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Abstract: In this paper, the direct current (DC) offset cancellation and S transform-based diagnosis
method is verified using three case studies. For DC offset cancellation, correlated kurtosis (CK)
is used instead of the cross-correlation coefficient in order to determine the optimal iteration
number. Compared to the cross-correlation coefficient, CK enhances the DC offset cancellation ability
enormously because of its excellent periodic impulse signal detection ability. Here, it has been proven
experimentally that it can effectively diagnose the implanted bearing fault. However, the proposed
method is less effective in the case of simultaneously present bearing and gear faults, especially for
extremely weak bearing faults. In this circumstance, the iteration number of DC offset cancellation is
determined directly by the high-speed shaft gear mesh frequency order. For the planetary gearbox,
the application of the proposed method differs from the fixed-axis gearbox, because of its complex
structure. For those small fault frequency parts, such as planet gear and ring gear, the DC offset
cancellation’s ability is less effective than for the fixed-axis gearbox. In these studies, the S transform
is used to display the time-frequency characteristics of the DC offset cancellation processed results;
the performances are evaluated, and the discussions are given. The fault information can be more
easily observed in the time-frequency contour than the frequency domain.

Keywords: planetary gearbox; fault diagnosis; predictive maintenance; deterministic component
cancellation; S transform

1. Introduction

To stay competitive, many companies all over the world try to go beyond the costly industry
standard of preventative maintenance by implementing predictive maintenance procedures. For the
industry related to oil exploitation, nuclear power and wind power, predictive maintenance procedures
are the backbone in order to improve the operation and maintenance. Additionally, those industries
for operation use drive trains that usually contain a gearbox as one of the key components. Vibration
analysis is the most widely-used predictive maintenance procedure in gearbox predictive maintenance.
In many mechanical systems, gearboxes are widely used for power transmission. Its condition is very
important for the performance of the whole mechanical system. Therefore, many companies—and in
the last two decades of academia also—have paid great attention to the gearbox condition monitoring.
Vibration analysis can be applied very effectively to gearbox condition monitoring and predictive
maintenance. In 2006, Jardine et al. [1] reviewed the machinery fault diagnosis and prognosis in
the condition-based maintenance view. The authors considered fault diagnosis as an important part
of condition-based maintenance. We know that the gearbox is composed of many parts, such as
gears, shafts, bearings, etc. In addition, there are many types of gearbox. The most typical are the
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fixed-axis gearbox and planetary gearbox. In 2011, bearing fault diagnosis work was reviewed by
Randall and Antoni [2]. Later, Ray and Upadhyay [3] reviewed the signal processing techniques used
in bearing fault diagnosis. This focuses mainly on the recent developments of the fault diagnosis signal
processing techniques. Then, they discussed the advantages and disadvantages of these methods used
in bearing fault diagnosis. For time-frequency analysis, Feng et al. [4] reviewed more than 20 major
time-frequency analysis methods used in fault diagnosis since 1990 and examined their advantages
and disadvantages. As a major time-frequency analysis method, multiwavelet’s development in
fault diagnosis has been reviewed by Sun et al. [5]. Finally, they discussed the existing problems
and future research directions. As we know, the fault mechanism of the planetary gearbox is very
different from fixed-axis gearbox. Therefore, many authors pay great attention to the fault diagnosis
of planetary gearboxes. Lei et al. [6] reviewed the papers emerging in the planetary gearbox fault
diagnosis domain and compared the fixed-axis and planetary gearbox fault diagnosis. Finally, they
pointed to the potential research topics. Through these detailed review papers, readers will have a
good knowledge of gearbox fault diagnosis.

Whether for the gear or the bearing, fault will produce impulse signals with a specific period.
Therefore, the main object for fault diagnosis is to detect these impulse signals. Therefore, many
methods were developed to detect impulse signals. Spectral kurtosis was one such effective method
used for impulse signal detection. From its proposal, it becomes an important and effective way to
detect the impulse signal. Recently, Wang et al. [7] reviewed the development of spectral kurtosis
and pointed out its future use in fault prognosis. Nevertheless, these periodic impulse signals (PIS)
produced by fault are always overwhelmed by deterministic signals produced by the regular gear mesh
and structural vibration. These deterministic signals are also called discrete frequency signals or the
deterministic component. In order to detect the impulse signal more easily, it is necessary to suppress
the deterministic signals. There are several methods developed to subtract the deterministic component
from the original signal. The most dominant were: the autoregressive (AR) model method [8–15], time
synchronous averaging [16–18], adaptive noise cancellation [19,20] and the cepstrum pre-whitening
method [21–23]. These four methods all have been used in the separation of the deterministic signal and
PIS signal successfully. Except for these methods, a new deterministic component cancellation method
was proposed, recently [24]. It is based on an iterative calculation of the signal envelope when the DC
offset is cancelled before envelope calculation. The only parameter that needs to be pre-determined is
the iteration number for DC offset cancellation. In the paper, a threshold of cross-correlation coefficient
interval of [0.9, 0.95] was selected to judge the proper number of envelope calculations. The selected
correlation coefficient interval was efficient for the examples in the paper, but this threshold method
is not a proper way to acquire the most powerful PIS. Sometimes, a greater iteration number will
distort the waveform of PIS and lead to the misdiagnosis of faults. In order to resolve this problem,
correlated kurtosis (CK) is proposed to be used in determining when to stop the iteration for envelope
calculation [25]. This indicator can detect the PIS properly. However, CK is efficient only with strong
enough PIS. When the PIS is very weak, CK is inefficient due to the inability to correctly detect the
PIS. Therefore, in the case of very weak PIS, it is very difficult to determine the appropriate iteration
number for envelope calculation.

Time frequency analysis methods, such as short time Fourier transform, the Wigner–Ville
distribution and wavelet transform, were widely used in rotating machinery fault diagnosis. However,
they all have some demerits. Compared to these time frequency analysis methods, the S transform can
greatly avoid the existing deficiencies of the above three methods [26]. Therefore, it can be used to
display the time-frequency characteristics of the separation results of the deterministic component and
the random component. In addition, fault features can be extracted from the resulting signal of the
S transform to track the degradation of the component of interest. From the time-frequency contour
produced by the S transform, one can distinguish the different faults more easily; or it can be used as
the input for the deep learning methods to intelligent fault classification.
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The above discussions show the need to use CK to optimize the iteration number of the envelope
calculation with strong enough PIS. This can suppress the deterministic component effectively and
properly. The S transform advantages inspire us to diagnose faults of the gearbox component by
separation of the results of the deterministic component and the random component. The method
is validated using the experimental datasets collected from a lab AC motor faulty bearing; a lab
fixed-axis gearbox faulty bearing and gear and a lab planetary gearbox faulty sun, planet and ring
gear. Experimental case studies will benefit the application of this novel method and will also provide
a detailed guide for engineers in the industrial application. In addition, validation has been conducted
using both intentionally-implanted bearing and gear damage data and naturally-developed distributed
gear and bearing wear data under constant motor speed and various loads.

Based on the above-mentioned literature and analysis, the main contributions of this paper can be
summarized as follows: (1) instead of the cross-correlation coefficient, correlated kurtosis was used
as a criterion to estimate the optimal iteration number of DC offset cancellation, since CK has the
superior ability to detect the PIS signal and is more robust to the noise interference; (2) when PIS is very
weak compared with the deterministic signal or existing bearing fault and gear fault simultaneously,
even CK cannot detect weak PIS produced by the bearing fault effectively; in this circumstance, the
maximum order of high-speed shaft mesh frequency was used as the iteration number of DC offset
cancellation; (3) because of several existing merits, the S transform was used to combine with DC offset
cancellation to display the time-frequency characteristic of various gearbox faults; it is very efficient
and intuitive to find faults through time-frequency contours; in addition, it could be used for deep
learning-based fault classification; (4) through the planetary gearbox case study, it was found that DC
offset cancellation is less effective for those small fault frequency signals, such as the planet gear, ring
gear, carrier, etc.

Compared to the DC offset cancellation used in [24], the advantage of this study is that it used
CK instead of the cross-correlation coefficient to determine the optimal iteration number of DC offset
cancellation. According to the CK’s value, it is more corrective to select the iteration number because it
can detect PIS more accurately than the cross-correlation coefficient and is not easily interfered with
by impulse-like noise. However, the disadvantage of this method is that it is less effective when the
PIS is very weak. For the S transform, the advantages are that it can display the fault information
more fruitfully and intuitively than the frequency domain. However, for some small fault frequencies,
it is difficult to display them in the time-frequency contour because this needs a greater sampling
length and will consume more computational resources, especially requiring a high ability graphic
processing unit.

The remainder part of the paper is organized as follows. In Section 2, a novel pre-whitening
method and the S transform are briefly introduced. In Section 3, the experimental case study of
an implanted bearing outer race fault is presented. In Section 4, the experimental case study of
bearing and gear fault diagnosis in the gearbox is presented and explained in detail. In Section 5,
the experimental case study of the planetary gearbox fault diagnosis using the proposed method is
presented. In Section 6, the effectiveness and existing problem of the novel pre-whitening method are
discussed. Finally, Section 7 concludes the work.

2. Novel Pre-Whitening Method and S Transform

2.1. Novel Pre-Whitening Method

The vibration signal acquired from a gearbox is usually complex, containing many different
signal components. Generally speaking, deterministic components (also called discrete frequency)
represent signals produced by gear meshing, shaft bending, shaft misalignment, etc. However, random
components, also called PIS, usually represent signals produced by gear or bearing faults. Traditionally,
many scholars represent random components as signals of bearing faults. In this sense, when a
gear has faults, such as a chipped tooth, a cracked tooth and wear of the tooth face, the meshing
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will change. Every time the faulty tooth meshes, it produces impulse signals. If the gear has severe
faults, the transmission ratio will vary also. Impulse signals induced by the faulty gear are very
different with the signals induced by the normal gear. The PIS produced by the faulty gear also has a
random property, such as the faulty bearing, because the gear faults usually produce impulse vibration
signals. Therefore, signals produced by the gear fault also belong to the random components. It is
now well established that the impact produced by the local gear fault is non-stationary in nature, and
conventional signal processing approaches are inappropriate; and local tooth damage (i.e., fatigue
crack, pitting, etc.) produces sharp transients in the vibration signature, which can be classified as
non-stationary, non-linear and non-Gaussian in nature [20]. In this content, signals collected from the
gearbox can be represented as:

x(t) = u(t) + f (t) (1)

where u(t) denotes the deterministic components and f (t) denotes random components induced by
the gear or bearing fault. This is under the assumption that the rotating speed is constant or can
be transformed to be constant in the angular domain by the assistance of the tachometer signal.
The envelope signal can be represented as:

y(t) = x(t) + jx̂(t) = u(t) + f (t) + j
[
û(t) + f̂ (t)

]
(2)

Because the squared envelope has a bigger SNR than the envelope alone, the squared envelope of
the hybrid signal can be calculated as:

|y(t)|2 = x(t)2 + x̂(t)2 (3)

|y(t)|2 = u(t)2 + f (t)2 + 2u(t) f (t) + û(t)2 + f̂ (t)2 + 2û(t) f̂ (t) (4)

Then, Ming et al. [24] derived the analytic forms of the squared envelope and the squared
envelope spectrum. They found that the primary energy of the multi-component signal was shifted to
the direct current (DC) offset of the envelope signal. Both the deterministic component and the random
component are reserved in the envelope of the multi-component signal when the DC offset has not
been cancelled. If the DC offset is cancelled, the cross-terms of different mono-components would
dominate the envelope. However, the cross-terms of the deterministic component have one fewer
harmonic than the original ones. In addition, all harmonics of cross-terms between deterministic and
random component shift to low band direction with different distances. That is to say, one DC offset
elimination operation can subtract one harmonic of the cross-terms of the deterministic component
from the envelope signal. If we repeat this process, the deterministic component would be suppressed
efficiently. According to this theory, they proposed a novel deterministic component cancellation
method. The detail procedure is illustrated in Figure 1.
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According to [24], the detailed process can be depicted as follows:

(1) Cancel the DC offset from the original multi-component signal x(t), and calculate its envelope
denoted as Hk[x(t)]; k = 1, 2, . . . , Hk[x(t)] represent the k-th envelope obtained by Hilbert transform.
Specifically, H◦[x(t)] = x(t).

(2) Calculate the correlated kurtosis of the envelope signal using the following equation:

Correlated kurtosis o f M− shi f t =CKM(τ) =
∑N

t=1

(
∏M

m=0 y(t−mτ)
)2

(
∑N

t=1 y(t)2
)M+1 (5)

y(t) is the input signal. τ is the interesting period of the fault. N is the number of samples of input
signal y(t). If τ = 0 and M = 1, then it gives the traditional kurtosis and can be used to detect the
specific PIS. For example, if the desired fault frequency is 50 Hz and the sampling frequency is
10,000 Hz, the value of τ will be 200 samples.

(3) Determine the optimal iteration number according to the CK value. A high CK value denotes the
strong PIS.

(4) When the optimal iteration number is acquired, then the squared envelope spectrum of the
resulting envelope signal can be acquired as follows:

|y(t)|2 =< Hk−1[x(t)], Hk[x(t)] > (6)

F
(
|y(t)|2

)
= F

{
< Hk−1[x(t)], Hk[x(t)] >

}
(7)

where k denotes the optimal iteration number of the proposed method.

In the original paper, the iteration number is judged by following two steps as a substitute of
Steps (2) and (3). First, calculate the cross-correlation coefficient of the adjacent envelopes/signals
using the following equation:

µk =

∣∣∣2 < Hk−1[x(t)], Hk[x(t)] >
∣∣∣

< Hk−1[x(t)], Hk−1[x(t)] > + < Hk[x(t)], Hk[x(t)] >
(8)

where <,> denotes the inner product operation. According to the Cauchy–Schwarz inequality,
cross-correlation coefficient µk, k = 1, 2, 3, . . . , is in interval [0, 1]. When these two signals are
everywhere equal, this indicator may be 1.0.

Second, a hard threshold λ is set. If µk ≥ λ, the iteration is terminated. Through this process,
the deterministic component can be adaptively subtracted by cancellation of the DC offset from
the envelope.

2.2. S Transform

The S transform combines the separate strengths of the STFT and wavelet transforms [27] and
has provided an alternative approach to process the non-stationary signals generated by mechanical
systems [28].

Suppose the short time Fourier transform (STFT) of signal y(t) is as below:

STFT(τ, f ) =
∞w

−∞

y(t)g(τ − t)e−j2π f tdt (9)

where τ and f denote the time of spectral localization and Fourier frequency, respectively, and g(t)
denotes a window function.
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The S transform can be derived from (9) by replacing the window function g(t) with the Gaussian
function, depicted as:

g(t) =
| f |√
2π

e−
t2 f 2

2 (10)

Then, the S transform is defined as:

S(τ, f ) =
∞w

−∞

y(t)
| f |√
2π

e−
(τ−t)2 f 2

2 e−j2π f tdt (11)

Actually, the S transform is a special case of STFT with the Gaussian window function.
If the continuous wavelet transform (CWT) is:

W(τ, d) =
∞w

−∞

y(t)ω(t− τ, d)dt (12)

where d denotes the “width” of wavelet w(t,d), and thus, it controls the resolution; and w(t,d) denotes a
scaled copy of the fundamental mother wavelet.

Then, the S transform is a CWT with a specific mother wavelet multiplied by the phase factor:

S(τ, f ) = e−j2π f tW(τ, d) (13)

where the mother wavelet is:

ω(t, f ) =
| f |√
2π

e−
t2 f 2

2 e−j2π f t (14)

Note that the factor d is the inverse of the frequency f.
Compared with STFT and CWT, the S transform has the following merits:

(1) The window length used in STFT is a fixed value. On the contrary, the window length used in the
S transform is a function of time and frequency. In other words, the window length is adaptive.
In the time domain, the window will be wider for low frequencies and will be narrower for high
frequencies. This will provide better localization in the frequency domain for low frequencies
and provide better localization in the time domain for higher frequencies. These characteristics
are very similar to the wavelet transform.

(2) The great difference of the S transform and the wavelet transform is the different presentation of
the time-frequency characteristic. The S transform represents signal features in the time-frequency
contour. However, the wavelet transform represents signal features in the time-scale contour.
Because the S transform uses frequency as a variable, this allows it to have a direct connection
and avoids the error in the frequency estimation.

The most important merit of the S transform is the preservation of both the amplitude and phase
information. However, wavelet coefficients only contain amplitude information. Because of these
merits, the S transform is used for mechanical fault diagnosis combined with the novel deterministic
component cancellation method.

3. Novel Proposed Method Application for Implanted Bearing Fault Diagnosis

The vibration fault dataset used in this case study was obtained from the Mechanical Failures
Prevention Group (MFPT), assembled and prepared on behalf of MFPT by Eric Bechhoefer [29]. Only
the outer race faults are considered for evaluation and discussion in this research. The test bearings,
which support the motor shaft, are radial ball bearings produced by RBC NICE with the following
parameters: roller diameter 0.235 inch, pitch diameter 1.245 inch, number of elements 8 and the contact
angle of 0◦. In this case study dataset with a 25-Hz input shaft rate, a 48,828-Hz sampling frequency,
a 3-s sampling duration and a 25-lbs. load are used. If we define the four bearing fault frequencies
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as ball pass frequency inner race (BPFI), ball pass frequency outer race (BPFO), ball spin frequency
(BSF) and fundamental train frequency (FTF), fault frequencies could be calculated according to the
geometric parameters [30]. Four fault frequencies under the shaft rate of 25 Hz are: BPFO (81.12 Hz),
BPFI (118.88 Hz), BSF (63.86 Hz) and FTF (10.14 Hz).

According to the framework in Figure 1, the DC offset is gradually cancelled. First, the process is
repeated 100 times, and CK and cross-correlated coefficient µ are used to judge the termination of the
iteration indicators. These two indicators, variation vs. iteration number, are illustrated in Figure 2. The
value of µ increases, as can be seen, with the iteration number, but up to the 100th iteration. However,
it cannot attain the threshold defined in [24], which is [0.9, 0.95]. For the CK value, it increases at the
beginning up to a high value, and then, it decreases. After the 15th iteration, it continues to increase.
Two local optimal values were noticed during the 100 iteration process. Iteration 5 is the first one
and the second one Iteration 85. Figure 3 illustrates the squared envelope and its spectrum of the
DC offset cancellation after the fifth iteration. The squared envelope and its spectrum of DC offset
cancellation after the 100th iteration are shown in Figure 4. Figure 4 illustrates that normal envelope
signals are distorted by an excess of DC offset cancellation. Moreover, the PIS of the squared envelope
signal after the fifth DC offset cancellation is stronger than the original signal. Iteration 5 is the local
optimum of the CK value. However, CK can detect the PIS signal when it is more intense than the
other components. If the PIS are weak or not contained in the envelope signal, CK would not work,
and its high value cannot denote the strong PIS. In this case, after the fifth iteration, the envelope signal
is corrupted by excess DC offset cancellation operation. Actually, the CK values after the fifth iteration
cannot denote the strength of PIS.
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Figure 4. (a) Squared envelope signal after the 100th DC offset cancellation; (b) squared envelope
spectrum after the 100th DC offset cancellation.

In order to observe the effect of DC offset cancellation from the time-frequency domain and
compare it with the traditional envelope analysis, the S transform is applied to the squared envelope
signal after the DC offset cancellation and the envelope signal of the original signal. The results are
shown in Figures 5 and 6. From the local amplification of these two time-frequency contours, the
obvious BPFO can be seen in these figures. However, the time-frequency contour of the envelope of the
original signal shown in Figure 5a does not have an obvious BPFO contour, whereas the time-frequency
contour of the squared envelope signal after the fifth DC offset cancellation has an obvious BPFO
contour. This demonstrates that the DC offset cancellation suppresses the deterministic components
and enables PIS clearly enough.
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4. Novel Proposed Method Application for Naturally-Developed Fault Diagnosis

For the novel method application, experimental signals are collected from a lab fixed-axis gearbox
test rig with naturally-developed bearing and gear faults. The dataset for testing high-speed (HS)
shaft gear and bearings is from an end of life test case with an overall duration of 548 h. Detail end
of life test case information can be found in [31]. The intermediate speed (IS) shaft and its gears and
bearings and the low speed (LS) shaft and its gear and bearings are from an ended implanted test
case. Wear-in duration for the IS and LS shaft-related components lasted 10 h with different load and
speed combinations.

Figure 7 illustrates a schematic of the experimental gearbox test rig. It includes a two-stage
fixed-axis gearbox, a 4-kW three-phase asynchronous motor for driving the gearbox and a magnetic
powder brake for loading. The motor speed can be adjusted for different values. The NI data
acquisition system consists of four IEPE accelerometers (Dytran 3056B4—Dytran Instruments Inc.,
Fraser, MN, USA), PXI-1031 mainframe, PXI-4472B data acquisition cards and LabVIEW software
(National Instrument Inc., Austin, TX, USA). In addition, a tachometer and torque sensor is installed in
the input shaft for acquiring the speed and load information. The internal structure of the gearbox
is depicted in Figure 7. The gearbox has three shafts supported by rolling element bearings. The LS
shaft gear has 81 teeth and meshes with the IS shaft gear with 18 teeth. The IS shaft gear with 64 teeth
meshes with the HS shaft with 35 teeth. Therefore, the overall gear ratio of the gearbox equals 8.22:1.
In this case, study datasets with a 20-Hz input shaft rate, a 20-kHz sampling frequency, a 12-s sampling
duration, a 199-Nm and 405-Nm loads are used.
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Figure 7. A schematic of the experimental gearbox test rig.

After the test, the gearbox was dismounted in order to check the bearings’ condition. It was found
that all bearings have faults at different levels. However, only the HS shaft and LS shaft bearings have
obvious faults. Both HS shaft bearings had the outer race fault shown in Figure 8a,b, and the right
bearing in addition had the inner race fault and ball fault shown in Figure 9a,b, respectively. Faults of
the IS shaft bearing were not obvious faults. The left LS shaft bearing had the inner race fault and ball
fault shown in Figure 10a,b, respectively. The HS and IS shaft are supported by SKF 6205 bearings
and the LS shaft by SKF 6208 bearings. The fundamental faults frequencies of SKF 6205 under a 1-Hz
rotating speed are BPFO (3.585 Hz), BPFI (5.415 Hz), BSF (2.357 Hz) and FTF (0.398 Hz). For SKF
6208, they are BPFO (3.578 Hz), BPFI (5.423 Hz), BSF (2.337 Hz) and FTF (0.398 Hz). Therefore, the
actual fault frequencies can be acquired through these fundamental frequencies multiplied by the
rotating frequency. The bearing types and the characteristic frequencies for a 20-Hz input shaft rate are
concerned and summarized in Table 1.
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Figure 8. High speed (HS) shaft bearing outer race faults: (a) left bearing; (b) right bearing.
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Figure 9. HS right bearing faults: (a) inner race fault; (b) ball fault.
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Figure 10. Low speed (LS) left bearing faults: (a) inner race fault; (b) ball fault.

Table 1. Characteristic frequencies of bearings (Hz). BPFO: ball pass frequency outer race; BPFI: ball
pass frequency inner race; BSF: ball spin frequency; FTF: fundamental train frequency.

Bearing Type BPFO BPFI BSF FTF

6205 71.70 108.30 47.17 7.96
6208 8.70 13.19 5.68 0.96

It is very difficult to diagnose the bearing fault of the LS shaft because of the low speed and
requirement of special techniques. In this case, only HS bearing faults under loads of 199 Nm and
405 Nm are considered. Except the bearing faults, the HS shaft gear with 35 teeth had a slight tooth
wear fault. The IS shaft gear with 64 teeth had a chipped tooth fault, and the IS shaft gear with 18 teeth
had a severe tooth wear fault shown in Figure 11. For a gear transmission with fixed axes, the gear
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meshing frequency (GMF) can be calculated by the following formula: GMF = N × Z, where N means
the rotating speed of the test gear and Z represents the number of the test teeth. According to this, the
GMF of the HS and IS shaft gears is determined as 700 Hz, and the GMF of the IS and LS shaft gears is
determined as 196.93 Hz.
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Figure 11. (a) HS shaft gear tooth wear; (b) intermediate speed (IS) shaft gears, tooth chip and wear.

First, in order to ensure stable signal, the data acquisition system is adjusted to use the data
sample rate based on the tachometer signal. The adjusted sampling rate is a synchronous sampling rate
and donates the resampled vibration signal. During the experiment, the load of 199 Nm was applied
to the output shaft (LS shaft), and the resampled signal is used. An accelerometer was mounted on
the top of the gearbox casing (as shown in Figure 7), and the vibration signals were collected from
the accelerometer at position S2. Figure 12a illustrates the correlation coefficient variation vs. the
iteration number of DC offset cancellation, while Figure 12b illustrates the CK value variation vs.
the iteration number of DC offset cancellation. Figure 12c illustrates the squared envelope signal
after the 100th iteration. It can be seen that both the correlation coefficient and CK cannot be used
to determine the optimal iteration number for DC offset cancellation in the multi-fault mode case.
Especially for the weak PIS, CK will not work. However, as mentioned in Section 2.1, one DC offset
cancellation operation can subtract one harmonic deterministic component. In this case, HS shaft gear
mesh frequency and its harmonics dominate the frequency spectrum, as shown in Figure 13. It can
be seen that there are mainly five harmonics of the gear mesh frequency. Therefore, theoretically,
only five-times DC offset cancellation can suppress the deterministic component of the original signal.
Therefore, we conduct five iteration DC offset cancellation for the time synchronous signal. The
squared envelope spectrum and its time-frequency contour are illustrated in Figure 14. After checking
the squared envelope spectrum carefully, it is very hard to find the bearing fault frequencies. Instead
of the bearing fault frequencies, the squared envelope spectrum is dominated by the HS and IS shaft
rate and its harmonics because of the gear chip fault and wear fault. However, in the time-frequency
contour of the squared envelope signal, weak BPFO, BPFI and BSF information can be seen. On the
contrary, no bearing fault information from the envelope spectrum and time-frequency contour of the
original signal shown in Figure 15 can be seen. Similarly, the envelope spectrum of the original signal
is also dominated by the HS and IS shaft rate and its harmonics.
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Second, in order to ensure a stable signal, the data acquisition system is adjusted to use the data
sample rate based on the tachometer signal. The adjusted sampling rate is a synchronous sampling
rate and donates the resampled vibration signal. During the experiment, the load of 405 Nm was
applied to the output shaft (LS shaft), and resampled signal is used. An accelerometer was mounted
on the top of the gearbox casing (as shown in Figure 7), and the vibration signals were collected from
the accelerometer at position S2. Figure 16 illustrates the frequency spectrum of the time synchronous
signal with the dominant six harmonics of the HS-IS GMF. Therefore, for the DC offset cancellation
operation, we can repeat six times to delete the deterministic component. Finally, the squared envelope
spectrum and relevant time-frequency contour can be acquired as shown in Figure 17. Similarly, the
squared envelope spectrum is dominated by the HS and IS shaft rate and its harmonics. Information
about the bearing fault frequencies cannot be found in the squared envelope spectrum. However, weak
BPFI and BSF can be found in the time-frequency contour by the S transform. In order to compare
with the traditional envelope analysis, the envelope spectrum of the time synchronous signal is given
in Figure 18a. The time-frequency contour of the envelope signal of the time synchronous signal
is illustrated in Figure 18b. It can be seen that it is very difficult to find any bearing fault-related
information from this time-frequency contour.
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5. Novel Proposed Method Application for Planetary Gearbox Fault Diagnosis 

In this section, for the novel method application, experimental signals are collected from a lab 
planetary gearbox test rig with implanted wear tooth faults on the sun, planet and ring gear. Figure 19 
illustrates a schematic of the experimental planetary gearbox test rig. It includes a single-stage 
planetary gearbox, a 4-kW three-phase asynchronous motor for driving the gearbox and a magnetic 
powder brake for loading. The motor speed can be adjusted for different values. The load can be 
adjusted by a brake controller through the current of the magnetic powder brake connected to the 
output shaft (carrier). The NI data acquisition system consists of four IEPE accelerometers (Dytran 
3056B4, Dytran Instruments Inc., Fraser, MN, USA), PXI-1031 mainframe, PXI-4472B data acquisition 
cards and LabVIEW software (National Instrument Inc., Austin, TX, USA). In addition, a tachometer 
and torque sensor is installed in the input shaft for acquiring the speed and load information.  
The single-stage planetary gearbox consists of the sun gear, planet gear and fixed ring gear. The sun 
gear is connected to the input shaft and rotates around its own center. All planet gears mesh 
simultaneously with the sun gear and ring gear. These planet gears not only rotate around their own 
centers, but also revolve around the center of the sun gear, and vibration signals picked up by a fixed 
sensor attached to the planetary gearbox housing differ significantly from that of fixed-axis/parallel 
gear systems [32]. Compared to the fixed-axis gearbox test rig in Section 4, all of the settings are the 
same, except the gearbox type. Single-stage planetary gearbox gear parameters are listed in Table 2. 

Table 2. Gear parameters of the single-stage planetary gearbox. 

Gear Sun Planet Ring Planet Number 
Teeth number 13 64 146 3 

Figure 17. (a) Squared envelope spectrum after the sixth DC offset cancellation; (b) time-frequency
contour of the squared envelope signal after the sixth DC offset cancellation.
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5. Novel Proposed Method Application for Planetary Gearbox Fault Diagnosis

In this section, for the novel method application, experimental signals are collected from a lab
planetary gearbox test rig with implanted wear tooth faults on the sun, planet and ring gear. Figure 19
illustrates a schematic of the experimental planetary gearbox test rig. It includes a single-stage planetary
gearbox, a 4-kW three-phase asynchronous motor for driving the gearbox and a magnetic powder
brake for loading. The motor speed can be adjusted for different values. The load can be adjusted
by a brake controller through the current of the magnetic powder brake connected to the output
shaft (carrier). The NI data acquisition system consists of four IEPE accelerometers (Dytran 3056B4,
Dytran Instruments Inc., Fraser, MN, USA), PXI-1031 mainframe, PXI-4472B data acquisition cards and
LabVIEW software (National Instrument Inc., Austin, TX, USA). In addition, a tachometer and torque
sensor is installed in the input shaft for acquiring the speed and load information. The single-stage
planetary gearbox consists of the sun gear, planet gear and fixed ring gear. The sun gear is connected
to the input shaft and rotates around its own center. All planet gears mesh simultaneously with
the sun gear and ring gear. These planet gears not only rotate around their own centers, but also
revolve around the center of the sun gear, and vibration signals picked up by a fixed sensor attached
to the planetary gearbox housing differ significantly from that of fixed-axis/parallel gear systems [32].
Compared to the fixed-axis gearbox test rig in Section 4, all of the settings are the same, except the
gearbox type. Single-stage planetary gearbox gear parameters are listed in Table 2.

Table 2. Gear parameters of the single-stage planetary gearbox.
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Figure 19. A schematic of the experimental planetary gearbox test rig.

Wear gear faults of the planetary gearbox were implanted in one tooth of the ring gear, planet
gear and sun gear, respectively, in order to validate the proposed analysis method. Figure 20 illustrates
the implanted gear faults.
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Figure 20. Implanted wear fault: (a) ring gear; (b) planet gear; (c) sun gear.

Tooth wear faults belong to localized fault, and their fault frequencies can be calculated through
the following equations [33]. The meshing frequency for the stationary ring gear f mesh = f carrier ×
Zring equals the product of the planet carrier rotating frequency f carrier and the number of ring gear
teeth Zring. Relative rotating frequency with respect to the planet carrier is f relative = f mesh/Z, where
Z is the total number of teeth of the gear of interest. The characteristic frequency of faulty planet
gear is f planet1 = f mesh/Zplanet, where Zplanet is the number of planet gear teeth. If the damage exists
on both sides of the gear tooth, the damaged planet gear tooth also meshes with the other mating
gear. The characteristic frequency of the faulty planet gear becomes f planet2 = 2 × f mesh/Zplanet. The
characteristic frequency of the faulty sun gear equals the relative rotating frequency of the sun gear
multiplied by the number of planet gears f sun = Nplanet × f mesh/Zsun, where Zsun is the number of
sun gear teeth and Nplanet is the number of planet gears. The characteristic frequency of the faulty
ring gear is f ring = Nplanet × f mesh/Zring. Similarly, for the distributed damage case, the characteristic
frequency of the faulty ring gear is f ring = f mesh/Zring.

5.1. Sun Gear Fault Experiment

For this experiment, we used a sun gear wear fault mode to test the proposed method while
the remaining gears were all in good condition, undamaged. Similar to the case study in Section 4,
in order to ensure a stable signal, the data acquisition system is adjusted to use the data sample rate
based on the tachometer signal. The adjusted sampling rate is a synchronous sampling rate and
donates the resampled vibration signal. During the experiment, the mean rotating frequency of the
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input shaft connecting the sun gear of the planetary gearbox was 20.0889 Hz, while a load of 405 Nm
was applied to the output shaft connecting the planet carrier. An accelerometer was mounted on the
top of the gearbox casing (as shown in Figure 19), and the vibration signals were collected from the
accelerometer at position S3. According to the planetary gearbox configuration and its running speed,
the characteristic frequencies are calculated and listed in Table 3.

Table 3. Characteristic frequencies (Hz).

Meshing Frequency
Rotating Frequency Local Damage

Sun Carrier Planet Sun Ring

239.8183 20.0889 1.6425 3.7472 7.4944 55.3427 4.9278

According to the framework of the proposed method, the squared envelope signal after DC offset
cancellation is acquired. For this case, the CK value shows that the first envelope has the biggest PIS,
as shown in Figure 21. The squared envelope spectrum after the first DC offset cancellation and the
envelope spectrum of only the time synchronous signal are illustrated in Figure 22. Compared to
the envelope spectrum of the original signal, the amplitudes of the sun gear fault frequency and its
harmonics are much higher compared to the envelope spectrum of the original signal. However, it can
also be noticed that the noise amplitudes unrelated to the sun gear fault frequency are also higher
compared to the envelope spectrum of the original signal.
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The time-frequency contour of the squared envelope signal using the S transform is shown
in Figure 23. In contrast, the time-frequency contour of the original envelope signal using the S
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transform is shown in Figure 24. From these two figures and their local amplifications, the sun gear
fault frequency in the frequency domain and the time-frequency domain can be seen. However, the
time-frequency contour of the squared envelope signal has less useful sun gear fault information than
the time-frequency contour of the original envelope signal.Appl. Sci. 2017, 7, 207 17 of 22 
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5.2. Planet Gear Fault Experiment

For this experiment, we analyzed one planet gear wear fault mode to test the proposed method
while the remaining gears were all in good condition, undamaged. Similar to the case study in
Section 4, in order to ensure a stable signal, the data acquisition system is adjusted to use the data
sample rate based on the tachometer signal. The adjusted sampling rate is a synchronous sampling
rate and donates the resampled vibration signal. During the experiment, the mean rotating frequency
of the input shaft connecting the sun gear of the planetary gearbox was 20.0111Hz, while a load of
405 Nm was applied to the output shaft connecting the planet carrier. An accelerometer was mounted
on the top of the gearbox casing (as shown in Figure 19), and the vibration signals were collected from
the accelerometer at position S3. According to the planetary gearbox configuration and its running
speed, the characteristic frequencies are calculated and listed in Table 4.

Table 4. Characteristic frequencies (Hz).

Meshing Frequency
Rotating Frequency Local Damage

Sun Carrier Planet Sun Ring

238.8748 20.0111 1.6361 3.7324 7.4648 55.1249 4.9083
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Similarly, we can apply the DC offset cancellation operation to this signal. The CK value shows
that the signal only after the first DC offset cancellation iteration has the strongest PIS. The CK value
variation vs. the iteration number can be seen in Figure 25. Though the CK achieves highest value at the
10th iteration, after Iteration 6, the envelope signal is corrupted seriously. Therefore, the first iteration
is optimal. The comparison of the squared envelope spectrum and original envelope spectrum is
shown in Figure 26. It can be seen that there is no difference in essence, except the amplitude. Because
of the very small planet gear fault frequencies, it is very difficult to display the time-frequency contour
using the S transform.Appl. Sci. 2017, 7, 207 18 of 22 
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5.3. Ring Gear Fault Experiment

For this experiment, we used a ring gear wear fault mode to test the proposed method while
the remaining gears were all in good condition, undamaged. Similar to the case study in Section 4,
in order to ensure a stable signal, the data acquisition system is adjusted to use the data sample rate
based on the tachometer signal. The adjusted sampling rate is a synchronous sampling rate and
donates the resampled vibration signal. During the experiment, the mean rotating frequency of the
input shaft connecting the sun gear of the planetary gearbox was 22.3889 Hz, while a load of 405 Nm
was applied to the output shaft connecting the planet carrier. An accelerometer was mounted on the
top of the gearbox casing (as shown in Figure 19), and the vibration signals were collected from the
accelerometer at position S3. According to the planetary gearbox configuration and its running speed,
the characteristic frequencies are calculated and listed in Table 5.
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Table 5. Characteristic frequencies (Hz).

Meshing Frequency
Rotating Frequency Local Damage

Sun Carrier Planet Sun Ring

267.2586 22.3889 1.8305 4.1759 8.3518 61.6751 5.4916

The ring gear fault frequency is not always calculated in the same way. Theoretically, its fault
frequency is f mesh. However, because of manufacturing error, the three planet gears are different from
each other. Therefore, the ring gear fault frequency may be 1/3 f mesh. Therefore, it is very difficult to
determine the parameter T in CK. In this case, we can continue to apply the first DC offset cancellation
to the signal. The resulting squared envelope spectrum and the original signal envelope spectrum can
be seen in Figure 27. Similarly, it is possible to find the second order ring gear fault frequency in both
envelope spectrums. There is no difference, except the value of the amplitude.Appl. Sci. 2017, 7, 207 19 of 22 
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6. Discussion

In this paper, three experimental case studies are conducted for the novel deterministic component
cancellation method application in detail. Not only amplitude-frequency characteristics, but also the
time-frequency characteristics are analyzed by the S transform. The methods’ application in those
experimental case studies reveals issues that need to be further discussed and investigated:

(1) The cross-correlation coefficient indicator should be investigated more. The region [0.9, 0.95] is
not appropriate for the illustrated cases in this paper. Therefore, there is a need for further study
in order to determine the optimal iteration number and a more robust region.

(2) The CK indicator takes advantage of when the PIS are more powerful than the other signal
components. The case study in Section 3 validates the implanted bearing outer race fault
diagnosis, with only bearing fault mode present, and confirms the powerful PIS characteristic of
implanted faults. It is confirmed that the CK gives excellent results in determining the optimal
iteration number of DC offset cancellation. However, when corrupted by the excess DC offset
cancellation operation, the envelope signal analysis will not give a good result because the PIS are
also corrupted. For the case study in Section 4, all of the bearing faults are naturally developed.
Simultaneously, there are gear chip faults and wear faults. Therefore, the PIS produced by these
bearing faults are very weak. In this case, the CK gives a poor result. Theoretically, every DC
offset cancellation can suppress one harmonic of the deterministic component of the original
signal. For the fixed-axis gearbox, the deterministic component is mainly the HS-IS gear mesh
frequency and its harmonics. This is illustrated in Figures 13 and 16 in Section 4. Therefore,
it is possible to determine the optimal iteration number by the number of HS-IS gear mesh
harmonics. This is very useful for a fixed-axis gearbox. Whereas there is another problem, no
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matter if the squared envelope spectrum after DC offset cancellation or the envelope spectrum
of originals signal is used, they are both dominated by the shaft rate and harmonics related to
the HS and IS shaft. No information about bearing fault frequencies can be found. Fortunately,
the time-frequency contour of the squared envelope signal after DC offset cancellation by the S
transform can reveal some information about the bearing fault frequencies. This demonstrates the
iterative DC offset cancellation’s effectiveness for PIS enhancement. For the implanted bearing
outer race fault case study in Section 3, even though both the squared envelope spectrum after
DC offset cancellation and the envelope spectrum of the original signal can reveal the bearing
fault information effectively, however, the time-frequency contour of the squared envelope signal
after DC offset cancellation has good time-frequency characteristics for revealing the bearing
fault information, in comparison to the case without DC offset cancellation.

(3) Concerning planetary gearbox fault diagnosis, the cross-correlation coefficient has a similar
problem as the previous case studies. The CK has the correct assessment for the iteration number
for the sun gear fault and the planet gear fault. However, the CK does not take advantage
of the ring gear fault, because of the uncertainty for the fault frequency. Besides the iteration
number determined by the CK value, several tests for the iteration number between one and ten
show that only the first DC offset cancellation gives the best performance. In addition, the mesh
frequency always has high order harmonics greater than 10 for these data, and the number of
harmonics cannot be used to determine the optimal iteration number. The squared envelope
spectrums after the first DC offset cancellation do not have obvious superiority with respect to
the original envelope analysis for the spectrum’s efficient evaluation. This may be due to the
different structures of the planetary and fixed-axis gearbox. The GMF of the fixed-axis gearbox
is related to the rotating frequency of the gear and the gear teeth; however, for the planetary
gearbox, the GMF depends on the gearbox rotating frequency and its configuration, which is
more complex than the configuration of the fixed-axis gearbox. Therefore, how to revise the DC
offset cancellation method to fit the planetary gearbox fault diagnosis is a problem which needs
further investigation and explorations.

(4) The time-frequency contour by the S transform needs more computational capacity. Therefore,
only short time-frequency characteristics can be displayed. However, for the planet gear fault
and the ring gear fault, their fault frequencies are very small. This will lead to the large space
between the time-frequency lines. Usually, it is not available to display the characteristics of the
small fault frequencies. This problem also needs further investigation and explorations.

7. Conclusions

In order to detect the PIS signal produced by the gearbox fault, DC offset cancellation was used
to process the fault signal. Through a comparative study based on an implanted bearing fault case,
the CK was demonstrated to be superior to the cross-correlation coefficient to determine the iteration
number of DC offset cancellation. For the implanted bearing fault case, the PIS produced by the
fault are very strong. Therefore, detection of the PIS using CK is more effective. However, for the
naturally-developed bearing fault compound with gear fault, the PIS are very weak for the CK to
detect. In this circumstance, the CK loses its power and cannot find the proper iteration number for DC
offset cancellation. The order of the high-speed shaft gear mesh frequency was used as the iteration
number because every DC offset cancellation can suppress one harmonic mesh frequency. This is very
useful for PIS extraction. All of above results are demonstrated on a fixed-axis gearbox. For a planetary
gearbox, DC offset cancellation has a limited effect on the fault diagnosis enhancement, especially for
those low fault frequency parts, such as the planet gear, ring gear, etc. In this paper, because of the
merits, the S transform was used to display the time-frequency characteristics of the DC offset results.
This made us observe the fault information from the time-frequency contour which is more intuitive.
However, for the low fault frequency parts, it is very difficult for the time-frequency contour to display
them because of the long samples. At the end of this paper, we had a detailed discussion about the DC
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offset cancellation and the S transform-based application. In the future, these time-frequency contours
will be used for deep learning-based fault classification.
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