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Abstract: A novel adaptive weight online sequential extreme learning machine (AWOS-ELM) is
proposed for predicting time series problems based on an online sequential extreme learning machine
(OS-ELM) in this paper. In real-world online applications, the sequentially coming data chunk usually
possesses varying confidence coefficients, and the data chunk with a low confidence coefficient tends
to mislead the subsequent training process. The proposed AWOS-ELM can improve the training
process by accessing the confidence coefficient adaptively and determining the training weight
accordingly. Experiments on six time series prediction data sets have verified that the AWOS-ELM
algorithm performs better in generalization performance, stability, and prediction ability than the
OS-ELM algorithm. In addition, a real-world mechanical system identification problem is considered
to test the feasibility and efficacy of the AWOS-ELM algorithm.
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1. Introduction

Time series prediction technology has already been studied over the past few decades, and a large
amount of applications have been reported in a wide range of fields, such as weather forecasting [1],
stock market prediction [2], communication signal processing [3], sales forecasting [4], and so on.
On account of the frequent applications of time series predictions, plenty of predicting methods have
been developed. Gooijer and Hyndman gave an overview of various predicting methods and indicated
the future directions for time series prediction problems [5]. In particular, the classical statistical linear
method, an autoregressive integrated moving average model (ARIMA) based modeling method, is still
widely adopted and the complete methodology is able to be found in Box’s and Jenkins’s remarkable
contribution [6]. However, the predicting accuracy of classical statistical methods suffer from the
nonlinearity and complexity of many real time series. For this reason, some computational intelligence
methods which may outperform classical statistical methods in many complex nonlinear problems
have emerged [7,8].

Artificial neural network (ANN) methods have attracted extensive attention in the time series
prediction field [9]. ANNs are universal nonlinear regression techniques, and are able to be applied
into time series prediction conveniently [10]. Furthermore, compared with classical methods, the
assumptions for prediction can be relaxed by ANNs, such as Gaussian distribution of noise and the
linearity of the model. In contrast to the fact that the model hyperparameters of the ARIMA model is
required to be fine-tuned for good prediction, this complication is able to be avoided by ANNs [11].
The hyperparameters of the ARIMA model are quite often adjusted according to domain knowledge,
while the ANNs model usually can obtain competitive results without any domain knowledge [12].
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For some situations where intensive human adjustment is not affordable, ANNs and other
computational intelligence methods are usually better than classical statistical methods. Kumar
investigated neural network models for forecasting the Indian stock market index [13]. Yoon discussed
integrating ANN and support vector machine (SVM) methods for long-term prediction, and the
stability and accuracy are improved [14]. Nevertheless, since the neural networks used by Kumar and
Yoon are obtained in an iterative way by means of gradient-based algorithms, the diagnosis systems
suffer from time-consuming problems.

Extreme learning machine (ELM) is a high-efficiency learning algorithm for single-hidden layer
feedforward neural network (SLFN), and it has been proven to have classification capacity and
universal approximation capacity [15]. In addition, Huang has shown that the hidden-layer parameters
can be randomly assigned, and then the output weight is able to be computed analytically [16].
It has been verified that ELM costs much less training time and has better or similar generalization
performance than SVM and traditional neural networks [17]. Hosseinioun presented the use of wavelet
transform and adaptive ELM to forecast outlier occurrence in stock market time series [18]. Dash
presented an optimized ELM for predicting financial time series [19]. The ELM based prediction
methods have high accuracy and fast learning speed in off-line cases, but they are not suitable for
online applications. Liang et al. proposed OS-ELM by incorporating a sequential learning algorithm
with ELM [20]. Compared with conventional online training methods, OS-ELM tends to have a
faster training speed and better generalization performance. However, in lots of real-world online
applications, the confidence coefficient of a sequential data chunk may be disturbed by measurement
noise and external disturbance. If the data chunk with low confidence coefficient is employed in the
learning process in a normal way, the accuracy of the trained network is likely to be reduced. In this
paper, the AWOS-ELM algorithm is proposed to reduce the negative influence of data chunks with low
confidence coefficients, where the confidence coefficient of each data chunk is assessed before being
used to train the network, and the weight of each data chunk is obtained according to the assessed
confidence coefficient. Experiments on six time series prediction problems and a mechanical system
identification problem have verified that the AWOS-ELM algorithm performs better in generalization
performance, stability, and predictability than the OS-ELM algorithm.

This manuscript is organized as follows. In Section 2, the basic concepts and related works
of optimization ELM and OS-ELM algorithms are reviewed briefly. The integrated structure of the
proposed algorithm and the formula derivation is given in Section 3. In Section 4, the performance
evaluation of the AWOS-ELM is carried out on six time series prediction problems and a mechanical
system identification problem. The conclusion is drawn in Section 5.

2. Preliminaries

In this section, with the purpose of offering preliminaries pertinent to the proposed AWOS-ELM
algorithm, the optimization of ELM and OS-ELM is reviewed briefly. OS-ELM, an online learning
algorithm on the basis of classical ELM, was proposed by Liang in 2006 for training sequential
data. Huang further developed the classical ELM into the optimization ELM according to the
Karush-Kuhn-Tucker (KKT) theory and optimization theory in 2012 [21]. Compared to the classical
ELM, the regularization parameters are used in the optimization ELM to increase the accuracy and
generation performance. The OS-ELM in this paper also employs the regularization parameters
according to Huang’s theory.

2.1. Optimization Extreme Learning Machine

ELM is a high-efficiency SLFN learning algorithm, where the hidden node parameters can be
assigned randomly. Assume that there are N different training data {(xi, ti)}N

i=1 ⊂ <n ×<m for the
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supervised learning process, where xi = [xi1, xi2, . . . , xin]
T ∈ <n and ti = [ti1, ti2, . . . , tim]

T ∈ <m are
the input vector and output vector, respectively, and the mathematical model of SLFNs is described as:

fL(x) =
L

∑
i=1
βig(ωi, bi, x), x ∈ <n (1)

whereωi ∈ <n, bi ∈ < and βi = [βi1, βi2, . . . , βim]
T ∈ <m denote the ith hidden node parameters, L is

the hidden nodes number, and g(ωi, bi, x) represents the hidden-layer output in accordance with the
input x. If the N training samples are absolutely approximated by the SLFNs with L hidden nodes,
it indicates the following equation:

L

∑
i=1
βig(ωi, bi, x) = tj, j = 1, 2, . . . , N (2)

Equation (2) is able to be described compactly as the following equation:

Hβ = T (3)

where

H(ω1, . . . ,ωL, b1, . . . , bL, x1, . . . , xN) =

 g(ω1, b1, x1) · · · g(ωL, bL, x1)
...

. . .
...

g(ω1, b1, xN) · · · g(ωL, bL, xN)


N×L

(4)

β =

 β
T
1
...
βT

L


L×m

and T =

 tT
1
...

tT
N


N×m

(5)

Traditionally, for the purpose of training an SLFN, one needs to find specificωi, bi,βi, i = 1, . . . , L,
such that ‖Hβ− T‖ takes a minimum value. If H is unknown, the gradient-based approaches are
usually employed to iteratively adjustωi, bi,βi. However, for most applications, the gradient-based
method is extremely time-consuming and often stop at the local minimum. According to the theory
of Huang, the hidden-layer learning parameters ωi and bi can be assigned randomly, and as such
the SLFN is able to approximate any target function universally as soon as the activation function is
nonzero, the target function is continuous and the input sets are compact [17]. If L ≤ N, the column
rank of H is full with probability one, and in real-world applications, the condition L ≤ N can be
easily satisfied. Considering the norm of the output weight β to be part of the cost function [22],
the optimization ELM model can be represented as:

min : Lelm = 1
2‖β‖

2 + C
2

N
∑

i=1
‖εi‖2

st : h(xi)β = ti − εi, i = 1, 2, . . . , N
(6)

where εi is the prediction error of the ith training sample. Because the convex optimization problem
does not have an inequality constraint, the Slater’s condition is satisfied and the strong duality holds.
Consequently, on the basis of the KKT theorem, Equation (6) can be represented as follows:

min : Lelm =
1
2
‖β‖2 +

C
2

N

∑
i=1
ε2

i −
N

∑
i=1
αi(h(xi)β− ti + εi) (7)
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where αi is the Lagrange multiplier. By optimizing Equation (7), the output weight can be obtained
as follows:

β =

(
I
C
+ HTH

)−1
HTT (8)

Since the output weights β is computed analytically, compared with traditional iterative
implementations of SLFNs, the optimization ELM has similar generalization performance and
dramatically increased running speed.

2.2. Online Sequential Extreme Learning Machine

In many practical instances, the sequential training samples ℵ =

{(xi, ti)|xi ∈ <n, ti ∈ <m, i = 1, 2, . . .} are produced chunk by chunk, and the chunk size may
be fixed or various. Assume that the jth data chunk has Nj samples, then the chunk at time k is able to

be represented as ℵk = {(xi, ti)}

k
∑

j=0
Nj

i=(
k−1
∑

j=0
Nj)+1

. The initialization of the learning process is carried out

according to a small data chunk ℵ0 = {(xi, ti)}N0
i=1, where N0 is the samples number of data chunk ℵ0,

and N0 ought to be equal to or greater than L. With The hidden-layer parameters (ωi, bi), i = 1, 2, . . . , L
assigned into random values, the initial H0 can be computed as the following equation:

H0: = H
(
ω1, . . . ,ωL, b1, . . . , bL, x1, . . . , xN0

)
(9)

and then the initial β0 is able to be obtained according to ELM as follows:

β0 = P0HT
0 T0 (10)

where P0 =
(

I
C + HT

0 H0

)−1
and T0 =

[
t1, . . . , tN0

]T .
The partial hidden-layer output matrixes hk+1 and the partial output-layer matrixes tk+1

corresponding to data chunk at time k + 1 are respectively defined as:

hk+1 := H
(
ω1, . . . ,ωL, b1, . . . , bL, x(∑k

j=0 Nj)+1, . . . , x∑k+1
j=0 Nj

)
(11)

tk+1 :=
[

t(∑k
j=0 Nj)+1, . . . , t∑k+1

j=0 Nj

]T
(12)

Then Hk and Tk can be respectively expressed as:

Hk = H
(
ω1, . . . ,ωL, b1, . . . , bL, x1, . . . , x∑k

j=0 Nj

)
, Tk =


tT
1
...

tT
∑k

j=0 Nj

 (13)

and we have

Hk+1 =

[
Hk

hk+1

]
, Tk+1 =

[
Tk

tT
k+1

]
(14)

The least squares solution of Hk+1β = Tk+1 should be the output weight at time k + 1, βk+1 and
it is able to be computed in an iterative way as follows:

βk+1 = βk + Pk+1hT
k+1

(
tT
k+1 − hk+1βk

)
(15)

Pk+1 = Pk − PkhT
k+1

(
I + hk+1PkhT

k+1

)−1
hk+1Pk (16)
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OS-ELM is composed of an initialization phase and sequential learning phase and need not retain
all the historic data. In the initialization phase, H0, β0, P0, and T0 are initialized for the use in the
sequential learning phase. The samples number of the initialization chunk should be equal to or
greater than the hidden nodes number. In the sequential learning phase, the sequential date chunk is
commenced on iteratively. Once the training process on the latest coming data chunk is completed,
the historic data can be discarded and not used any more. From the derivation of OS-ELM, it is easy
to find that OS-ELM and ELM have similar generalization performances. In fact, the ELM algorithm
is a specific example of the OS-ELM algorithm if all of the training samples are processed in the
initialization of the learning process.

3. The Proposed Adaptive Weight Online Sequential Extreme Learning Machine

In lots of real online applications, with measurement noise and unexpected external disturbance,
the sequential data chunks often have varying confidence coefficients. It can be easily found that
OS-ELM cannot deal with the varying confidence coefficients very well. If a data chunk with a
low confidence coefficient is employed to train the network in the normal way, the accuracy of the
trained network is likely to be reduced. In this section, we propose the novel AWOS-ELM, where the
confidence coefficient of each data chunk is assessed before being used to train the network, and the
weight of each data chunk is obtained accordingly.

3.1. Integrated Structure

The block diagram of AWOS-ELM algorithm is given in Figure 1. When the new sequential

sample ℵk+1 = {(xi, ti)}

k+1
∑

j=0
Nj

i=(
k
∑

j=0
Nj)+1

arrives, the weight estimator accesses the confidence coefficient

of ℵk+1 and determines the corresponding weight λk+1. Then the training module of AWOS-ELM
algorithm utilizes λk+1 and ℵk+1 to train the network. The weight estimator includes an AWOS-ELM
testing module, residual generator and sigmoid function. The testing module produces the prediction

value
{

t̂i
}k+1

∑
j=0

Nj

i=(
k
∑

j=0
Nj)+1

according to the input vector {xi}

k+1
∑

j=0
Nj

i=(
k
∑

j=0
Nj)+1

. The residual rk+1 is produced by

the residual generator according to the comparison between the prediction value
{

t̂i
}k+1

∑
j=0

Nj

i=(
k
∑

j=0
Nj)+1

and

the target value {ti}

k+1
∑

j=0
Nj

i=(
k
∑

j=0
Nj)+1

, where the residual rk+1 is defined as the following:

rk+1 =

√√√√√√√√√
Nk+1

∑
i=1

∥∥∥∥∥∥∥t̂
i+

k
∑

j=0
Nj

− t
i+

k
∑

j=0
Nj

∥∥∥∥∥∥∥
2

F
Nk+1 ×m

(17)

where m is the dimension of the output vector ti. Then the sigmoid mapper produce the accessed
weight λk+1 according to the difference between τr and rk+1 as the following:

λk+1 =
1

1 + e−ϕ(τr−rk+1)
(18)
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where τr is the threshold value and ϕ is a scaling factor which can represent the gradient of the sigmoid
function at the threshold point. For the samples with the residuals closer to the threshold τr, the greater
the ϕ is, the greater the difference between calculated weights will be. Moreover, ϕ is manually selected
to be 500 according to the performance in this paper. As observed from Equation (18), the greater the
residual rk+1 is, the less the accessed weight λk+1 is, and 0 < λk < 1. The network of the testing module
should be updated according to the training module before next sequential data chunk is incoming.
The abnormal samples which cannot match the normal model well will have low accessed weight,
and their negative impact to the subsequent learning process will be reduced. Thus, the AWOS-ELM
algorithm is able to properly handle the varying confidence coefficients of each data chunk.
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Figure 1. Block diagram of the adaptive weight online sequential extreme learning machine
(AWOS-ELM) algorithm.

3.2. Formula Derivation

The assessed weight of the data chunk at time k is λk, then β′k+1 is the least squares solution of
the following equation: 

λ0H0

λ1h1
...

λk+1hk+1

β′ =


λ0T0

λ1tT
1

...
λk+1tT

k+1

 (19)

Let H′k+1 :=

[
H′k

λk+1hk+1

]
, H′0 := λ0H0, T′k+1 :=

[
T′k

λk+1tT
k+1

]
, T′0 := λ0T0, then Equation (19)

can be described in a compact way as:
H′k+1β

′ = T′k+1 (20)

Theorem 1. The solution of Equation (20) in the sense of least squares is able to be obtained in an iterative way
as follows:
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β′k+1 = β′k + Kk+1
(
tk+1 − hk+1β

′
k
)

(21)

P′k+1 = (I −Kk+1hk+1)P
′
k (22)

Kk+1 = P′khk+1

(
I

λ2
k+1

+ hk+1P′khT
k+1

)−1

(23)

where P′k :=
(

H′Tk H′k
)−1

, β′k = P′kH′Tk T′k.

Proof. According to the definition of P′k, P′k+1 can be found as follows:

P′k+1 =

[ H′k
λk+1hk+1

]T[
H′k

λk+1hk+1

]−1

=
(

H′Tk H′k + λ2
k+1hT

k+1hk+1

)−1
(24)

Apply the Sherman-Morrison-Woodbury formula [23] into Equation (24), and then P′k+1 can be
determined iteratively as follows:

P′k+1 = P′k − P′khT
k+1

(
I

λ2
k+1

+ hk+1P′khT
k+1

)−1
hk+1P′k

= P′k −Kk+1hk+1P′k

(25)

According to Equation (25) and β′k+1 = P′k+1H′Tk+1T′k+1, the output matrix β′k+1 can be obtained
from the following equation:

β′k+1 =
(
P′k −Kk+1hk+1P′k

)[ H′k
λk+1hk+1

]T[
T′k

λk+1tT
k+1

]
=

(
P′k −Kk+1hk+1P′k

)(
H′Tk T′k + λ2

k+1hT
k+1tT

k+1

)
= P′kH′Tk T′k −Kk+1hk+1P′kH′Tk T′

+λ2
k+1

(
P′khT

k+1 −Kk+1hk+1P′khT
k+1

)
tT
k+1

= β′k −Kk+1hk+1β
′
k

+λ2
k+1

(
P′khT

k+1 −Kk+1hk+1P′khT
k+1

)
tT
k+1

(26)

Then we can simplify the P′kh(k + 1)T −Kk+1h(k + 1)P′kh(k + 1)T in Equation (26) as:

P′khT
k+1 −Kk+1hk+1P′khT

k+1
= P′khT

k+1 −Kk+1hk+1P′khT
k+1 −

Kk+1
λ2

k+1
+

Kk+1
λ2

k+1

= P′khT
k+1 −Kk+1

(
I

λ2
k+1

+ hk+1P′khT
k+1

)
+

Kk+1
λ2

k+1

=
Kk+1
λ2

k+1

(27)

Substituting Equation (27) into Equation (26), β′k+1 is able to be determined in a compact way as:

β′k+1 = β′k + Kk+1

(
tT
k+1 − hk+1β

′
k

)
(28)

Proposed AWOS-ELM Algorithm: If L and g:< → < are given, the AWOS-ELM algorithm is able to
be summarized as follows:

Step 1. Initialization phase: choose the initial data chunk ℵ0 = {(xi, ti)}N0
i=1, where N0 ≥ L.
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(1) Configure the learning parameters (ωi, bi), i = 1, 2, . . . , L randomly, and set λ0 = 1;
(2) Calculate H0 and β0 according to Equations (9) and (10);
(3) Set k = 0.

Step 2. Sequential learning phase: iteratively train the network using the data chunk at time k+1

ℵk+1 = {(xi, ti)}
∑k+1

j=0 Nj

i=(∑k
j=0 Nj)+1

;

(1) Assess the confidence coefficient of this new data chunk according to the test module in Figure 1,
and determine the corresponding weight λk+1;

(2) Calculate the partial hk+1 and tk+1as Equations (11) and (12);
(3) Compute β′k+1 in an iterative way in accordance with Equations (21)–(23);
(4) Set k = k + 1 and go to Step 2 until all the training data chunks are used for the learning process.

Remark 1. Actually, the AWOS-ELM is the OS-ELM algorithm with adaptive weight. As a new data chunk
comes, the proposed algorithm need not repeat the training process of ELM. The AWOS-ELM uses the newly
arriving data chunk and the known information which is learned before to conduct the update of the training
network, while the ELM applies all data chunks to update the network parameters. Therefore, in the case of
sequential predicting problems, the AWOS-ELM algorithm tends to produce a better training process than the
ELM algorithm.

Remark 2. In the learning process by AWOS-ELM, since the confidence coefficient of each data chunk varies
with time, the weight of each data chunk is assessed as soon as the new training data arrives at the next unit time
and the SLFN will be trained accordingly. Therefore, the learning process can aptly deal with the confidence
coefficient of each data chunk.

Remark 3. If λ0 = λ1 = · · · = λk = · · · , that is, each training data chunk has the same assessed weight, then
it is obvious that AWOS-ELM is equivalent to OS-ELM, indicating that the OS-ELM is a special case of the
AWOS-ELM algorithm.

4. Experiments

For the purpose of verifying the validity of the proposed AWOS-ELM algorithm, six benchmark
data sets and an identification problem on the dynamics of a flexible robot arm are considered in
this section for the performance comparison between the OS-ELM and AWOS-ELM algorithm. The
attributes of each dataset are uniformed into the range [−1,1], and the corresponding outputs are
uniformed into [0,1]. The software environment for all experiments is MATLAB 7.11 (MathWorks,
Natick, MA, USA) and the hardware environment is an ordinary PC with Intel Core i5-3210M processor.
With the purpose of obtaining reliable statistical results, fifty trials are carried out for each case. For
the purpose of comparing the performance, the definition of the rooted mean squared errors (RMSE) is
given as follows:

RMSE =

√√√√√√
Ntesting

∑
i=1

∥∥t̂i − ti
∥∥2

F

Ntesting ×m
(29)

where t̂i is the prediction value in regard to the target value ti, Ntesting denotes the testing
samples number. For a learning algorithm, a smaller RMSE often indicates a better generalization
performance. In addition, σ, the standard deviation of RMSEs in 50 trials, can effectively reflect the
reliability of the proposed algorithm. Two classical hidden node functions, the radial basis function
h(x) = e−bi‖x−ai‖2

and the sigmoid function h(x) = 1
1+e−(ai ·x+bi)

, are chosen for each learning algorithm.
If the hidden function is set to be sigmoid,ωi and bi are chosen according to uniform distribution in
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the closed interval [−1,1], and if the RBF function is selected,ωi is also obtained from the uniform
distribution in [−1,1], while bi is determined according to the uniform distribution in the open
interval (0,0.5) [15]. For the AWOS-ELM algorithm, we select the threshold τr from the domain
{x|x = 0.02 + 0.01k, k = 0, 1, 2, · · · 18}, and the best threshold is selected manually according to the
prediction performance. In addition, the regulation parameter is set as C = 10−5 [24]. In order to
verify the prediction performance of AWOS-ELM with the existence of disturbance, Gaussian noise
with a standard deviation of 0.0015 is added into the training samples. For the purpose of having a
fair comparison, the hidden nodes number of OS-ELM is optimized by the cross validation method,
afterwards the optimized hidden nodes number is extended to the AWOS-ELM algorithm.

4.1. Benchmark Data Sets

In this subsection, we make a comparison between AWOS-ELM and OS-ELM on six time series
prediction problems consisting of three artificial time series and three actual time series. Among
them, a monthly milk production dataset, having 100 training and 44 testing data, and an electricity
production dataset, having 350 training and 102 testing data, are obtained from the well-known Time
Series Data Library. The sunspot time series, having 2500 training and 690 testing data, is the monthly
mean total sunspot number from January 1749 to December 2015 and is obtained from Solar Influences
Data Analysis Center. Pseudo periodic synthetic time series, having 8000 training and 1801 testing
data, is found from the University of California, Irvine (UCI) repository. The other two chaotic series,
viz. Mackey-Glass and Logistic time series, are generated according to mathematical equations. The
Mackey-Glass series

{
xmg

k |k = 1, 2, 3, . . .
}

is generated according to the following differential delay
equation [25]

dxmg(t)
dt

=
a(t− τ)

1 + xmg(t− τ)
− bxmg(t) (30)

where τ = 17, a = 0.2, b = 0.1, and x(0) = 1.2. The Logistic series
{

xlo
k |k = 1, 2, 3, . . .

}
is produced by

the following recursive equation [26],

xlo
k+1 = λxlo

k

(
1− xlo

k

)
(31)

where λ = 3.5. The prediction performance comparison between AWOS-ELM and OS-ELM on
benchmark data sets is given in Table 1. The mean and standard deviation of weights for AWOS-ELM
algorithm are listed in Table 2. The results in Tables 1 and 2 are the mean values of 50 trials.

As observed from Table 1, the training time for AWOS-ELM is close to that for OS-ELM in
various data sets, just as we expected. When the hidden nodes number and chunk size are set to be
consistent, AWOS-ELM has lower RMSE and lower standard deviation than OS-ELM in most data sets.
This implies higher prediction accuracy and the superior prediction stability of AWOS-ELM algorithm
due to the accessed confidence coefficient. Furthermore, from Table 2, we can find that the mean
weights are less than 0.92, which implies that the proportion of low confidence data is considerable.
Additionally, the standard deviations are quite large, which implies that there is a great difference
between the weights of normal data and that of low confidence data in the AWOS-ELM algorithm.
Thus, the AWOS-ELM can efficiently increase the prediction performance.



Appl. Sci. 2017, 7, 217 10 of 14

Table 1. Performance comparison between AWOS-ELM and OS-ELM on benchmark data sets. RMSE,
rooted mean squared errors.

Data Sets Hidden
Node Type Algorithms RMSE σ

Hidden Nodes
Number τr

Chunk
Size

Training
Time/s

Logistic

Sigmoid
function

OS-ELM 0.0164 0.0046 50 - 10 0.0924
AWOS-ELM 0.0041 0.0010 50 0.09 10 0.0914

Radial basis
function

OS-ELM 0.0099 0.0023 50 - 10 0.1919
AWOS-ELM 0.0039 0.0007 50 0.09 10 0.1913

Mackey-Glass

Sigmoid
function

OS-ELM 0.0370 0.0021 25 - 5 0.1638
AWOS-ELM 0.0234 0.0026 25 0.1 5 0.1675

Radial basis
function

OS-ELM 0.0362 0.0028 25 - 5 0.2764
AWOS-ELM 0.0199 0.0024 25 0.1 5 0.2845

Sunspot

Sigmoid
function

OS-ELM 0.0859 0.0006 40 - 10 0.0612
AWOS-ELM 0.0833 0.0006 40 0.15 10 0.0596

Radial basis
function

OS-ELM 0.0844 0.0005 40 - 10 0.1251
AWOS-ELM 0.0831 0.0004 40 0.15 10 0.1236

Pseudo
periodic
synthetic

series

Sigmoid
function

OS-ELM 0.0342 0.0007 20 - 15 0.1760
AWOS-ELM 0.0094 0.0004 20 0.1 15 0.1847

Radial basis
function

OS-ELM 0.0365 0.0016 20 - 15 0.2577
AWOS-ELM 0.0219 0.0025 20 0.1 15 0.2671

Milk
production

Sigmoid
function

OS-ELM 0.0561 0.0096 15 - 1 0.0062
AWOS-ELM 0.0394 0.0110 15 0.12 1 0.0056

Radial basis
function

OS-ELM 0.0638 0.0101 15 - 1 0.0125
AWOS-ELM 0.0506 0.0097 15 0.12 1 0.0103

Electricity
production

Sigmoid
function

OS-ELM 0.0301 0.0053 12 - 1 0.0168
AWOS-ELM 0.0265 0.0034 12 0.08 1 0.0165

Radial basis
function

OS-ELM 0.0566 0.0233 12 - 1 0.0315
AWOS-ELM 0.0406 0.0124 12 0.08 1 0.0303

Table 2. Mean and standard deviation of the adaptive weights for AWOS-ELM algorithm.

Data Sets
Sigmoid Hidden Node Radial Basis Function Hidden Node

Mean Standard
Deviation Mean Standard

Deviation

Logistic 0.7366 0.4403 0.7855 0.4080
Mackey-Glass 0.8750 0.3311 0.8748 0.3313

Sunspot 0.6440 0.4729 0.6447 0.4726
Pseudo periodic synthetic series 0.8726 0.3338 0.8592 0.3476

Milk production 0.8615 0.3435 0.9009 0.2959
Electricity production 0.8857 0.3152 0.9176 0.2741

4.2. Robot Arm Example

In this subsection, the performance of AWOS-ELM and OS-ELM are compared on the identification
problem regarding the dynamics modeling of a robot arm. The system input and output of this flexible
robot arm are the measured reaction torque and the acceleration, respectively [27]. There are two
attributes in this flexible robot arm example, and all of the 1024 pairs of data are described in Figure 2.
In order to learn the model, the input and output of SLFN, xi and ti, are respectively defined as
xi = [ui, ui−1, ui−2, ui−3, ui−4, di−1, di−2, di−3, di−4]

T and ti = di, where ui and di are the measured
reaction torque and the acceleration of this robot arm, respectively. Thus, the samples number is
1019. The training set contains the front 819 samples, and the rest of the 200 samples are used to test
the network.
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the hidden node number is low. In order to be fair for the sake of comparison, the hidden nodes 
number is set to be 45, which can guarantee that the algorithms with sigmoid function or RBF function 
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Figure 3 illustrates the relationship between the hidden nodes number and testing RMSE of the
OS-ELM and AWOS-ELM algorithms. It shows that the OS-ELM and AWOS-ELM with low hidden
nodes number have similar testing RMSE, and the testing RMSE of AWOS-ELM algorithm tends to
be lower than that of OS-ELM when the hidden nodes number increases. It shows that the OS-ELM
and AWOS-ELM with low hidden nodes number have similar testing RMSE, and the testing RMSE of
the AWOS-ELM algorithm tends to be lower than that of OS-ELM when the hidden nodes number
increases. When the number of hidden nodes is too small, the prediction accuracy of SLFN trained
by the OS-ELM or AWOS-ELM algorithm is very low. As described in Equations (17) and (18), the
computing adaptive weight depends on the prediction value. If the prediction accuracy is too low, the
AWOS-ELM cannot differentiate the low confidence data and normal data very well. Thus, in Figure 3,
the performance of AWOS-ELM is similar to or even slightly less than that of OS-ELM when the
hidden node number is low. In order to be fair for the sake of comparison, the hidden nodes number
is set to be 45, which can guarantee that the algorithms with sigmoid function or RBF function both
have fine performance levels. Figure 4 illustrates the identification effectiveness of the flexible robot
arm dynamics modeling problem, and we can easily find that the AWOS-ELM algorithm has higher
prediction accuracy than OS-ELM algorithm no matter whether considering the sigmoid function
case or RBF function case. Table 3 showcases that the proposed AWOS-ELM algorithm and OS-ELM
algorithm have similar training time and standard deviation values, implying the similar learning
speed and stability, and that the AWOS-ELM algorithm has lower RMSE than the OS-ELM algorithm,
which implies better generalization performance and higher prediction accuracy.
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Table 3. Performance comparison between AWOS-ELM and OS-ELM on the robot arm example.

Hidden Node
Type Algorithms RMSE σ

Hidden Nodes
Number τr Chunk Size Training

Time/s

Sigmoid
function

OS-ELM 0.0207 0.0004 45 - 5 0.1401
AWOS-ELM 0.0081 0.0004 45 0.04 5 0.1426

Radial basis
function

OS-ELM 0.0198 0.0006 45 - 5 0.3738
AWOS-ELM 0.0084 0.0007 45 0.04 5 0.4115

5. Conclusions

In lots of online learning applications, the sequentially arrived data usually have varying
confidence coefficients. OS-ELM trains the neural network chunk-by-chunk, but at the same time,
it cannot deal with varying confidence coefficients of each data chunk very well. Based on the OS-ELM
algorithm, we propose a novel algorithm, AWOS-ELM, which assesses the confidence coefficient and
determines the weight of each data chunk before using the chunk to train the network. The proposed
AWOS-ELM algorithm can improve the learning process by picking out the abnormal samples which
may mislead the subsequent learning process, thereby reducing the impact of these abnormal samples.
Thus, the AWOS-ELM is able to learn sequentially similar to how the OS-ELM works, but at the
same time deals with the varying confidence coefficients of each data chunk properly. Compared
with OS-ELM, simulations on benchmark databases demonstrate that AWOS-LEM performs better in
generalization performance, stability, and prediction accuracy. In addition, experimental results on a
flexible robot arm identification problem demonstrate that AWOS-ELM has the ability to get higher
prediction accuracy than OS-ELM, while the two algorithms have similar training speed and stability.
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