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Abstract: Previously published studies have proposed fatigue life prediction models for dense graded
asphalt pavement based on flexural fatigue test. This study focused on the fatigue life prediction of
High Modulus Asphalt Concrete (HMAC) pavement using the local strain-stress method and direct
tension fatigue test. First, the direct tension fatigue test at various strain levels was conducted on
HMAC prism samples cut from plate specimens. Afterwards, their true stress-strain loop curves were
obtained and modified to develop the strain-fatigue life equation. Then the nominal strain of HMAC
course determined using finite element method was converted into local strain using the Neuber
method. Finally, based on the established fatigue equation and converted local strain, a method to
predict the pavement fatigue crack initiation life was proposed and the fatigue life of a typical HMAC
overlay pavement which runs a risk of bottom-up cracking was predicted and validated. Results
show that the proposed method was able to produce satisfactory crack initiation life.

Keywords: pavement engineering; high modulus asphalt concrete; local stress-strain; modified
Neuber equation; fatigue life

1. Introduction

Fatigue damage refers to the accumulation of damage in asphalt concrete, causing cracks and
fracture extensions, and ultimately resulting in loading failure. Fatigue failure includes the formation
of the crack nucleation stage (fatigue), crack extension (stability) of crack growth, and fracture failure
(unstable crack propagation). Because fracture failure happens rapidly, the fatigue life of pavement
generally includes crack formation and propagation. The term “stage of fatigue crack initiation”
usually refers to the fatigue crack nucleation and propagation, which require examination during
engineering processes. In road engineering the period from crack nucleation to the crack reaching
a length of 5 mm is treated as the life of the initiation of the fatigue crack.

There are different approaches to quantify the fatigue crack process in asphalt concrete mixtures.
Among the different approaches, practitioners primarily use the strain approach, which was first
introduced by Monismith, and the energy approaches because these approaches are simple and

Appl. Sci. 2017, 7, 305; doi:10.3390/app7030305 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/journal/applsci


Appl. Sci. 2017, 7, 305 2 of 17

consist of experimentally oriented procedures [1–3]. The most common fatigue model adopted by
the Mechanistic Empirical Pavement Design Guide (MEPDG) is a strain approach that considers the
material’s properties using the value of dynamic modulus forms [4]. Al-Qadi described the dissipated
energy changes during loading and proposed four parameters to define fatigue performance for
13 mm dense-graded Hot Mix Asphalt (HMA) using bending beams at various strain amplitudes [5].
Molayem used continuum damage theory to characterize the fatigue properties of asphalt binders and
their effect on fatigue resistance. This proposed model can be used as an alternative to time-consuming
beam fatigue tests [6].

Metcalf evaluated the Strategic Highway Research Program (SHRP) fatigue crack initiation life
prediction model with crack measurements in laboratory slab fatigue tests. The study showed that
the SHRP crack initiation life model significantly underestimates the fatigue crack initiation life for
slabs [7].

Kim developed a system for predicting the fatigue life of asphalt mixtures. This work indicates
that the fatigue life of a mixture subjected to sinusoidal strain loading can be determined through
the model’s damage principles using IDT (indirect tensile test) test results [8]. Ali Khodaii employed
a large scale experimental setup to examine the influence of the most important parameters on
delaying reflection cracking in geogrid reinforced overlay in bending mode. Regression equations
were developed to estimate fracture parameters which can be used to predict the crack growth rate in
order to design asphalt overlay that is protected from reflective cracking [9].

One of the major achievements of the SHRP asphalt mix research projects is the development of
a fatigue life prediction model based on the results of intensive bending beam fatigue tests. Several
researchers have conducted fatigue testing on asphalt concrete in the laboratory to investigate fatigue
life through bending beam fatigue tests [10–16]. Although this model covers a wide range of asphalt
mix related fatigue variables, it has to apply a shift factor to deal with the stress concentration of
cracks in High Modulus Asphalt Concrete (HMAC), including the state of stress. It would be helpful
to determine how real stress state contributes to fatigue life, because local stress and direct tensile
tests more realistically simulate the multiaxial state of stress and cracking in pavements than bending
beam tests.

A basic principle of the local stress-strain method is that the nominal stress and strain of a structure
under various loadings are firstly converted into local stress and strain at the most unfavorable points
(i.e., the stress concentration points) based on the stress-strain loop curve obtained from the fatigue
test. Combined with the established strain-fatigue life curve, these local stresses and strains are then
corrected and used to estimate fatigue life of the structure.

Local stress-strain fatigue analysis focuses on determining local stress and strain. In the local
stress concentration area, there is a complex nonlinear relationship between the stress, strain, and load.
Methods for determining the local strain and stress include the test method, the elastic-plastic finite
element method, and the approximate calculation method.

In this paper, we conduct direct tensile fatigue tests and cyclic stress-strain tests at different strain
levels to determine the fatigue properties of HMAC, and propose a method to predict the fatigue
crack initiation life of HMAC. This method is based on a modified Neuber equation and the local
stress-strain method.

2. Process for Fatigue Life Estimation Based on the Local Stress-Strain Method

The fatigue life prediction method consists of three aspects: fatigue performance of the material,
transformation from nominal stress and strain into local stress and strain, and fatigue cumulative
damage theory. A modified Neuber equation was used to transform nominal stress-strain to local
stress-strain. The Miner theory and Manson-Coffin equation have been widely used to characterize
cumulative fatigue damage. Therefore, the cyclic stress-strain curve and strain-life curve can be
combined as the local stress-strain method to estimate the fatigue crack life.
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The raw data needed for calculation includes the elastic modulus, the steady cyclic stress–strain
curve, the strain-life curve, the theoretical stress concentration factor, and load history.

Steps for fatigue life estimation, based on the local stress-strain method, are shown in Figure 1.
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Figure 1. Process for fatigue life estimation based on local stress-strain method.

3. Direct Tensile Test of HMAC

3.1. Materials

90# asphalt was used to compound the high-modulus asphalt in the research. Details of the
materials are listed in Table 1.

Table 1. Test results of 90# asphalt.

Items Unit Value

25 ◦C Penetration 0.1 mm 83
Penetration Index ... −0.84
Ductility (10 ◦C) cm 42
Ductility (15 ◦C) cm >150
Softening Point ◦C 49.3
Flashing Point ◦C 282

Paraffin Content (distillation) % 0.91
Solubility (C2HCl3) % 99.8

Density (15 ◦C) g/cm3 0.982

TFOT (163 ◦C, 5 h)

Quality Change % −0.005
Penetration Ratio % 68.5
Ductility (15 ◦C) cm 38.6
Ductility (10 ◦C) cm 9.6

PR PLASTS was chosen as the HMAC-20 additive with a dosage of 0.6%. The mineral aggregate
gradation of the HMAC-20 is shown in Figure 2.
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Figure 2. Gradation of the aggregates used in this study.

A plate was made according to the rutting test specifications and then cut into a suitable
prism specimen.

3.2. Test Matrix

As shown in Figure 3, fatigue tests were performed by Material Test System (MTS) with
a strain-controlled load on asphalt concrete prisms and were conducted in the laboratory.
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Figure 3. Material Test System (MTS).

Specimens must be a suitable shape and size for strain control and to ensure the reliability of test
results. Several 300 mm × 300 mm × 50 mm plate specimens were firstly prepared and then they were
cut into 250 mm × 50 mm × 50 mm prism samples in accordance with test procedures of direct tension
testing in the literature [17].

As shown in Figure 4, both ends of the specimen were bonded with a steel plate, and a spherical
hinge was set at the end of the active loading position, which ensured the central tension on the tip
of the specimen. The strain-controlled cyclic loads were applied on a steel plate, and the spherical
hinge could be automatically set back when tension was applied to the specimen. In order to avoid
uncontrolled tension, the load was set on the middle of the prism.
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Figure 4. Specimen clamp for tests.

3.3. Loading Frequency

In order to make the experiment feasible and to comply with road surface conditions, the test
was conducted at a variety of frequencies (1, 2, 5, 10 Hz). A load frequency of 2 Hz was determined
for the test by taking into consideration influential factors including simulation results, the test time,
and fixture performance.

3.4. Loading Waveform

In consideration of the fixed method of the specimen clamp, a gentle tug was exerted to avoid
displacing the fixture gap. A non-intermittent triangular wave for the loading waveform was adopted
(see Figure 5).
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3.5. Test Temperature

In order to reflect the actual working state of high modulus asphalt pavement, a fatigue equivalent
temperature was calculated and used as the test temperature.

SHRP presented the method to calculate the equivalent temperature of the fatigue test [18,19]:

Te f f (FC) = 0.8(MAPT)− 2.7 (1)

where: Te f f (FC)—equivalent temperature of the fatigue test (◦C); MAPT—annual average surface
temperature in 1/3 Pavement depth (◦C); 15 ◦C was determined to be the test temperature for the
HMAC fatigue test.

3.6. Failure Criteria

Load descent failure criterion for the prism specimen was adopted after taking into consideration
the asphalt mixture characteristics and test maneuverability. The specimen failed when the load
decreased to 75% of the peak loading capacity [20,21].

The axial strain control mode was chosen and the high-low strain ratio of the specimens was
set at 10. Four strain levels (0.3, 0.4, 0.5, 0.6) were adopted with three specimens tested in each level.
Test conditions were determined, including a 2 Hz load frequency, a 1 mm/min stretching rate, a 15 ◦C
test temperature, and a non-intermittent triangular wave for the loading waveform. These conditions
were set in conjunction with the simulation effects, the test time, and clamp performance.

4. True Cyclic Stress-Strain Curve

The cyclic stress-strain curve, which is made by the vertices of the stable hysteresis loop at
different strain levels, is a smooth curve. The following methods were used to determine the cyclic
stress-strain curves:

(1) Multistage test method. Cyclic loading under several strain amplitude levels was conducted on
the specimen, each cycle was loaded a number of times to achieve stability, and a smooth curve
was drawn using the overlapping and stable hysteresis loop through the top. This loop was named
the cyclic stress-strain curve. The method required few specimens and had a quick measurement
speed; however, this method has low precision and it easily produces fatigue damage.

(2) Relegation-enhancement test method. When the specimen was loaded, the strain amplitude
was gradually relegated and then enhanced. The other steps of this method are similar to the
multistage test method

(3) Stretching after cycle stability method. The specimen underwent a series of strain decreases and
increases, reducing the level of strain amplitude after cycle stability was reached. A specimen
was then loaded to tensile failure to determine the stress-strain curve. Results of this method are
in good agreement with those in the above two methods, however, it has low precision.

(4) Multistage multi-sample method. Multiple experiments controlled by a constant strain were
conducted on specimens in multistage strain stages in order to obtain a stable hysteresis loop,
then the top of the hysteresis loop was connected and a smooth cyclic stress-strain curve was
obtained. This method can accurately reflect the cycle stress-strain properties of materials
with high precision, but it requires more specimens and a longer test period than the other
methods. The strength coefficient and cyclic strain hardening index are calculated using the cyclic
stress-strain curve [22,23]:

∆ε

2
=

∆σ

2E
+

(
∆σ

2K′

) 1
n′

(2)

where: ∆ε = cyclic strain amplitude, ∆σ = cyclic stress amplitude.
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The following equation can be obtained using the plastic component calculation:

ε =
σ

E
+
( σ

K′
) 1

n′ (3)

where: σ = stress, ε = strain, n′ = Cyclic strain hardening exponent, K′ = Cyclic stress hardening exponent.
The strain fatigue curve shows that the values of the hysteresis loop apex were calculated when

fatigue life reached 50% of the specimen at strain levels ranging from 0.3 to 0.6 in order to determine
the true strain and true stress amplitude at different strain levels and the plastic strain component
(see Table 2).

Table 2. True stress amplitude and plastic strain component at different strain levels.

Strain Levels ∆ε ∆σ/MPa ∆εp

0.6 0.0014 0.213 0.00041
0.5 0.0013 0.184 0.00038
0.4 0.0011 0.176 0.00036
0.3 0.00081 0.143 0.00027

Table 2 shows the different fitting algorithms that were adopted to fit Equation (3). The fitting
parameters K′ = 26.847 and n′ = 0.725 were then obtained and used in the following formula that
predicts the strain of HMAC in the strain-controlled mode:

ε =
σ

E
+ (

σ

26.847
)

1.3793
(4)

Stress can be obtained using Equation (4) with strains ranging from 0.0001~0.001; the results are
presented in Figure 6.
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Figure 6. Comparison between cyclic curves and monotone curve.

The parameters K, n, and the HMAC monotone curve are compared, respectively, with the
parameters K′, n′, and the cyclic curves. The cyclic curves are far higher than the monotone curve.
Based on the position of the curve, HMAC was determined to be a cyclic hardening material [24],
indicating that the stress required for producing the same strain during cyclic loading is higher than
when under a static load. However, the hardening phenomenon gradually disappears when the
cycling times increase.

Figure 7 shows the relationship between stress and time in the cyclic stress strain test with constant
strain controlled. The results show that stress fluctuates as the length of time increases, whereas the
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general trend is that strain decreases along with the increasing length of time. It can be seen that the
HMAC has cyclic relaxation properties [25,26], meaning strain gradually decreases when constant
strain is controlled.
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5. Determination of Local Stress and Strain

5.1. Neuber Equation

The Neuber equation, a concise method for calculating local stress-strain of a notch [27,28], is
as follows:

Kt = (KεKσ)
1
2 (5)

Kε =
ε

e
(6)

Kσ =
σ

s
(7)

where: Kt—theoretical stress concentration factor of notch, Kε—strain concentration factors, Kσ—factor
of stress concentration, e—nominal strain, S—nominal stress.

Kε and Kσ were placed in Equation (5) and converted into an incremental form, and the Neuber
hyperbolic equation was then obtained:

∆σ∆ε = K2
t ∆S∆e (8)

If the nominal stress is in the elastic range, then ∆e = ∆S
E can be obtained, and the equation is

as follows:
∆σ∆ε = (Kt∆S)2/E (9)

The Neuber equation is derived from shear stress analysis of a prism. In order to be widely applied
in the design and development of HMAC [29,30], the Neuber equation is modified by replacing the
theoretical stress concentration factor Kt with the fatigue notch factor Kf. The general method for
determining Kf is to fit the regression equation through fatigue test data of the specimen notch, and Kf
is typically treated as a constant for most influencing factors. Kt is usually used when there is a lack
of Kf data, which is a conservative method for estimating fatigue life. Values of Kt at different strain
levels are shown in Table 3.
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Table 3. Theoretical stress concentration factor of notch.

Strain Levels 0.6 0.5 0.4 0.3

Kt 1.973 1.947 2.046 1.938

5.2. Neuber Equation Correction

To conform to the plane strain problem, the cycle stress-strain curve of a small smooth specimen
in the uniaxial stress state test must be modified. Moreover, parameters Kε and Kσ in the biaxial stress
state are different from those in the uniaxial stress state, meaning that the Neuber equations should
be modified.

5.2.1. Cyclic σ− ε Curve Correction

Hooke’s law was applied to the elastic strain component, whereas the plastic deformation theory
was used for the plastic component:

σa
′ = σa/

(
1− µ1 + µ2

1

) 1
2 (10)

εa
′ = εa

(
1− µ2

1

)
/
(

1− µ1 + µ2
1

) 1
2 (11)

µ1 =
µ + Eεpa/(2σa)

1 + Eεpa/σa
(12)

where: σ′a—the maximum main stress under plane strain condition, ε′a—the maximum main strain

under plane strain condition, µ1—generalized Poisson’s ratio, µ1 =
µ + Eεpa/(2σa)

1 + Eεpa/σa
, µ—Poisson’s

ratio, εpa—plastic strain amplitude of cyclic σ− ε curve under uniaxial stress condition, Ea—elastic
modulus of cyclic stress-strain curve.

The equation is achieved by σ′a—ε′a fitting as follows:

ε′a = σ′a
(

1− µ2
)

/E +
(
σ′a/K′

) 1
n′ (13)

where K′′ is corrections of K′, n′′ is corrections of n′.
The parameter data found in Table 4 were put into Equation (13), and then the revised cyclic σ− ε

curve equation was obtained via Equation (14):

ε′a =
σ′a(1− µ2)

Ea
+ (

σ

590.716
)

1.014
(14)

Table 4. Correction parameters of cyclic σ− ε curve.

Strain Levels ε′a σ′a/MPa µ1 K′′ n′′

0.6 0.682 0.14 0.427

590.716 0.986
0.5 0.594 0.097 0.419
0.4 0.473 0.083 0.417
0.3 0.348 0.076 0.423
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5.2.2. Neuber Equation Correction

To show the plastic penetration level and equivalent stress and strain levels, the right end of the
Neuber equation was multiplied by two coefficients, and the following corrections were made to the
Neuber equation:

∆σ · ∆ε = m · g ·
(

K f · ∆S
)2

/E (15)

m =
(

1− µ′ + µ′
2
) 1

2 (16)

g = m/
(

1− µ′
2
)

(17)

µ′ = 0.5− (0.5− µ)Es/E (18)

where: m—plastic penetrable degree, g—coefficient of equivalent stress and strain, µ′—elastic-plastic
Poisson’s ratio, considering the compressibility of material, µ—Poisson’s ratio, E—elasticity modulus,
Es—secant modulus, determined by the monotone tensile curve.

Parameters µ′ = 0.4221, m = 0.87, g = 1.059 can be obtained by putting µ = 0.25, Es = 374 MPa,
and E = 1200 MPa into Equation (15), which becomes the following final form of the Neuber equation
that predicts the fatigue life of HMAC in the strain-controlled mode:

∆ε · ∆σ =
0.92

(
K f · ∆S

)2

E
(19)

As nominal stress is in the elastic range, ∆e = ∆S
E and Kt = 1.976 were substituted into Equations (9)

and (19) to develop Equation (20):
εσ = 0.92× 1.9762se (20)

6. Strain-Life Fatigue Equation

The strain fatigue life equation is characterized by the fatigue curve taking the following form:

(1) εa − N f curve.

Strain fatigue tests were conducted at different strain levels and under equal strain control to
obtain the fatigue data, of the control variables εa is the true strain amplitude.

(2) εeq − N f or σeq − N f curve.

Fatigue data are obtained from fatigue tests that combine stress and strain. The control
variables are not equivalent strain amplitude εeq or equivalent stress amplitude σeq, which contain the
mean stress.

(3) S− N f curve.

The fatigue data comes from existing data from the S-N curve. The influence of notch and strain
fatigue should also be considered.

The second method needs a large amount of experimental data, and the third method was only
applied to make a rough estimation, because of its low accuracy. The main εa − N f curves are shown
in Table 5.
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Table 5. Strain fatigue curve.

Forms Author Expression

∆ε ∼ N f (Re = −1)

M. A. Manson
εa =

σ′ f
E

(
2N f

)2b
+ ε′ f

(
2N f

)2c

L. F. Coffin

H. M. Fu
C

(∆εt − ∆εo)
m = N f

R. W. Landgraf 1
N f

= 2

(
σ′ f
ε′ f E

)(
εpa

εpa

)
σ′ f

σ′ f − σm

Ostergren 1
N f

= 2

(
σmaxεpa

σ′ f ε′ f E

)1/(a + b)

K. N. Smith σmaxεa =
σ′2

E

(
2N f

)2b
+ σ′ f ε′ f

(
2N f

)b+c

Bergmann (σa + kσm)εa =
σ′2

E

(
2N f

)2b
+ σ′ f ε′ f

(
2N f

)b+c

F. Erdogan σ′aσ
(1−r)
max − εa =

σ′2

E

(
2N f

)2b
+ σ′ f ε′ f

(
2N f

)b+c

V. Adrov

1
N f

= 2
(

4σ′ f ε′ f /A
)b+c

A =
β

a
I, a = f (σmax, σmin)

I =
k1

∑
k=1

(j + 1− 2k)
(

∆σk − ∆σj+1 − k
)

∆ε

The Manson-Coffin equation is widely used for all of the εa − N f curves by adopting a power
function to characterize fatigue performance. The main parameter strain is calculated using the
following equation:

εa =
σ′ f
E

(
2N f

)b
+ ε′ f

(
2N f

)c
(21)

Based on the proposed Manson-Coffin equation, direct tensile fatigue tests for HMAC were
conducted to obtain the fatigue parameters. Estimation methods for fatigue parameters included the
general slope method, modified four-points correlation, and four-points correlation [31,32] (see Table 6).

Table 6. Estimation method for fatigue constant.

Methods Fatigue Constant

General slope method

b −0.12
C −0.16

σ′ f 1.75σb/E
ε′ f 0.5ε0.006

f

Four-points correlation

b −[0.0792 + 0.179lg(σf/σb)]

c −lg(3.37ε0.25
f

[
1− 81.8

σb
E

(
σf

σ0

)1.179
]−1/3

)

σ′ f 1.12σb(σf/σb)0.893

ε′ f 0.413ε f

[
1− 81.8

σb
E

(
σf

σ0

)1.179
]−1/3

Modified four-points correlation

b Same as four-points correlation
c Same as four-points correlation

σ′ f 1.18σb(σf/σb)0.0946

ε′ f 0.538

[
1− 81.8

σb
E

(
σf

σ0

)1.179
]−1/3
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Fatigue test regulation for Manson-Coffin equation requires that Re = −1, otherwise, the equation
should be modified, (see Table 7).

Table 7. Modified Manson-Coffin equation when Re 6= −1.

Methods Modified Manson-Coffin Equation

Morrow elastic stress
Linear correction εa =

σ′ f − σm

E

(
2N f

)b
+ ε′ f

(
2N f

)c

Gerber elastic stress curvature correction εa =
σ′ 2

f − σ 2
m

Eσ′ f

(
2N f

)b
+ ε′ f

(
2N f

)c

Marrow total strain correction εa =
σ′ f − σm

σ′ f

σ′ f
E

(
2N f

)b
+ ε′ f

(
2N f

)c

Sachs plastic correction ∆εa =
σ′ f
E

(
1− σm

σb

)b(
2N f

)c

In accordance with the first method, an equal strain fatigue test with strain levels ranging from 0.3
to 0.6 and a monotone direct tensile test were conducted on HMAC using the dynamic tester MTS810
to calculate the εa − N f curve of asphalt concretes [33]. The εa − N f curve was characterized by the
Mason-Coffin equation, and the power function was adopted to describe the strain life curve:

εa =
∆ε

2
=

∆εe

2
+

∆εp

2
=

(
σ′ f
E

)(
2N f

)b
+ ε′ f

(
2N f

)c
(22)

In the above equations, σ′ f and ε′ f are approximately equal to the fracture stress σf and fracture
strain εf [34]. Fracture stress and fracture strain for HMAC were listed in the monotone direct tensile
test (see Table 8).

Table 8. HMAC parameters of monotone direct tensile test.

Specimen Fracture Strain Fracture Stress/MPa Secant Modulus/MPa

SJ-1 0.00308 0.1588 351.55
SJ-2 0.00384 0.13672 385.60
SJ-3 0.0023 0.13465 413.54
SJ-4 0.0023 0.10162 345.18

Average 0.00288 0.13295 373.97

As seen in Table 8, σ′ f of HMAC is 0.13295 MPa and ε′ f is 0.00288. Constant strain fatigue tests at
different stress-strain levels were conducted on HMAC, and the cyclic σ − ε curve at the strain level of
0.6 is shown in Figure 8.
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The fatigue parameters strain and fatigue life of the specimen were then obtained, as shown in
Table 9.

Table 9. Strain amplitude and fatigue life of HMAC in equal strain fatigue test.

Specimen S1 S2 S3 S4 S5 S6 S7 S8

HMAC
εa 0.32 0.53 0.74 0.91 1.15 1.392 1.56 1.66
Nf 18242 15124 7692 4543 3692 2420 1502 1031

Matrix asphalt concretes
εa 1.28 2.17 3.04 3.75 4.18 5.37 6.17 6.89
Nf 4862 3941 1920 1137 1972 1143 108 84

As seen in Table 9, four common fitting algorithms were used to fit the data from Equation (1).
The relationship between the fitting parameters and the equation was studied, as seen in Table 10.

Table 10. Parameters b and c using different fitting algorithms.

Fitting Algorithms b c R2

Marquardt method −0.10234 −0.10263 0.981687
Quasi-newton method −0.10233 −0.10264 0.981688
Evolution algorithm −0.10231 −0.10267 0.981681

Max inherit optimization −0.10237 −0.10261 0.981687

As shown in Table 10, the fitting parameters (b, c) of the four fitting methods are nearly the
same—b = −0.1023 and c = −0.1026. When σ′ f , ε′ f , b, and c are put into Equation (22), then
Equation (22) changes into the following form which predicts the fatigue life of HMAC in the
strain-controlled mode:

εa =
0.13295

E
×
(

2N f

)−0.1023
+ 0.00288×

(
2N f

)−0.1026
(23)

7. Fatigue Life Prediction Based on Local Stress-Strain Method

The fatigue life of HMAC was predicted based on the modified Neuber equation. First, the
load-time process was transformed into a nominal-time history. Second, local stress and strain of the
notched specimen were transformed to nominal stress and strain using the cyclic σ− ε curve and the
modified Neuber equation. Fatigue damage was calculated according to the strain fatigue life curve,
and the fatigue life was then obtained based on cumulative damage theory. Specific steps for fatigue
life prediction based on the modified Neuber equation and local stress-strain method are as follows:

(1) Local strain and local stress in the plane strain state were solved using the results of the load
strain and temperature strain, cyclic σ− ε curve and Neuber hyperbolic equations.

ε =
σ

E
+ (

σ

26.847
)

1.3793
(24)

εσ = 0.92× 1.9762se (25)

(2) The fatigue life Nf was determined on the basis of the εa − N f curve equation.

εa =
0.13295

E
×
(

2N f

)−0.1023
+ 0.00288×

(
2N f

)−0.1026
(26)
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8. Case Study

8.1. Structure and Parameters of Pavement

Based on the proposed fatigue life prediction method, a typical HMAC overlay pavement
situated in a long steep road in Shandong province of China was selected and its fatigue life was
predicted below.

The pavement structure and material parameters are listed in Table 11. Five axle loads (80 kN,
100 kN, 120 kN, 150 kN, and 180 kN) and four varied temperature range (5, 10, 15, 20 ◦C) were
considered in the analysis of nominal stress and strain. For each grade, fatigue life was calculated.

Table 11. Structure and parameters of pavement.

Structure Layer Material Type Thickness/cm Modulus/MPa Poisson’s Ratio

Surface
High Modulus Asphalt Concrete 4 1200 0.25
High Modulus Asphalt Concrete 6 1200 0.25

Base course Lean concrete 16~28 10,000~40,000 0.15
Bed course Cement Stabilized Crushed Stone 20 1700 0.2

Subbase Graded broken stone 16 250 0.35
Subgrade Soil —— 40 0.35

8.2. Results

8.2.1. Nominal Strain

According to the traffic axle load and varied temperature range, nominal strains at the bottom of
HMAC were calculated using the finite element software, see Tables 12 and 13.

Table 12. Load strain at the bottom of HMAC.

Axle Load/kN 80 100 120 150 180

Load nominal strain 0.2319 0.2634 0.3048 0.3527 0.4156
Load local strain 0.3492 0.3751 0.4163 0.4806 0.5614

Table 13. Temperature strain at the bottom of HMAC.

Varied Temperature Range (◦C) 5 10 15 20

Temperature nominal strain 0.1934 0.2486 0.3261 0.4835
Temperature local strain 0.2762 0.3294 0.4351 0.6214

8.2.2. Local Strain

Based on the nominal strain shown in Tables 12 and 13, local strain was calculated using the
Equations (24) and (25) (see Tables 12 and 13).

8.2.3. The Analysis of Fatigue Damage

Based on linear cumulative damage hypothesis, damage caused by load and the maximal varied
temperature range (20 ◦C) was calculated, as shown in Table 14. In this table, statistics of traffic
loading times were collected from a traffic survey, loading times were calculated using Equation (26),
and fatigue damage was the ratio of statistics of traffic loading times and calculated loading times.
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Table 14. The analysis of fatigue damage.

Axle Load/kN 80 100 120 150 180

Local strain 1.2892 1.4009 1.4432 1.5057 1.5965
Calculated loading times 79,547 55,698 15,634 9846 5765

Statistics of traffic loading times 627 2568 1931 122 70
Fatigue damage 0.0079 0.0461 0.1235 0.0124 0.0121

8.2.4. Fatigue Life Prediction

As shown in Table 14, the cumulative fatigue damage could be calculated as 0.202, then the
pavement fatigue life which is the reciprocal of cumulative fatigue damage was calculated as 4.95,
meaning the HMAC overlay might generate reflective cracking in nearly 5 years. Moreover, our in
situ survey also showed that a part of the pavement surface cracked almost 4 years after overlaying.
This indicates that the proposed method to predict service life of pavement agreed with practical
conditions. Furthermore, the current research suggested that a stress absorbing layer should be set
before HMAC overlaid between HMAC and concrete pavement.

9. Conclusions

This study provides an experimental investigation into the fatigue performance of high modulus
asphalt concretes, including the cyclic σ− ε test and direct tensile fatigue test. A method to predict the
fatigue crack initiation life of HMAC was proposed based on the modified Neuber equation and local
σ− ε method. The following conclusions can be drawn based on this work:

(1) The cyclic σ− ε curve and modified σ− ε curve of HMAC in plane strain state were established.
(2) Conversion from nominal stress and strain to local strain-stress is proposed based on a modified

Neuber equation and the local stress-strain method.
(3) The strain fatigue equation for HMAC is presented based on fatigue tests.
(4) The fatigue life model is able to produce satisfactory crack initiation life predictions using the

local stress-strain method based on fatigue test analysis of the specimens and the modified
Neuber equation.
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εa = strain, ∆ε = cyclic strain amplitude, ∆εe = circular elastic, ∆εp = plastic strain amplitude, σ′ f = fatigue
strength coefficient, ε′ f = ductility coefficient, Nf = fatigue life, b, c = regression constants, εea = elastic strain,
εpa = plastic strain, Kt = theoretical stress concentration factor of notch, Kε = strain concentration factors,
Kσ = factor of stress concentration, e = nominal strain, S = nominal stress, K f = fatigue notch factor, M = plastic
penetrable degree, g = coefficient of equivalent stress and strain, µ′ = elastic-plastic Poisson’s ration, considering
the compressibility of material, µ = Poisson’s ration, E = elasticity modulus, Es = secant modulus, determined by
the monotone tensile curve.
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