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Abstract: The interactions of dihydroquinazolines with human serum albumin (HSA) were studied
in pH 7.4 aqueous solution via fluorescence, circular dichroism (CD) and Fourier transform
infrared (FTIR) spectroscopic techniques. In this work, 6-chloro-1-(3,3-dimethyl-butanoyl)-2-
(un)substitutedphenyl-2,3-dihydroquinazolin-4(1H)-one (PDQL) derivatives were designed and
synthesized to study the impact of five similar substituents (methyl, methoxy, cyano, trifluoromethyl
and isopropyl) on the interactions between PDQL and HSA using a comparative methodology.
The results revealed that PDQL quenched the intrinsic fluorescence of HSA through a static
quenching process. Displacement experiments with site-specific markers revealed that PDQL
binds to HSA at site II (subdomain IIIA) and that there may be only one binding site for PDQL
on HSA. The thermodynamic parameters indicated that hydrophobic interactions mainly drove the
interactions between PDQL and HSA. The substitution using five similar groups in the benzene
ring could increase the interactions between PDQL and HSA to some extent through the van der
Waals force or hydrogen bond effects in the proper temperature range. Isopropyl substitution could
particularly enhance the binding affinity, as observed via comparative studies.
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1. Introduction

Heterocyclic skeletons form the main part of many pharmaceutical, agrochemical and veterinary
products, and quinazolines play a key role in the most important classes of heterocyclic compounds.
These compounds are of considerable interest because of a variety of their biological activities, e.g.,
anticancer [1], antitubercular [2], antibacterial [3], antifungal [4], anti-HIV [5], analgesic [6] and
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anti-inflammatory activities [7–9]. Much attention has been focused on the quinazoline structures for
the discovery of new biologically active molecules.

Human serum albumin (HSA), which is the main protein in human blood plasma, plays a pivotal
role in the pharmacodynamic and pharmacokinetic properties because it can not only serve as a
carrier for drugs, but also can participate in drug absorption, distribution and metabolism [10–15].
Interaction studies of HSA with biological molecules can elucidate the properties of the drug-protein
complex because they may provide useful information about the structural features that determine
the therapeutic effectiveness of drugs. Therefore, various studies on the interactions between HSA
and small bioactive molecules have been reported over the years [16–20]. Generally, strong binding to
HSA will decrease the concentrations of a free drug in plasma, whereas weak binding will reduce the
duration of drug action. For having a suitable duration of drug actions, the introduction of a substituent
is a common strategy to achieve binding affinity modification, particularly modification of the parent
aromatic structures. At present, little information is available on the interactions between quinazolines
and HSA [21–23]. In addition, substituents, such as methyl, methoxy, cyano, trifluoromethyl and
isopropyl groups, are often introduced during the development of pharmaceutical products and
agrochemicals to improve their bioactivity and metabolism. However, no information is available on
the influence of these five similar substituents on the binding of quinazoline derivatives to HSA, so it
is difficult during molecular design to estimate the impact of substituents on modified compounds.

Previously, quinazoline derivatives were designed and synthesized, on the basis of molecular
similarity between an aromatic diamide fragment of the novel insecticide chlorantraniliprole and
quinazoline, and the combination of active substructures by us, and some were found to possess
certain insecticidal activity [22,23]. Meanwhile, we studied the impact of halogen substituents and the
positions of the fluorine substituents on the interactions between quinazoline derivatives and HSA.
To further exploit how the introduction of five common groups, including methyl, methoxy, cyano,
trifluoromethyl and isopropyl, influences the binding interactions of the parent structure to HSA, five
new 6-chloro-1-(3,3-dimethyl-butanoyl)-2-(un)substituted-phenyl-2,3-dihydroquinazolin-4(1H)-ones
(PDQL) (3b–f) (Figure 1) were designed and synthesized, and their interactions were investigated
at three temperatures using fluorescence spectroscopy, circular dichroism (CD) and Fourier
transform infrared (FTIR) spectroscopic techniques. The obtained interaction information,
specifically the quenching mechanism, binding constants, binding forces and thermodynamic
parameters, may offer a better understanding of the biological action in vivo. With the use of
3-(benzylideneamino)-6-chloro-1-(3,3-dimethylbutanoyl)-2-phenyl-2,3-dihydroquinazolin-4(1H)-one
as a reference compound, the influences of the methyl, methoxy, cyano, trifluoromethyl and
isopropyl substituents, which have different electrical properties and lipid solubilities, on PDQL-HSA
interactions were studied under simulated physiological conditions. The results provide a quantitative
understanding of the effects of these five similar substituents on PDQL-HSA interactions; such
understanding will provide useful information for the further design of potential biologically active
quinazolinone derivatives.
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2. Materials and Methods

2.1. Apparatus

Melting points were measured with a Fisher-Johns melting point apparatus (Cole-Parmer Co.,
Shanghai, China) without correction. Nuclear magnetic resonance (NMR) spectra were recorded
with a 400-MHz spectrometer (Bruker, Billerica, MA, USA) and a 600-MHz spectrometer (Agilent
Technologies, Santa Clara, CA, USA) using tetramethylsilane (TMS) as an internal standard. IR spectra
were recorded over the spectral range of 4000–400 cm−1 on a Bruker Tensor 27 (Bruker Optics GmbH,
Ettlingen, Germany) with samples embedded in KBr pellets. Mass spectra were recorded with an
HPLC-1100/TOF MS high-resolution mass spectrometer (HRMS, Agilent Technologies, Santa Clara,
CA, USA). All fluorescence spectra were measured with a Cary Eclipse fluorescence spectrophotometer
(Agilent Technologies, Santa Clara, CA, USA) equipped with a thermostat bath. Quartz cuvettes with
a 1-cm path length and 3-mL volume were used for all measurements. All pH values were measured
with a PHS-25 digital pH meter (Shanghai REX Instrument Factory, Shanghai, China).

2.2. Reagents

HSA (≥99.9%, fatty-acid free, A1887) and digitoxin (Dig, D5878) were purchased from
Sigma-Aldrich (St. Louis, MO, USA) and were used without further purification. Phenylbutazone
(PB, 451567) and flufenamic acid (FA, 186419) were of analytical grade and were purchased from J&K
(Beijing, China), and the stock solutions were prepared in absolute ethanol. Deionized water was
generated using a Milli-Q Plus System from Millipore (Beijing, China). All other commercial reagents
were obtained from Sigma-Aldrich, Alfa Aesar (Ward Hill, MA, USA) and J&K (Beijing, China).
Dilutions of the HSA stock solution (10 mM) in Tris-HCl buffer (pH 7.4) were prepared immediately
prior to use, and the HSA concentration was measured according to the Bradford method [24]. Flash
column chromatography with a silica gel was used to purify the products.

2.3. Fluorescence Spectra Measurements

The fluorescence emission spectra were recorded at 298 K, with the excitation and emission slits
both adjusted to a width of 5.0 nm. The excitation wavelength was 280 nm, and the emission was
recorded at wavelengths from 290–500 nm. The scan speed was 120 nm/min. The photomultiplier
tube (PMT) voltage was set at 740 V.

2.4. Fluorescence Titration Experiments

A solution (3.0 mL) containing 1.0 × 10−6 M HSA was titrated by successive additions
of 8.0 × 10−4 M ethanol stock solution of PDQL (the final concentration was 1.333–10.667 × 10−6 M).
The titrations were performed manually using microsyringes, and then, the fluorescence intensity
was measured (λex = 280 nm, λem = 337 nm). All experiments were performed at three temperatures
(298, 307 and 316 K).

2.5. Site Marker Competitive Replacement Study

Studies of the PDQL-HSA binding location in the presence of three classical site makers (PB, FA
and Dig) were conducted using fluorescence titration methods. The concentrations of HSA and site
makers were all stabilized at 1.0 × 10−6 M. The PDQL solution was then gradually added to the site
marker-HSA mixtures. The fluorescence intensity was measured at λex 280 nm and λem 337 nm.

2.6. Circular Dichroism Spectra Studies

The far-UV (200–260 nm) CD measurements were performed on a Jasco 810 spectropolarimeter
(JASCO Inc., Tokyo, Japan) at room temperature. The instrument was usually purged with 99.9% dry
nitrogen gas before the measurements were started. The CD measurements of HSA in the absence and
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presence of PDQL were collected using a 0.1-cm path length quartz cuvette from 200–260 nm with
a 0.1-nm step resolution at a scanning speed of 50 nm/min. The data were recorded as the average
of five successive scans. All observed CD spectra were baseline subtracted for the buffer, and the
HSA secondary structure was estimated using CDSSTR software, which was provided in the CDPro
software package [25].

2.7. Fourier Transform Infrared Measurements

FTIR spectra were recorded on a Thermo Scientific Nicolet iS50 FTIR spectrometer (Thermo,
Waltham MA, USA) using the attenuated total reflection (ATR) method at room temperature.
All spectra were collected using 32 scans with a resolution of 4 cm−1. The absorbance of the buffer
solution (Tris-HCl buffer solution at pH 7.40) was measured and then digitally subtracted from the
FTIR spectra of HSA collected in the range of 500–4000 cm−1 in the absence and presence of PDQL.

2.8. Synthesis of 6-Chloro-1-(3,3-dimethyl-butanoyl)-2-(un)substituted-phenyl-2,3-
dihydroquinazolin-4(1H)-one Derivatives 3a–f

Compound 1 and the intermediate compounds (2a–f) were prepared according to the reported
methods [26,27]. Their properties were as follows:

2-Amino-5-chlorobenzohydrazide (1): white crystals, yield 85%; m.p. 139.6–140.5 ◦C; 1H-NMR (400 MHz,
DMSO-d6) δ 9.60 (s, 1H), 7.48 (d, J = 2.5 Hz, 1H), 7.16 (dd, J = 8.8, 2.5 Hz, 1H), 6.74 (d, J = 8.8 Hz, 1H),
6.46 (s, 2H), 4.42 (s, 2H).

3-(Benzylideneamino)-6-chloro-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (2a): light yellow solid, yield
75.3%; m.p. 193.5–194.5 ◦C; 1H-NMR (600 MHz, chloroform-d) δ 9.20 (s, 1H), 7.93 (d, J = 2.5 Hz, 1H),
7.68–7.59 (m, 2H), 7.47–7.41 (m, 2H), 7.41–7.28 (m, 6H), 7.27–7.23 (m, 1H), 6.65 (d, J = 8.5 Hz, 1H), 6.28
(s, 1H), 4.96 (s, 1H).

6-Chloro-3-((4-methylbenzylidene)amino)-2-(p-tolyl)-2,3-dihydroquinazolin-4(1H)-one (2b): light yellow
crystal, yield 63.7%; m.p. 193.3–194.1 ◦C; 1H-NMR (600 MHz, chloroform-d) δ 9.09 (s, 1H), 7.92
(d, J = 2.4 Hz, 1H), 7.54–7.52 (m, 2H), 7.31–7.29 (m, 2H), 7.24–7.22 (m, 1H), 7.16–7.07 (m, 4H), 6.62
(d, J = 8.5 Hz, 1H), 6.23 (s, 1H), 4.89 (s, 1H), 2.35 (s, 3H), 2.30 (s, 3H).

6-Chloro-3-((4-methoxybenzylidene)amino)-2-(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (2c): light
yellow crystal, yield 60.5%; m.p. 204.3–206.1 ◦C; 1H-NMR (600 MHz, chloroform-d) δ 8.98 (s, 1H), 7.92
(d, J = 2.4 Hz, 1H), 7.57 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.28–7.19 (m, 1H), 6.90–6.76 (m, 4H),
6.62 (d, J = 8.5 Hz, 1H), 6.20 (s, 1H), 4.88 (s, 1H), 3.81 (s, 3H), 3.75 (s, 3H).

6-Chloro-3-((4-cyanophenylidene)amino)-2-(4-cyanophenyl)-2,3-dihydroquinazolin-4(1H)-one (2d): white
crystal, yield 65.3%; m.p. 200.1–202.0 ◦C; 1H-NMR (600 MHz, DMSO-d6) δ 9.04 (s, 1H), 8.27
(d, J = 3.4 Hz, 1H), 7.89–7.82 (m, 6H), 7.63 (d, J = 2.5 Hz, 1H), 7.53 (d, J = 8.1 Hz, 2H), 7.37–7.32
(m, 1H), 6.86 (d, J = 8.7 Hz, 1H), 6.69 (d, J = 3.3 Hz, 1H).

6-Chloro-3-((4-(trifluoromethyl)benzylidene)amino)-2-(4-(trifluoromethyl)phenyl)-2,3-dihydroquinazolin-4(1H)
-one (2e): white crystal, yield 65.3%; m.p. 200.1–202.0 ◦C; 1H-NMR (600 MHz, chloroform-d) δ 9.49
(s, 1H), 7.92 (d, J = 2.4 Hz, 1H), 7.72 (d, J = 8.0 Hz, 2H), 7.64–7.52 (m, 6H), 7.31–7.25 (m, 1H), 6.72
(d, J = 8.5 Hz, 1H), 6.34 (s, 1H), 5.02 (s, 1H).

6-Chloro-3-((4-isopropylbenzylidene)amino)-2-(4-isopropylphenyl)-2,3-dihydroquinazolin-4(1H)-one (2f):
white crystal, yield 65.3%; m.p. 200.1–202.0 ◦C; 1H-NMR (600 MHz, chloroform-d) δ 9.10 (s, 1H),
7.96–7.85 (m, 1H), 7.57 (d, J = 8.0 Hz, 2H), 7.33 (s, 2H), 7.24–7.18 (m, 3H), 7.16–7.14 (m, 2H), 6.62
(d, J = 8.5 Hz, 1H), 6.25 (d, J = 2.4 Hz, 1H), 5.11 (s, 1H), 2.88 (m, 2H), 1.27–1.15 (m, 12H).

Compounds 3a–f were prepared with the same procedure. Compound 2 (3 mmol) in anhydrous
tetrahydrofuran (30 mL) was cooled to 0 ◦C using an ice bath, and then, sodium hydride (3.6 mmol)
was added. The mixture was stirred first for 0.5 h at 0 ◦C and by another 1.0 h at room temperature.
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tert-Butylacetyl chloride (3.6 mmol) in anhydrous tetrahydrofuran (5 mL) was then added slowly
at 0 ◦C in 0.5 h, followed by stirring the mixture at room temperature overnight. Subsequently, the
solvent was removed under vacuum, and the residue was purified by flash chromatography using
hexane and ethyl acetate (v/v = 6:1) as the eluent to obtain the title compounds.

3-(Benzylideneamino)-6-chloro-1-(3,3-dimethylbutanoyl)-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3a):
white solid, yield 49.5%; m.p. 149.5–150.8 ◦C; 1H-NMR (600 MHz, DMSO-d6) δ 9.17 (s, 1H), 7.81
(m, 4H), 7.61 (s, 2H), 7.52–7.41 (m, 3H), 7.33–7.13 (m, 5H), 2.67 (s, 2H), 0.95 (s, 9H); 13C-NMR (151
MHz, DMSO-d6) δ 171.56, 158.59, 152.50, 136.82, 136.54, 134.42, 133.39, 131.45, 130.95, 129.34, 129.27,
129.02, 128.16, 128.01, 127.57, 126.33, 125.90, 44.73, 32.14, 29.86; HRMS: m/z Calcd. for C27H26ClN3O2

[M + H]+ 460.1786, found 460.1776.

6-Chloro-1-(3,3-dimethylbutanoyl)-3-((4-methylbenzylidene)amino)-2-(p-tolyl)-2,3-dihydroquinazolin-4(1H)
-one (3b): white solid, yield 53.3%; m.p. 149.3–150.1 ◦C; 1H-NMR (600 MHz, DMSO-d6) δ 9.07 (s, 1H),
7.80 (s, 1H), 7.77–7.63 (m, 3H), 7.59 (s, 2H), 7.30–7.22 (m, 2H), 7.12–7.00 (m, 4H), 2.65 (s, 2H), 2.33 (s,
3H), 2.17 (s, 3H), 0.94 (s, 9H); 13C-NMR (151 MHz, DMSO-d6) δ 171.48 , 158.50, 152.61, 141.45, 138.43,
136.80, 133.53, 133.29, 131.69, 130.89, 129.94, 129.81, 128.16, 127.97, 127.51, 126.26, 125.99, 44.75, 32.13,
29.86, 21.56, 20.97; IR (v, cm−1): 3430.9, 2954.1, 1678.4, 1665.8, 1604.4, 1466.7, 1360.8, 1229.5, 1140.3,
824.2, 754.5, 688.0, 592.2; HRMS: m/z Calcd. for C29H30ClN3O2 [M + H]+ 488.2027, found 488.2050.

6-Chloro-1-(3,3-dimethylbutanoyl)-3-((4-methoxybenzylidene)amino)-2-(4-methoxyphenyl)-2,3-dihydroquinazolin
-4(1H)-one (3c): white solid, yield 59.5%; m.p. 104.5–105.8 ◦C; 1H-NMR (600 MHz, DMSO-d6) δ 9.04 (s,
1H), 7.80 (s, 1H), 7.76–7.72 (m, 2H), 7.65–7.57 (m, 3H), 7.08–7.01 (m, 4H), 6.84–6.82 (m, 2H), 3.80 (s, 3H),
3.64 (s, 3H), 2.66 (s, 2H), 0.95 (s, 9H); 13C-NMR (151 MHz, DMSO-d6) δ 171.47, 162.05, 159.69, 158.34,
136.74, 133.19, 130.83, 129.93, 128.27, 127.95, 127.67, 127.45, 126.83, 126.04, 114.85, 114.60, 55.83, 55.50,
44.80, 32.15, 29.87; IR (v, cm−1): 3430.4, 2957.9, 2226.2, 1695.2, 1669.1, 1479.8, 1422.5, 1364.4, 1262.8,
1233.3, 1147.7, 837.9, 557.1; HRMS: m/z Calcd. for C29H30ClN3O3 [M + H]+ 626.2707, found 626.2737.

6-Chloro-1-(3,3-dimethylbutanoyl)-3-((4-cyanophenylidene)amino)-2-(4-cyanophenyl)-2,3-dihydroquinazolin-
4(1H)-one (3d): white solid, yield 46.7%; m.p. 115.3–116.1 ◦C; 1H-NMR (600 MHz, DMSO-d6) δ 9.27 (s,
1H), 7.99–7.97 (m, 2H), 7.96–7.84 (m, 3H), 7.83–7.74 (m, 3H), 7.66 (s, 2H), 7.38–7.36 (m, 2H), 2.68 (s, 2H),
0.94 (s, 9H); 13C-NMR (151 MHz, DMSO-d6) δ 171.66, 158.56, 141.83, 138.84, 136.71, 133.91, 133.31,
133.28, 131.31, 128.70, 128.11, 127.82, 127.51, 125.42, 118.99, 118.58, 113.25, 112.10, 44.67, 32.09, 29.82; IR
(v, cm−1): 3677.4, 2964.2, 1670.3, 1481.0, 1356.5, 1270.9, 1231.8, 1143.7, 1087.3, 826.0, 692.8, 518.2; HRMS:
m/z Calcd. for C29H24ClN5O2 [M + H]+ 510.1619, found 510.1643.

6-Chloro-1-(3,3-dimethylbutanoyl)-3-((4-(trifluoromethyl)benzylidene)amino)-2-(4-(trifluoromethyl) phenyl)
-2,3-dihydroquinazolin-4(1H)-one (3e): white solid, yield 53.5%; m.p. 149.5–150.8 ◦C; 1H-NMR (600 MHz,
DMSO-d6) δ 9.25 (s, 1H), 8.02 (d, J = 8.1 Hz, 2H), 7.91 (s, 1H), 7.86–7.73 (m, 3H), 7.73–7.61 (m, 4H),
7.41–7.40 (m, 2H), 2.67 (s, 2H), 0.95 (s, 9H); 13C-NMR (151 MHz, chloroform-d) δ 171.67, 158.56, 141.04,
138.39, 136.70, 133.83, 131.27, 131.05, 130.84, 129.74, 129.53, 129.31, 128.77, 128.07, 127.81, 127.68, 127.42,
126.33, 126.31, 126.28, 126.26, 126.23, 126.20, 125.54, 125.35, 125.17, 123.55, 123.37, 44.68, 32.11, 29.82; IR
(v, cm−1): 3693.9, 2959.4, 2871.7, 1670.7, 1620.7, 1603.8, 1483.6, 1431.7, 1325.2, 1128.8, 1068.0, 1017.4,
829.5, 797.7, 761.9, 708.3, 690.9, 597.9; HRMS: m/z Calcd. for C29H24ClF6N3O2 [M + H]+ 596.1461,
found 596.1536.

6-Chloro-1-(3,3-dimethylbutanoyl)-3-((4-isopropylbenzylidene)amino)-2-(4-isopropylphenyl)-2,3-dihydroquinazolin
-4(1H)-one (3f): white solid, yield 46.3%; m.p. 124.4–125.8 ◦C; 1H-NMR (600 MHz, DMSO-d6) δ 9.12 (s,
1H), 7.81 (d, J = 2.3 Hz, 1H), 7.76–7.53 (m, 5H), 7.32–7.25 (m, 2H), 7.19–7.05 (m, 4H), 2.94–2.87 (m, 1H),
2.79–2.65 (m, 3H), 1.21–1.14 (m, 6H), 1.10–1.02 (m, 6H), 0.94 (s, 9H); 13C-NMR (151 MHz, DMSO-d6)
δ 171.52, 158.46, 152.52, 152.20, 149.13, 136.79, 133.95, 133.31, 132.14, 130.85, 128.28, 127.95, 127.58,
127.29, 127.22, 126.32, 125.88, 44.76, 33.90, 33.35, 32.14, 29.85, 24.07, 24.06, 24.01; IR (v, cm−1): 3435.1,
2952.3, 1667.6, 1484.8, 1364.9, 1270.2, 1226.5, 815.7, 766.9, 526.9; HRMS: m/z Calcd. for C33H38ClN3O2

[M + H]+ 544.2653, found 544.2678.
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3. Results and Discussion

3.1. Synthesis

t-Butylacetyl moieties were introduced to quinazolines to partially improve parent molecules
binding to HSA through hydrophobic action [22], which was also utilized in our chemical design.
For compound preparation, 5-chloro-isotoic anhydride was employed as a starting material, and
reacted with hydrazine hydrate, p-substituted benzaldehyde in order to obtain the intermediate 2.
Subsequently, Compounds 3b–f were successfully synthesized from t-butylacetyl chloride in the
presence of sodium hydride. The new compounds were well characterized by NMR and HRMS spectra
(see Supplementary Materials).

3.2. Fluorescence Quenching Mechanism

Fluorescence spectroscopy is a valuable tool to study protein-ligand interactions. Of the three
aromatic amino acid residues, tryptophan (Trp) contributes most to intrinsic protein fluorescence [28].
The effect of PDQL on the fluorescence emission spectra of HSA was first tested (Figure 2). The strong
fluorescence peak of HSA at approximately 340 nm decreased in the absence of PDQL (λex = 280 nm,
298 K). The results indicated that the binding of PDQL to HSA quenched the intrinsic fluorescence of
the tryptophan residue in HSA.
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Fluorescence quenching could proceed via dynamic or static quenching or a combination of
both [29,30]. Dynamic quenching involves the collisional encounters between the quencher and the
fluorophore during the lifetime of the excited state, whereas static quenching involves the formation of
a ground state complex between the fluorophore and the quencher [31]. To determine the mechanism
for the quenching of the intrinsic HSA fluorescence by PDQL, the experimental data were analyzed
using the Stern-Volmer Equation (1) [32].

F0/F = 1 + KSV [Q] = 1 + Kqτ0 [Q] (1)

where F0 and F are the steady-state fluorescence intensities of HSA in the absence and presence of the
quencher, respectively. KSV is the Stern-Volmer quenching constant; Kq is the bimolecular quenching
constant; τ0 is the average lifetime of the biomolecule without the quencher (τ0 = 10−8 s−1) [33];
and [Q] is the concentration of the quencher. Figure 3 shows that the Stern-Volmer plots at different
temperatures and different concentrations of a quencher. The observed linear dependence between
F0/F and the molar concentration of PDQL indicates a single quenching mechanism, either static
or dynamic. The calculated values of Kq for all PDQL-HSA reactions in Table 1 fell in the range
of 2.77 × 1012 and 5.21 × 1012 mol·L−1. These values are two orders of magnitude greater than
the maximum collisional quenching constant of 2.0 × 1010 mol·L−1 [18,34,35], so static quenching
presumably occurred via the formation of a complex.

Table 1. Stern-Volmer quenching constants for the interactions of PDQL with HSA at different temperatures.

Compound T (K) KSV (×104 M−1) Kq (×1012 M−1·s−1) R a SD b

R = H
298 2.769 2.769 0.99956 0.00322
307 2.976 2.976 0.99933 0.00424
316 3.268 3.268 0.99919 0.00513

R = CH3

298 4.228 4.228 0.99942 0.00562
307 4.337 4.337 0.99924 0.00660
316 4.513 4.513 0.99903 0.00776

R = OCH3

298 4.062 4.062 0.99948 0.00512
307 4.280 4.280 0.99889 0.00788
316 4.478 4.478 0.99869 0.00896

R = CN
298 4.961 4.961 0.99934 0.00705
307 5.088 5.088 0.99847 0.01100
316 5.214 5.214 0.99824 0.01209

R = CF3

298 3.436 3.436 0.99928 0.00511
307 3.507 3.507 0.99921 0.00545
316 3.623 3.623 0.99892 0.00658

R =
CH(CH3)2

298 4.326 4.326 0.99939 0.00589
307 4.423 4.423 0.99894 0.00795
316 4.593 4.593 0.99852 0.00975

a R is the correlation coefficient; b SD is the standard deviation for the KSV values.
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For a complex formation process, a modified Stern-Volmer Equation (2) [36] was used to calculate
the affinity binding constant Ka between PDQL and HSA.

F0/(F0 − F) = f a
−1·Ka

−1·[Q]−1 + f a
−1 (2)

where F0 and F are the fluorescence intensities before and after the addition of the quencher, respectively.
Ka is the effective quenching constant. f a represents the fraction of accessible fluorescence. Data
were treated according to the modified Stern–Volmer equation to obtain the linear plots at different
temperatures (Figure 4). A linear relationship exists between F0/(F0 − F) and the reciprocal value
of the quencher concentration [Q], and the slope equals the value of f a

−1·Ka
−1. The values of Ka in

Table 2 showed that the affinity constants all increased after the introduction of a substituent on the
benzene ring.
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3.3. Binding Sites and Identification of Binding Sites on HSA

For static quenching, the number of binding sites can be determined according to the
double-logarithmic equation (Equation (3)) [37–39]:

log[(F0 − F)/F] = logKb + nlg[Q] (3)

where F0 and F are the fluorescence intensities in the absence and presence, respectively, of the ligand.
The binding constant Kb is obtained from the y-intercept of the plot of log[(F0 − F)/F] versus log[Q].
n is not only the number of binding sites per protein, but also the plot slope. The related data were
handled by this equation; a good linear relationship with a value of n of approximately one was
obtained, which suggested that PDQL binds to HSA at a molar ratio of 1:1 (Table 2).

Three well-characterized high-affinity drug binding sites I, II and III, which are located in the
hydrophobic cavities of subdomains IIA, IIIA and IB, respectively, of HSA [40], facilitate the effective
transport of the drugs in the blood circulation. To confirm the binding site of PDQL on HSA, site-marker
competitive-displacement experiments were conducted using phenylbutazone (PB, site I), flufenamic
acid (FA, site II) and digitoxin (Dig, site III) as specific markers [41]. The binding constants of PDQL
with HSA remarkably decreased after the addition of FA, whereas the addition of PB and Dig caused
relatively small changes (Table 3). As discussed above, these results indicated that PDQL could be
replaced by FA; thus, the predominant binding site of PDQL is in subdomain IIIA (site II).
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Table 2. Binding constants of PDQL to HSA.

Compound T (K) Ka (×104 M−1) n R a SD b

R = H
298 2.15794 0.99314 0.99945 0.01088
307 2.34365 0.98423 0.99947 0.01059
316 2.54637 0.97492 0.99928 0.01220

R = CF3

298 3.52395 1.03096 0.99959 0.00978
307 3.72392 1.02821 0.99966 0.00884
316 3.90369 1.04261 0.99953 0.01056

R = OCH3

298 3.57039 1.00301 0.99949 0.01055
307 3.79393 1.01549 0.99918 0.01354
316 4.06275 1.01981 0.99909 0.01435

R =
CH(CH3)2

298 5.16790 1.05812 0.99965 0.00921
307 5.31304 1.06299 0.99961 0.00976
316 5.46879 1.06713 0.99947 0.01149

R = CH3

298 3.58307 0.99055 0.99943 0.01102
307 3.69690 0.99108 0.99937 0.01160
316 3.78131 0.99673 0.99895 0.01511

R = CN
298 4.79585 1.02042 0.99959 0.00962
307 4.95109 1.03849 0.99923 0.01343
316 5.08399 1.04716 0.99896 0.01578

a R is the correlation coefficient; b SD is the standard deviation for the n values.

Table 3. Effects of the site probes on the binding constants of PDQL to HSA.

Compound Site Marker Ka (×104 M−1) R a SD b

R = H

Blank 2.15794 0.99949 0.26651
PB 1.87645 0.99962 0.2702
FA 1.04135 0.99948 0.25962
Dig 2.17623 0.99938 0.24163

R = CF3

Blank 3.52395 0.99985 0.12641
PB 3.44165 0.99971 0.18126
FA 3.03507 0.99985 0.18132
Dig 4.02741 0.99976 0.15165

R = OCH3

Blank 3.57039 0.99965 0.15519
PB 2.89855 0.99941 0.22308
FA 2.45095 0.99977 0.15596
Dig 3.72478 0.99936 0.20352

R = CH(CH3)2

Blank 5.16790 0.99977 0.13434
PB 4.50395 0.99994 0.07291
FA 2.91938 0.99953 0.22246
Dig 5.08774 0.99995 0.05945

R = CH3

Blank 3.58307 0.99954 0.16563
PB 3.43302 0.99964 0.16227
FA 2.95264 0.99987 0.11889
Dig 3.75253 0.99943 0.18557

R = CN

Blank 4.79585 0.99987 0.08076
PB 4.79839 0.99990 0.07751
FA 3.28633 0.99934 0.19871
Dig 5.00248 0.99952 0.14806

a R is the correlation coefficient; b SD is the standard deviation for the Ka values.

3.4. Thermodynamic Parameters and Binding Modes

Essentially, there are four types of non-covalent interactions between ligand and protein, i.e.,
the hydrophobic effect, hydrogen bonding, van der Waals force and electrostatic interactions [42].
Generally, the signs and magnitudes of the thermodynamic parameters of the enthalpy change (∆H)
and entropy change (∆S) are important for identifying the main forces involved in the binding process.
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Ross and Subramanian [43] used the laws of thermodynamics to evaluate the primary mode of
binding forces between drugs and biological molecules: (1) ∆H > 0 and ∆S > 0 indicate a hydrophobic
interaction; (2) ∆H < 0 and ∆S < 0 suggest that hydrogen bonding and van der Waals force are the
dominant forces; and (3) ∆H ∼= 0 and ∆S > 0 imply that electrostatic interactions are dominant.

If ∆H does not vary significantly in the range of temperatures studied, both ∆H and ∆S can be
evaluated from the Van ’t Hoff equation (Equation (4)):

lnKa = −∆H/RT + ∆S/R (4)

where Ka is analogous to the associative binding constants at the relevant temperature. R is the gas
constant. ∆H and ∆S were calculated using the Van ’t Hoff plots (Table 4). The Gibbs’ free energy
change (∆G) was then estimated from the following relationship (Equation (5)):

∆G = ∆H − T∆S (5)

Table 4. Van ’t Hoff plots of PDQL-HSA systems.

Compound Van ’t Hoff R a SD b

R=H Y = 12.88527 − 866.16/T 0.99975 0.00264
R=CF3 Y = 12.26971 − 536.08/T 0.99971 0.00175

R=OCH3 Y = 12.74821 − 675.57/T 0.99845 0.00509
R = CH(CH3)2 Y = 11.84592 − 296.08/T 0.99944 0.00133

R=CH3 Y = 11.43527 − 282.37/T 0.99742 0.00274
R=CN Y = 11.80447 − 305.68/T 0.99949 0.00132

a R is the correlation coefficient; b SD is the standard deviation.

The negative ∆G values listed in Table 5 indicated that the complexation of PDQL and HSA
occurred spontaneously in the aqueous solution. The signs of ∆H and ∆S for the binding reaction were
both found to be positive, which revealed that hydrophobic forces played the chief role in the process
of PDQL binding to HSA.

Table 5. Thermodynamic parameters of PDQL-HSA binding systems at different temperatures.

Compound T (K) Ka (×104 M−1) R a ∆H (kJ·mol−1) ∆G (kJ·mol−1) ∆S (Jmol−1·K−1)

R = H
298 2.15794 0.99949

7.20125
−24.7229

107.1281307 2.34365 0.99969 −25.6871
316 2.54637 0.99963 −26.6513

R = CF3

298 3.52395 0.99985
4.45697

−25.9421
102.0104307 3.72392 0.99994 −26.8602

316 3.90369 0.99980 −27.7783

R = OCH3

298 3.57039 0.99965
5.61669

−25.9679
105.9886307 3.79393 0.99944 −26.9218

316 4.06275 0.99961 −27.8757

R = CH(CH3)2

298 5.16790 0.99977
2.41609

−26.9330
98.4869307 5.31304 0.99984 −27.8194

316 5.46879 0.99990 −28.7058

R=CH3

298 3.58307 0.99954
2.34762

−25.9841
95.0728307 3.69690 0.99958 −26.8397

316 3.78131 0.99925 −27.6954

R=CN
298 4.79585 0.99987

2.54142
−26.7050

98.1424307 4.95109 0.99968 −27.5883
316 5.08399 0.99959 −28.4716

a R is the correlation coefficient.

With 3-(benzylideneamino)-6-chloro-1-(3,3-dimethylbutanoyl)-2-phenyl-2,3-dihydroquinazolin
-4(1H)-one as a reference compound, the changes in ∆H and ∆S were compared and studied after
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the introduction of the five familiar substituents on the benzene ring. The signs of the ∆H change
(∆∆H) and the ∆S change (∆∆S) listed in Table 6 showed that the binding affinities were enhanced
by van der Waals or hydrogen bonding forces after the introduction of the substituted groups, which
was indicated by the analysis based on the laws of thermodynamics, as summarized by Ross and
Subramanian [43]. The fluorine atoms of the trifluoromethyl group and the nitrogen atoms of the
cyano group may provide separated electron pairs, to form hydrogen bonds.

Table 6. Values of ∆∆H and ∆∆S.

Compound ∆∆H (kJ·mol−1) ∆∆S (Jmol−1·K−1)

R = CF3 −2.74428 −5.1177
R = OCH3 −1.58456 −1.1395

R = CH(CH3)2 −4.78516 −8.6412
R = CH3 −4.85363 −12.0553
R = CN −4.65983 −8.9857

In addition, Table 7 lists the values of the ∆G change (∆∆G) for the interaction of PDQL-HSA at
the relevant temperature after the introduction of substituted groups in the benzene ring in PDQL.
The ∆∆G value only slightly changed as the temperature changed and the negative sign of ∆∆G
revealed that the introduction of substituted groups increased the binding affinity in the PDQL-HSA
systems. Isopropyl substitution enhanced the binding affinity the most, followed by the cyano group,
which had a slightly lower effect than the isopropyl substitution. The effects of the other three groups
(methyl, methoxy and trifluoromethyl) substitutions on the benzene rings were identical. These groups
substitute hydrogen atoms on the benzene ring, thereby increasing the space volume of the molecule;
as a result, steric effects played probably a major role in the enhanced interaction of the PDQL-HSA
system. Furthermore, the steric effect may be reflected by the form of van der Waals or hydrogen
bonding forces. In contrast, the electrostatic properties and lipid solubilities of these groups play a
minor role in the enhancement of the interaction of the PDQL-HSA system.

Table 7. Values of ∆∆G at the relevant temperature.

T (K)
∆∆G (kJ·mol−1)

R = CF3 R = OCH3 R = CH(CH3)2 R = CH3 R = CN

298 −1.2192 −1.2450 −2.2101 −1.2612 −1.9821
307 −1.1731 −1.2347 −2.1323 −1.1526 −1.9012
316 −1.1270 −1.2226 −2.0527 −1.0441 −1.8203

3.5. HSA Conformational Change Evaluated Using CD and FTIR Measurements

CD spectroscopy is a very useful and sensitive technique for obtaining information regarding
the secondary protein structure. Far-UV CD measurements in the range of 200–260 nm for HSA with
and without PDQL were conducted to explore the structural changes of HSA that occurred during the
binding process. The CD spectra of the HSA and PDQL-HSA complex exhibited two negative bands
in the UV region at 208 and 222 nm, which are characteristic of α-helix structural units in proteins
(Figure 5). The intensities of the negative bands increased with the addition of PDQL without a change
in either the position or the shape of the peak. The calculated values for the fractions of the α-helix,
β-sheet, β-turn and random coil structures are listed in Table 8. The results indicated some loss in the
α-helical structures and an increase in the disordered structural content in HSA after the addition of
PDQL, in particular isopropyl-modified PDQL, which may be caused by the enhanced binding affinity
from isopropyl substitution Therefore, the binding of PDQL may cause secondary structural changes
in HSA.
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Table 8. Conformation changes in the secondary structure of HSA with and without PDQL.

Sample
Secondary Structure (%)

α-Helix β-Sheet β-Turn Random Coil

HSA 38.8 23.6 11.0 26.6
HSA + 3a (1:2) 35.8 22.7 14.2 27.2
HSA + 3b (1:2) 37.8 24.7 10.7 26.8
HSA + 3c (1:2) 36.4 24.4 11.1 28.1
HSA + 3d (1:2) 36.4 20.0 14.8 28.8
HSA + 3e (1:2) 36.8 22.2 12.4 28.5
HSA + 3f (1:2) 33.7 14.5 19.5 32.2

To further verify the conformation changes of HSA with PDQL, FTIR spectroscopy was performed.
The structural changes of HSA after binding to PDQL were observed using FTIR (Figure 6). Two
bands in the secondary structure of a protein were observed by Zhu et al. [13], and these bands are the
most widely-used vibrational bands in studies of changes in the HSA secondary structure using FTIR
spectra in the range of 1700–1500 cm−1. The amide I band (1700–1600 cm−1, mainly the C=O stretch)
and the amide II band (1600–1500 cm−1, a C–N stretching coupled with N-H bending) are correlated
with the secondary structure of the protein. With the addition of PDQL to HSA, the peak position of
amide I changed from 1652 cm−1 to 1668 cm−1, and the amide II peak shifted from 1551 to 1547 cm−1.
Furthermore, the intensity of the amide I and amide II bands decreased, and the peak shape changed,
revealing that the PDQLs interacted with the C=O and C–N groups in the protein structural subunits.
This finding suggested that the PDQLs could also induce conformational changes in HSA during the
binding process, as indicated by a comparison with the results of the CD experiments.
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In this study, we investigated the interactions of six PDQLs with HSA via fluorescence 
spectroscopy, CD and FTIR and found that the PDQLs could bind to HSA at site II (subdomain IIIA), 
induce conformational and secondary structural changes of HSA and quench the intrinsic 
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according to comparative studies. The studies of the PDQL-HSA interactions showed that 
substitution with these familiar substituents on the benzene ring could enhance the binding affinity 
through van der Waals or hydrogen bonding forces, with the isopropyl substitution providing the 
largest enhancement of the binding affinity. This study provides useful information for further 
research in the rational design of this series of compounds. 
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4. Conclusions

In this study, we investigated the interactions of six PDQLs with HSA via fluorescence
spectroscopy, CD and FTIR and found that the PDQLs could bind to HSA at site II (subdomain
IIIA), induce conformational and secondary structural changes of HSA and quench the intrinsic
fluorescence of HSA in solution through a static quenching mechanism. The quenching of HSA
fluorescence occurred with the formation of a 1:1 complex between PDQL and albumin. Furthermore,
during the formation of the complex between HSA and PDQL, hydrophobic forces played a significant
role. The steric effects of these groups play a major role in enhancing the PDQL-HSA interaction,
whereas the electrostatic properties and lipid solubility of a group play only a minor role, according to
comparative studies. The studies of the PDQL-HSA interactions showed that substitution with these
familiar substituents on the benzene ring could enhance the binding affinity through van der Waals or
hydrogen bonding forces, with the isopropyl substitution providing the largest enhancement of the
binding affinity. This study provides useful information for further research in the rational design of
this series of compounds.
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