3.

From Equation (11), the magnitude of Vo2 and Vo1 or Io2 and Io1 is dependent on the factor
k1 or k2. Therefore, the mechanism of amplitude limitation will depend on the factors k1 and k2.
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For complementary metal oxide semiconductor (CMOS) implementation of CCCCTA [34], the RX and
gm are written as:

RX =
1√

8kRX IS
and gm =

√
kgm IB (13)

where kRX = µnCOX(W
/

L)1,2 = µpCOX(W
/

L)3,4, kgm = µnCOX(W
/

L)20,21. RX is the parasitic
resistance of the X-terminal and gm is the transconductance gain of the CCCCTA. Here k is the
physical transconductance parameter of the MOS transistor. IS and IB are the bias current used to
control the parasitic resistance and transconductance gain, respectively. In other words, the variation
of CCCCTA bias current range will limit the stability of the output amplitude.

4. Phase Noise and Phase Error Analysis

The phase noise, which are the important performance parameters of an oscillator, can be
calculated by the method outlined in Reference [35] and can be represented in the block diagram of
Figure 4. The spectral density of the phase noise is defined in Reference [35].∣∣∣∣YX [j(ωo + ∆ω]

∣∣∣∣2 =
1

(∆ω)2
∣∣∣ dH

dω

∣∣∣2 (14)

where ωo is oscillation frequency and ω = ωo + ∆ω is carrier frequency approximation.
If H(jω) = A(ω) exp[jφ(ω)], then:

dH
dω

= (
dA
dω

+ jA
dφ

dω
) exp[jφ(ω)] (15)

Substitute Equation (15) into Equation (14) and get:∣∣∣∣YX [j(ωo + ∆ω]

∣∣∣∣2 =
1

(∆ω)2[( dA
dω )

2
+ ( dφ

dω )
2
]

for ω ≈ ωo, A ≈ 1 (16)

The phase noise of the proposed circuit can be obtained by Equations (14)–(16).
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Quadrature oscillators are widely used in communication systems due to its in-phase and
quadrature phase signals, which deviate from 90◦. Therefore, the quadrature phase accuracy between
the two output signals should be reasonable. Generally, the in-phase and quadrature phase expressions
of the quadrature oscillator signals can be written as:

VI(t) = Vm(I) cos(ωt + θ(I)) (17)

VQ(t) = Vm(Q) cos(ωt + θ(Q)) (18)

θ(Q)− θ(I) =
π

2
+ φ (19)
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where ω is the oscillation frequency and φ is the phase deviation from the quadrature signal. VI(t) is
the in-phase signal and VQ(t) is the quadrature phase signal. The phase error of the proposed circuit
can be obtained by Equations (17)–(19).

5. Non-Ideal Discussion

The terminal voltage and current relationships of the non-ideal ith MO-CCCCTA can be rewritten
as VXi = βiVYi + IXiRXi, IZi = αiIX, IZC1i = ηiIXi, IO1i = γigmiVZi and IO2i = λigmiVZi for i = 1, 2, where βi,
αi. γi, ηi and λi represent the tracking errors of the MO-CCCCTA voltage and current, respectively [20].
The characteristic equation of the proposed circuit in Figure 3 can be rewritten as:

s3C1C2C3RX1RX2 + s2C2C3RX2 + α2β2η1sC2 + α1α2β2γ1gm1 = 0 (20)

In this case, the CO and FO of the non-ideal oscillator can be expressed as:

CO: gm1RX1 =
η1C2

α1γ1C1
(21)

FO: ωo =

√
α1α2β2γ1gm1

RX2C2C3
(22)

The active and passive sensitivities of the non-ideal oscillator parameters are shown as:

Sω0
α1,α2,β2,γ1

= Sω0
gm1 = −Sω0

RX2,C2,C3
=

1
2

(23)

From Equation (23), the active and passive sensitivities are equal to 0.5, which satisfy the sensitivity
performance of the circuit.

The parasitic terminal impedances of the ith non-ideal MO-CCCCTA are (RYi//CYi) of terminal
Yi, (RZi//CZi) of terminal Zi, (RZC1i//CZC1i) of terminal ZC1i, (RZC2i//CZC2i) of terminal ZC2i,
(RO1i//CO1i) of terminal O1i, and (RO2i//CO2i) of terminal O2i [20,33]. The X, Z, and O1 of the
first MO-CCCCTA terminals connect to the external C1, C2 and C3 capacitors in parallel, respectively,
as shown in Figure 3. If C1 >> CZ2, C2 >> CZ1 and C3 >> (CO11 + CY2 + CZC11), the effects of the parasitic
capacitances, CZ2, CZ1 and CO11, can be ignored. Hence, to minimize the effects of the MO-CCCCTA
parasitic terminal impedances, the external capacitor values should be restricted by

1
s(C1 + CZ2)

<< RZ2 (24)

1
s(C2 + CZ1)

<< RZ1 (25)

1
s(C3 + CO11 + CY2 + CZC11)

<< RO11//RY2//RZC11 (26)

6. Simulation Results

To verify the theoretical analysis of the proposed circuit, an H-Spice simulation with Taiwan
Semiconductor Manufacturing Company (TSMC) 0.18 µm process was performed. Figure 5 shows
the CMOS schematic of a MO-CCCCTA [34], where the multiple outputs are multiple current
mirrors. The aspect ratios (W/L) of the MOS transistors of Figure 5 are given in Table 3. The supply
voltages are VDD = −VSS = 0.9 V. In order to get the fo ∼= 2.12 MHz oscillation frequency of the
sinusoidal output waveforms, the values of the active and passive components have been chosen as
gm1 = gm2 = 133.33 µA/V (IB = 42.9 µA); RX1 = RX2 = 7.5 kΩ (IS = 3.96 µA); C1 = 10.1 pF; and C2

= C3 = 10 pF. The variation of the transconductance value changes IB from 1.5 µA to 210 µA as
depicted in Figure 6. When the bias current is larger than 160 µA, the transconductance gain is
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decreased as the transistors (M20, M21) enter the linear region from a saturation region. The maximum
transconductance gain is approximately 256 µA/V. In other words, when the bias current is larger
than 160 µA, the internal construction transistors of the MO-CCCCTA operates in the linear region,
which will result in the distortion of the output swing. The steady state output waveforms of the
quadrature voltages are shown in Figure 7 and the quadrature currents are shown in Figure 8. The
oscillation frequency, fo, of the simulation results is equal to 2.11 MHz, which is consistent with the
theoretical analysis. The total harmonic distortion (THD) analysis of the Vo1, Vo2, Io1 and Io2 are
summarized in Tables 4–7, respectively. Furthermore, the output current, Io3, can be used as an AM
or ASK signal generator, when the amplitude of the input bias current, IB2, is applied to a sinusoidal
signal, a triangular signal, or a pulse signal. Thus, the proposed oscillator can generate either AM or
ASK signals without additional elements. Figures 9 and 10 show the simulated results of the proposed
circuit serving as an AM signal generator, when the input bias current, IB2, is applied to a sinusoidal
signal or a triangular signal with a 200-kHz frequency. Figure 11 shows the simulated results of the
proposed circuit serving as an ASK signal generator when the input bias current, IB2, is applied to a
pulse signal with a 200-kHz frequency.
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Table 3. The aspect ratios of the CMOS transistors in MO-CCCCTA implementation.

Transistors L (µm) W (µm)

M1–M2 0.35 7
M3–M4 0.35 14
M5–M10 0.5 20

M11–M17, M20, M21 0.5 10
M18, M19, M27 0.8 8

M22–M26 0.8 25
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Table 4. Total harmonic distortion analysis of Vo1 in Figure 3.

Harmonic Number Frequency (MHz) Fourier Component Phase (degree)

1 2.122 131.6570 m 152.1558
2 4.244 1.7963 m −145.6957
3 6.366 1.3875 m −16.7744
4 8.488 280.3543 u −35.0773
5 10.610 59.7176 u −158.4953
6 12.732 139.7939 u −8.9033
7 14.854 117.2583 u −9.5498
8 16.976 100.4933 u 2.8933
9 19.098 101.7488 u 8.4091

DC component = 3.419 × 10−3

Total harmonic distortion = 1.7465%

Table 5. Total harmonic distortion analysis of Vo2 in Figure 3.

Harmonic Number Frequency (MHz) Fourier Component Phase (degree)

1 2.122 131.7010 m 117.7808
2 4.244 557.7167 u 107.6894
3 6.366 591.5883 u 51.9561
4 8.488 195.7997 u 27.5504
5 10.610 71.6988 u 2.9989
6 12.732 64.9872 u 16.6679
7 14.854 67.4512 u 7.9859
8 16.976 60.2372 u 11.2194
9 19.098 51.7097 u 15.5339

DC component = −4.142 × 10−4

Total harmonic distortion = 644.0952 m%

Table 6. Total harmonic distortion analysis of Io1 in Figure 3.

Harmonic Number Frequency (MHz) Fourier Component Phase (degree)

1 2.122 17.5810 u −27.9532
2 4.244 175.7963 n −143.2494
3 6.366 204.1361 n 155.1108
4 8.488 57.0393 n 145.0789
5 10.610 12.1911 n −93.1991
6 12.732 16.2208 n −141.3161
7 14.854 6.6238 n 157.6872
8 16.976 10.0840 n 161.5075
9 19.098 13.2706 n −179.8498

DC component = −2.993 × 10−8

Total harmonic distortion = 1.5739%

Table 7. Total harmonic distortion analysis of Io2 in Figure 3.

Harmonic Number Frequency (MHz) Fourier Component Phase (degree)

1 2.122 17.2823 u −117.8809
2 4.244 72.1321 n 106.2341
3 6.366 156.5673 n 26.8057
4 8.488 24.1643 n 25.9664
5 10.610 8.2084 n 1.3462
6 12.732 7.7736 n 16.4662
7 14.854 8.5334 n 8.0360
8 16.976 7.7471 n 11.0721
9 19.098 6.5087 n 14.8607

DC component = −5.366 × 10−8

Total harmonic distortion = 1.0122%

The MO-CCCCTA is not an off-the-shelf component but can be built by commercially available
integrated circuits (ICs). For testing the proposed oscillator, Figure 12 shows an equivalent method
similar to Figure 3 by using ready-to-use ICs, which include the operational amplifiers of AD844s
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and the operational transconductance amplifiers of MAX435 and CA3080. The DC power supply
voltages are ±5 V. The gm-value of the MAX435 is equal to 4/Rg, where Rg is an external resistor [36].
In general, the applicability of such current-feedback operational amplifier (CFOA)-based oscillators
is usually limited to a few hundred kilohertz [37,38]. Figure 13 shows the experimental result of the
frequency range of a commercially available AD844 with ±5 V DC supply. In Figure 13, the values
of the resistors were chosen as R1 = R2 = 1 kΩ (5 kΩ, 10 kΩ), RL = 500 Ω, CL = 10 pF, and the input
power was 0 dBm. Figure 14 is the measured result of a spectrum analyzer, which shows that the
measured result of the frequency range of AD844 was limited to 2 MHz. The passive component values
of the circuit in Figure 12 were set as gm1 = 1.428 mS (i.e., Rg = 2.8 kΩ), RX1 = 0.73 kΩ, RX2 = 0.7 kΩ,
R = 1 kΩ and C1 = C2 = C3 = 750 pF, where RX1 was designed to be larger than the theoretical value
to ensure that the oscillator will start, before the centre frequency was obtained as fo = 303.15 kHz.
The oscilloscope output waveforms, Vo1 and Vo2, of the proposed oscillator are shown in Figure 15,
and the X–Y plot of Vo1 and Vo2 output voltages are shown in Figure 16. The experimental oscillation
frequency in Figure 15 is 295.2 kHz, which is close to the theoretical value of 303.15 kHz with a 2.62%
error rate. Figures 17–19 show the AM and the ASK signal outputs of the quadrature oscillator, where
the modulation signal, IB2, applied a sinusoidal signal, a triangular signal, or a pulse signal with a
30-kHz frequency. The experimental results are close to the theoretical analysis of Equation (12).
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The frequency spectrum of the oscillator output voltage, Vo1, is shown in Figure 20. The measured
oscillation frequency was 296.68 kHz, which is close to the theoretical value of 303.15 kHz with a
2.13% error rate. The THD, including the first harmonic through to the ninth harmonic components,
is approximately 2.35%. The experimental results are consistent with the theoretical values.
For oscillators, noise is a major concern where even a small noise in an oscillator will cause dramatic
changes in its frequency spectrum and timing properties. Figure 21 shows the phase noise using the
Agilent phase noise measurement solution. The phase noise of the proposed oscillator is less than
−88.2 dBc/Hz at 10 kHz offset. Figure 22 shows the root mean square (RMS) jitter of the proposed
oscillator, which is 6 ns at an operating frequency of 295.2 kHz.
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7. Conclusions

A new resistorless third-order electronically tunable quadrature oscillator was proposed in this
paper, which uses two MO-CCCCTAs and three grounded capacitors. The proposed oscillator provided
two quadrature voltage output signals with a 90o phase difference; two high-impedance quadrature
current output signals with a 90o phase difference; and one high-impedance current output signal with
an electronically controlled amplitude of the sinusoidal signal, all simultaneously. The proposed
oscillator can generate either AM or ASK signals for communication systems. Furthermore,
the oscillation condition and oscillation frequency are independently adjustable by two different
input bias currents of the MO-CCCCTAs. Since the proposed oscillator does not require external
resistors and uses only grounded capacitors, it is suitable for integrated circuit implementation.
The simulation and experimental results validate the feasibility of the proposed theory.
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