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Abstract: The studies of classical nanofluids are restricted to models described by partial differential
equations of integer order, and the memory effects are ignored. Fractional nanofluids, modeled by
differential equations with Caputo time derivatives, are able to describe the influence of memory on
the nanofluid behavior. In the present paper, heat and mass transfer characteristics of two water-based
fractional nanofluids, containing nanoparticles of CuO and Ag, over an infinite vertical plate with a
uniform temperature and thermal radiation, are analytically and graphically studied. Closed form
solutions are determined for the dimensionless temperature and velocity fields, and the corresponding
Nusselt number and skin friction coefficient. These solutions, presented in equivalent forms in terms
of the Wright function or its fractional derivatives, have also been reduced to the known solutions of
ordinary nanofluids. The influence of the fractional parameter on the temperature, velocity, Nusselt
number, and skin friction coefficient, is graphically underlined and discussed. The enhancement
of heat transfer in the natural convection flows is lower for fractional nanofluids, in comparison
to ordinary nanofluids. In both cases, the fluid temperature increases for increasing values of the
nanoparticle volume fraction.
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1. Introduction

Natural convection flows have been extensively studied due to their multiple engineering
applications. Such flows over an infinite plate are usually met in different engineering processes,
including petroleum resource gas production, and geothermal reservoirs, thermal insulation, etc.
(see [1–3]). The effects of thermal radiation are also important in geophysics, and geothermic, chemical,
and ceramics processing, and they have been investigated by many researchers. A short presentation
of the main results, up until 2007, is given by Ghosh and Beg [4], who studied the convective radiative
heat transfer over a hot vertical surface in porous medium. Moreover, the effects of thermal radiation
on nanofluid flows have been studied by many scholars. Mondal et al. [5] considered the unsteady
magneto-hydrodynamic axi-symmetric stagnation-point flow over a shrinking sheet with Navier
slip, and the temperature-dependent thermal conductivity. Magneto-hydrodynamic (MHD) flows
of nanofluids, with radiation heat transfer over a flat plate with a variable heat flux and first-order
chemical reaction, were studied by Zhang et al. [6]. A numerical study on Cu-water and Ag-water
nanofluids, focusing on the radiation effects over a stretching sheet, was made by Abd Elazem et al. [7].
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Nowadays, it is well known that one way of enhancing the thermal conductivity of fluids is by
suspending the metallic particles, such as alumina, gold, copper, iron, or titanium, in fluids [8]. These
particles, also called nanoparticles, have a diameter of less than 100 nm and the obtained solution is
named nanofluid. The concept of a nanofluid seems to have been introduced by Choi [9], and based
on his work, many researchers have focused their attention on the heat transfer in natural convection
flows of nanofluids. Khan and Aziz [10] have studied the natural convection flow of a nanofluid over
a vertical plate with a uniform surface heat flux. Turkyilmazoglu [11] provided exact solutions for the
MHD slip flow of a nanofluid over a stretching/shrinking sheet, while Bachok et al. [12] studied the
heat transfer characteristics on a moving plate in a nanofluid. Interesting exact solutions have also
been obtained by Turkyilmazoglu and Pop [13], for the velocity and temperature fields corresponding
to the natural convection flow of some nanofluids, past an infinite vertical plate with radiation effects.
Radiation and magnetic effects on the natural convection flow of a nanofluid, past an infinite vertical
plate with a heat source, have been studied by Mohankrishna et al. [14]. Ellahi [15] studied the effects of
MHD and temperature-dependent viscosity on the flow of a non-Newtonian nanofluid in a pipe, while
an analysis of the flow and heat transfer of water and ethylene glycol-based Cu nanoparticles between
two parallel disks with suction/injection effects, has been provided by Rizwan Ul Haq et al. [16].
Of course, the list of such studies can continue, but we close it with some of the most interesting
analytical and numerical results that have been obtained in [17–27].

However, none of these papers took into consideration the fractional derivatives in their governing
equations, although the fractional models have been found to be quite flexible in describing the complex
behavior of many materials. More recently, it seems that fractional partial differential equations may
be used to describe some physical phenomena more accurately, when compared to the corresponding
partial differential equations. Our interest here is to provide exact solutions for the temperature and
velocity fields corresponding to the radiative natural convection flow of fractional nanofluids over an
infinite vertical plate with heat and mass transfer, and to investigate the enhancement of heat transfer
in such a flow, utilizing the fractional model. The associated skin friction coefficient and Nusselt
number will be also determined. These solutions, which are presented in equivalent forms in terms
of the Wright functions or its fractional derivatives, are reduced to similar solutions, corresponding
to ordinary nanofluids [13]. Finally, the influence of the fractional parameter on the thermal and
hydrodynamic response of physical interest, is graphically underlined and discussed.

2. Statement of the Problem

Let us consider the unsteady free convection flow and heat transfer of a nanofluid, modeled by
the Caputo time-fractional derivative, past an infinite vertical plate situated in the (x1, z1)-plane of a
fixed Cartesian coordinate system Ox1y1z1. At the initial moment t1 = 0, the fluid and the plate are
at rest, with a constant ambient temperature T∞. We also consider the radiation effect and assume
the radiative heat flux to be applied, perpendicular to the plate. Since the plate is infinite, all of the
physical quantities describing the fluid motion are functions of y1 and t1. The fluid is a water-based
nanofluid containing nano particles of CuO or Ag, whose thermo-physical properties are given in
Table 1 [13,28].

Table 1. Thermo-physical properties of water and nanoparticles.

Basic Fluid/Nanoparticles ρ (Kg/m3) Cp(J/Kg K) k (W/m·K) β × 105 (1/K)

Pure water 997.1 4179 0.613 21
Copper oxide (CuO) 6320 531.8 76.5 1.80

Silver (Ag) 10,500 235 429 1.89
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Assuming a small difference between the fluid temperature T(y1, t1) and the stream temperature
T∞, and adopting the Rosseland approximation [5], the radiative heat flux qr(y1, t1) can be linearized to:

qr(y1, t1) = −
16σ∗T∞

3

3k∗
∂T(y1, t1)

∂y1
, (1)

where σ∗ is the Stefan-Boltzman constant and k∗ is the mean absorption coefficient.
In the following, we consider the nanofluid model proposed by Tiwari and Das [29], and take

into consideration the usual Boussinesq’s approximation. In this case, the governing equations can be
written as [13]:

ρn f
∂u1(y1, t1)

∂t1
= µn f

∂2u1(y1, t1)

∂y1
2 + g(ρβ)n f [T(y1, t1)− T∞]; y1, t1 > 0, (2)

(ρcp)n f
∂T(y1, t1)

∂t1
= kn f (1 +

16σ∗T∞
3

3kn f k∗
)

∂2T(y1, t1)

∂y1
2 ; y1, t1 > 0. (3)

If no slipping exists between the fluid and the plate, the appropriate initial and boundary
conditions are:

u1(y1, 0) = 0, T(y1, 0) = T∞; y1 ≥ 0, (4)

u1(0, t1) = 0, T(0, t1) = Tw; t1 > 0, (5)

u1(y1, t1)→ 0, T(y1, t1)→ 0 as y1 → ∞. (6)

In the above relations, u1(y1, t1) is the fluid velocity in the x1-vertical direction, Tw is the constant
plate temperature (Tw > T∞ or Tw < T∞ corresponds to the heated or cooled plate, respectively), g is
the acceleration due to gravity, ρn f is the density of the nanofluid, µn f is the dynamic viscosity of the
nanofluid, and βn f is the thermal expansion coefficient of the nanofluid. Their expressions, as well as
the expression of (ρcp)n f , are given by:

ρn f = (1−ϕ)ρ f +ϕρs, µn f =
µ f

(1−ϕ)2.5 , (7)

(ρβ)n f = (1−ϕ)(ρβ) f +ϕ(ρβ)s, (ρcp)n f = (1−ϕ)(ρcp) f +ϕ(ρcp)s (8)

where ϕ is the nanoparticle volume fraction, ρ f is the density of the base fluid, ρs is the density of the
solid particle, and cp is the specific heat at constant pressure. The effective thermal conductivity of the
nanofluid, corresponding to the Hamilton and Crosser model, is given by [28,30]:

kn f

k f
=

ks + 2k f − 2ϕ(k f − ks)

ks + 2k f +ϕ(k f − ks)
, (9)

where kn f , k f , and ks are the thermal conductivities of the nanofluid, the fluid, and the solid particles,
respectively.

Next, the non dimensional variables and functions are introduced as:

t =
ν f

L2 t1, y =
y1

L
, u =

L
ν f

u1, θ =
T − T∞

Tw − T∞
, L =

[
ν f

2

gβ f (Tw − T∞)

]1/3

, (10)

Equations (2)–(6) take simplified dimensionless forms, as follows:

∂u(y, t)
∂t

=
1
a1

∂2u(y, t)
∂y2 + a2θ(y, t); y, t > 0 (11)
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∂θ(y, t)
∂t

=
1
a3

∂2θ(y, t)
∂y2 ; y, t > 0, (12)

u(y, 0) = 0, θ(y, 0) = 0; y ≥ 0, (13)

u(0, t) = 0, θ(0, t) = 1; t > 0, (14)

u(y, t)→ 0, θ(y, t)→ 0 as y→ ∞, (15)

where:

a1 = (1−ϕ)2.5[(1−ϕ) +ϕ ρs
ρ f
], a2 =

1−ϕ+ϕ
(ρβ)s
(ρβ) f

1−ϕ+ϕ ρs
ρ f

,

a3 = Pr
1−ϕ+ϕ

(ρcp)s
(ρcp) f

kn f
k f

+Nr
, Pr =

µ f cp f
k f

, Nr = 16σ∗T∞
3

3k∗k f
,

(16)

where Pr is the Prandtl number and Nr is the radiation parameter.
The fractional model of the nanofluid is described by the fractional differential equations:

cDαt u(y, t) =
1
a1

∂2u(y, t)
∂y2 + a2θ(y, t); y, t > 0, (17)

cDαt θ(y, t) =
1
a3

∂2θ(y, t)
∂y2 ; y, t > 0, (18)

together with the initial and boundary conditions given by Equations (13)–(15). The operator cDαt
represents the Caputo time-fractional derivative, defined as [31]:

cDαt u(y, t) =
1

Γ(1− α)

t∫
0

(t− s)−α
∂u(y, s)

∂s
ds ; 0 ≤ α < 1. (19)

The Caputo derivative is:

L{cDαt u(y, t)}(q) = qαu(y, q)− qα−1u(y, 0) i f u(y, q) = L{u(y, t)}(q) (20)

and:

lim
α→1

cDαt u(y, t) =
∂u(y, t)

∂t
(21)

3. Solution of the Problem

In order to determine the solution of the fractional partial differential Equations (17) and (18),
with the initial and boundary conditions (13)–(15), the Laplace transform technique will be used.
Equation (18) is not coupled to the momentum equation. Consequently, we shall firstly determine the
temperature field.

3.1. Determination of the Temperature Field

Applying the Laplace transform to Equation (18), and bearing in mind the corresponding initial
and boundary conditions, we find that:

a3qαθ(y, q) =
∂2θ(y, q)

∂y2 ; y > 0, (22)
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where q is the transform parameter and the Laplace transform θ(y, q) of θ(y, t) has to satisfy the
following conditions:

θ(0, q) =
1
q

; θ(y, q) → 0 as y→ ∞. (23)

The solution to the problems (22) and (23) is:

θ(y, q) =
1
q

exp
(
−y
√

a3qα
)
; y > 0. (24)

Applying the inverse Laplace transform to Equation (24), and using Equation (A1) from the
Appendix A, we find that:

θ(y, t) = Ψ
(

1,
−α
2

;−y
√

a3t−
α
2

)
for 0 < α ≤ 1, (25)

where:

Ψ(a,−b; z) =
∞

∑
n=1

zn

n!Γ(a− nb)
; b ∈ (0, 1), (26)

is the Wright function [32]. For α = 1, Equation (25) becomes:

θ(y, t) = er f c
(

y
√

a3

2
√

t

)
; y, t > 0. (27)

Of course, a simple analysis clearly shows that this result is in accordance with that obtained by
Turkyilmazoglu and Pop [13], Equation (3.19).

3.2. Calculation of the Velocity Field

Applying the Laplace transform to Equation (17), and taking into consideration the corresponding
initial and boundary conditions, we find that:

∂2u(y, q)
∂y2 − a1qαu(y, q) = −a1a2

1
q

exp
(
−y
√

a3qα
)
; y > 0 (28)

where the Laplace transform u(y, q) of u(y, t) has to satisfy the conditions:

u(0, q) = 0; u(y, q) → 0 as y→ ∞. (29)

A particular solution of Equation (28) is:

up(y, q) =
a1a2

a1 − a3

1
qα+1 exp(−y

√
a3qα), (30)

while its general solution is:

u(y, q) = A exp
(
y
√

a1qα
)
+ B exp

(
−y
√

a1qα
)
+

a1a2

a1 − a3

1
qα+1 exp

(
−y
√

a3qα
)
. (31)

Considering the conditions of (29), it results that:

u(y, q) = a1a2
a1−a3

1
qα+1 [exp(−y

√
a3qα)− exp(−y

√
a1qα)]; 0 < α < 1. (32)
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Applying the inverse Laplace transform to Equation (32), using the convolution theorem and the
Equality (A1), we find that:

u(y, t) = a1a2
a1−a3

1
Γ(1−β)

t∫
0

1
(t−s)β

[
Ψ
(

1, β−1
2 ;−y

√
a3sβ−1

)
−Ψ

(
1, β−1

2 ;−y
√

a1sβ−1
)]

ds, (33)

where β = 1− α.
Now, using the identitiy (A2) from the Appendix A, we can present our solution in an interesting,

but equivalent, form:

u(y, t) =
a1a2

a1 − a3

{
cDβt

[
tΨ
(

2,
β− 1

2
;−y

√
a3tβ−1

)]
− cDβt

[
tΨ
(

2,
β− 1

2
;−y

√
a1tβ−1

)]}
, (34)

in terms of the Caputo derivative of the Wright functions.

3.3. Nusselt Number and Skin Friction

In order to determine the two entities of physical interest, namely the Nusselt number Nu and
the skin friction coefficient C f , we use the relations:

Nu = Lqw
k f (Tw−T∞)

= − Lkn f
k f (Tw−T∞)

∂T(y1,t1)
∂y1

∣∣∣
y1=0

=

− kn f
k f

∂θ(y,t)
∂y

∣∣∣
y=0

= − kn f
k f

lim
y→0+

L−1
{

∂θ(y,q)
∂y

}
.

(35)

C f =
τw

ρ f

( ν f
L

)2 =
µn f

ρ f

( ν f
L

)2
∂u1(y1,t1)

∂y1

∣∣∣
y1=0

=

µn f
µ f

∂u(y,t)
∂y

∣∣∣
y=0

= 1
(1−ϕ)2.5 lim

y→0+
L−1

{
∂u(y,q)

∂y

}
,

(36)

where qw is the constant heat flux from the surface of the plate and τw is the skin friction or shear stress
on the boundary.

Introducing Equations (24) and (32) into (35) and (36), respectively, we find that:

Nu =
kn f

k f

√
a3

t−
α
2

Γ
(
1− α

2
) , C f =

a1a2√
a1 +

√
a2

t
α
2

Γ
(
1 + α

2
) 1

(1−ϕ)2.5 . (37)

Using the identity (A3) from the Appendix A, we also provide equivalent forms for Nu and
C f , namely:

Nu = 2
kn f

k f

√
a3

π
cD

1+α
2

t (t1/2), C f =
1

(1−ϕ)2.5
a1a2√

a1 +
√

a2

cD1−α2
t (t), (38)

in terms of the Caputo derivatives of t1/2 and t.

4. Validation

In order to bring to light the accuracy of the results that have been obtained, it is suitable to show
that they are in accordance with similar solutions from the existing literature. For that, let us use β = 0
in Equation (34). It corresponds to α = 1, and the solution corresponding to the same unsteady natural
convection flow of ordinary nanofluids, has to be obtained. When the Caputo derivative of zero order
is the identity operator, Equation (34) becomes:

u(y, t) =
a1a2

a1 − a3

{[
tΨ
(

2,
−1
2

;−y
√

a3

t

)]
−
[

tΨ
(

2,
−1
2

;−y
√

a1

t

)]}
. (39)
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On the other hand (see also Equation (A2)):

er f c
(

y
√

a
2
√

t

)
= Ψ

(
1,
−1
2

;−y
√

a
t

)
=

∂

∂t

[
tΨ
(

2,
−1
2

;−y
√

a
t

)]
(40)

and then:

tΨ
(

2,
−1
2

;−y
√

a
t

)
=

t∫
0

er f c
(

y
√

a
2
√

s

)
ds, (41)

where er f c(·) is the complementary error fucntion of Gauss.
Now, by introducing Equation (41) in (39), and by using Equation (A4), we get the velocity field

as the simple form:

u(y, t) =
a1a2

a1 − a3


(

t + y2a3
2

)
er f c

(
y
√

a3

2
√

t

)
−
(

t + y2a1
2

)
er f c

(
y
√

a1

2
√

t

)
+

y
√

a1t√
π

exp
(
− y2a1

4t

)
− y
√

a3t√
π

exp
(
− y2a3

4t

)
. (42)

Finally, bearing in mind the notations of Turkyilmazoglu and Pop [13], as well as their rescaling
relation from equality (2.11), it is easy to show that our solution (42) is identical to Equation (3.20),
from [13].

With regards to the Nusselt number Nu and the skin friction coefficient C f , we use α = 1 in
Equation (38) and use Equation (A5). The expressions corresponding to the ordinary nanofluid are:

Nu =
kn f

k f

√
a3√
πt

, C f =
1

(1−ϕ)2.5
2a1a2√

a1 +
√

a3

√
t
π

(43)

As expected, by changing a1, a3, and t, by 1
a1

, 1
a3

, and τ1, respectively, we recover the
solutions (3.21), from [13].

5. Numerical Results and Discussion

The natural convection flow of water-based fractional nanofluids over an infinite vertical plate
with thermal radiation and a uniform temperature on the boundary, is analytically studied. Closed
form solutions for the dimensionless temperature and velocity fields, and the two entities of physical
interest, the Nusselt number and skin friction coefficient, are determined in equivalent forms, in
terms of the Wright function or its fractional derivatives. It is worth pointing out that all of these
solutions have been immediately reduced to the known solutions, based on the literature for ordinary
nanofluids. A table containing the thermo-physical properties of copper oxide (CuO) and silver (Ag) is
also included for later use.

In order to bring to light the influence of the fractional parameter on the heat and mass transfer
in the natural convection flow of the above-mentioned fractional nanofluids, and therefore to obtain
some physical insight into the present results, some numerical calculations have been carried out for
different values of the fractional parameter α, radiation parameter Nr, and the nanoparticle value
fraction ϕ. For comparison, the diagrams of dimensionless temperature and velocity fields, and the
Nusselt number and skin friction coefficient corresponding to fractional nanofluids (for different values
of the fractional parameter α ∈ (0, 1)) and those of ordinary nanofluids (when α = 1), are depicted in
Figures 1–4. As was expected, in all cases, the diagrams corresponding to the fractional nanofluids
tend to superpose over those of ordinary nanofluids, when α→ 1 .

Profiles of the dimensionless temperature θ(y, t) against y are presented in Figure 1a–c, for the
different values of the fractional parameter α and the CuO nanoparticle volume fraction ϕ. The fluid
temperature, as it results from these figures, increases with respect to α, up to a critical value of y
(less than 0.5), and then decreases. Consequently, in terms of the plate proximity, the heat transfer
is stronger when the thermal boundary layer is thinner for fractional nanofluids, in comparison to
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the ordinary ones. An opposite trend appears at a later point in time. With respect to the volume
fraction ϕ, the temperature is an increasing function for both ordinary and fractional nanofluids, and
it smoothly decreases from the maximum value of one on the boundary, to the zero value far away
from the plate. In Table 2, the temperature at different values of y and of the fractional parameter α, is
given for nanofluids containing nanoparticles of CuO or Ag, and these values are in full accordance
with those resulting from Figure 1. Furthermore, as results from this table, the Ag nanoparticles induce
larger temperature values and a lower heat transfer to ordinary or fractional nanofluids, in comparison
to CuO nanoparticles.

The effect of enhancing the heat transfer rate against ϕ with the fractional parameter α, for
CuO-water and Ag-water nanofluids, is presented in Figure 2, in the absence or presence of thermal
radiation. For both fractional nanofluids, the Nusselt number Nu is an increasing function with respect
to α. It is also an almost linearly increasing function of ϕ. Further, the heat transfer rate for the
CuO-water fractional nanofluid is always a little higher than that corresponding to Ag-water fractional
nanofluid. However, the difference between them increases with increasing values of ϕ.

The influence of the fractional parameter α and of the nanoparticle volume fraction ϕ, on the
dimensionless velocity u(y, t) against y, is brought to light by Figure 3a–c; which is also seen for a
nanofluid with CuO nanoparticles. Near the plate, the nanofluid velocity increases up to a maximum
value and then asymptotically decreases to the zero value for y values greater than 2.5, but it is a
decreasing function with respect to the two parameters α and ϕ. Consequently, the boundary layer
thickness is lower for ordinary nanofields, in comparison to fractional nanofluids. From a physical
point of view, it means that the nanofluid viscosity decreases for increasing values of α or ϕ, and the
ordinary nanofluids exhibit a stronger capacity in flow. This implies that the viscoelasticity strengthens
the flow resistance with a decrease in the fractional parameter [33]. The variation of the skin friction
coefficient C f , against the nanoparticle volume fraction ϕ, is presented in Figure 4, for the same
nanofluids at different values of α and Nr, equal to zero or one.

Table 2. Values of the dimensionless temperature for ϕ = 0.2, t = 0.5, and different values of the
fractional parameters α and y.

y
CuO Ag

α = 0.1 α = 0.5 α = 0.85 α = 1 α = 0.1 α = 0.5 α = 0.85 α = 1

0 1 1 1 1 1 1 1 1
0.1 0.86341 0.84348 0.84816 0.87689 0.86675 0.84694 0.85013 0.87864
0.2 0.74363 0.72536 0.75925 0.77086 0.74937 0.73083 0.76448 0.7768
0.3 0.64057 0.62803 0.65475 0.6609 0.648 0.63504 0.66273 0.6691
0.4 0.55187 0.54341 0.55664 0.55868 0.56041 0.55166 0.56628 0.56886
0.5 0.47551 0.46851 0.46887 0.46476 0.48472 0.47766 0.47961 0.47635
0.6 0.40976 0.40218 0.39111 0.38035 0.4193 0.4119 0.4025 0.39275
0.7 0.35313 0.34379 0.32302 0.30608 0.36274 0.35376 0.33461 0.31872
0.8 0.30436 0.29277 0.26415 0.24213 0.31383 0.30272 0.27556 0.25448
0.9 0.26234 0.2485 0.21388 0.18821 0.27154 0.25821 0.22481 0.19985
1 0.22613 0.2103 0.17148 0.14371 0.23496 0.2196 0.1817 0.15432

The variation of the skin friction coefficient C f , against the nanoparticle volume fraction ϕ,
is presented in Figure 4, for the same nanofluids at different values of α and Nr, equal to zero or one.
In both cases, i.e., in the absence or presence of radiation, the skin friction coefficient is a decreasing
function with respect to the fractional parameter α. Considering its variation with respect to ϕ,
two different situations appear. In the absence of radiation (Figure 4b), it is an increasing function
with respect to ϕ, and its values are always greater for Ag-water fractional nanofluid compared to
CuO-water fractional nanofluid. In the presence of radiation, when Nr = 1 (Figure 4a), the shear stress
on the plate decreases up to a critical value of ϕ (about 0.1), and then increases. Furthermore, up to
this value of ϕ, it is smaller for Ag-water fractional nanofluid in comparison to CuO-water fractional
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nanofluid, and a reverse situation is presented at a later point in time. Throughout this study, the value
of Pr has been taken as 6.067.
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6. Conclusions

An analytical study of the natural convection flow of some water-based fractional nanofluids
over an infinite vertical plate with thermal radiation and a uniform temperature on the boundary,
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is developed using the Caputo time-fractional derivative. The closed forms of solutions for the
dimensionless temperature and velocity fields, and the corresponding Nusselt number and skin
friction coefficient, are established in equivalent forms, in terms of the Wright function and its fractional
derivatives. They have been reduced to the solutions obtained in [13], corresponding to ordinary
nanofluids, when the fractional parameter α→ 1 .

In order to get some physical insight into the results, which have been obtained for CuO-water
and Ag-water fractional nanofluids, some numerical calculations and graphical representations have
been presented in Table 2 and Figures 1–4, for different values of the fractional parameter α, radiative
parameter Nr, and the nanoparticles volume fraction ϕ. The main findings are:

The enhancement of heat transfer in the natural convection flows is lower for fractional nanofluids,
in comparison to ordinary nanofluids. The thermal boundary layer is thicker for fractional nanofluids.
In both cases, the fluid temperature increases and the heat transfer declines for increasing values of the
nanoparticle volume fraction ϕ.

The flows of water-based fractional nanofluids are faster than the ordinary nanofluids.
A decrease in the fractional derivative parameter increases the thickness of the velocity boundary

layer. From a physical point of view, it means that the nanofluid viscosity increases with the decreasing
of α.

The dimensionless velocity of water-based fractional nanofluids, as well as that of ordinary
nanofluids, is a decreasing function with respect to the nanoparticle volume fraction ϕ.

The skin friction coefficient in the natural convection flow is higher for fractional nanofluids, in
comparison to ordinary nanofluids.

The enhancement of heat transfer in natural convection is stronger for Cu-water fractional
nanofluids, when compared with Ag-water fractional nanofluids.

In the presence of radiation, Ag-water fractional/ordinary nanofluids achieve a lower skin friction
coefficient near the plate, relative to Cu-water fractional/ordinary nanofluids.

Our study shows that the nanofluids described by fractional derivatives have a significantly
different behavior than ordinary nanofluids. The same conclusions were obtained in the
references [33,34]. Even if the models studied in these articles are different from the model studied
here, the obtained results showed that the fractional parameter has a strong influence on the heat
transfer process.
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