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Abstract: This paper presents a new approach for fall detection from partially-observed depth-map
video sequences. The proposed approach utilizes the 3D skeletal joint positions obtained from the
Microsoft Kinect sensor to build a view-invariant descriptor for human activity representation, called
the motion-pose geometric descriptor (MPGD). Furthermore, we have developed a histogram-based
representation (HBR) based on the MPGD to construct a length-independent representation of
the observed video subsequences. Using the constructed HBR, we formulate the fall detection
problem as a posterior-maximization problem in which the posteriori probability for each observed
video subsequence is estimated using a multi-class SVM (support vector machine) classifier. Then,
we combine the computed posteriori probabilities from all of the observed subsequences to obtain
an overall class posteriori probability of the entire partially-observed depth-map video sequence.
To evaluate the performance of the proposed approach, we have utilized the Kinect sensor to
record a dataset of depth-map video sequences that simulates four fall-related activities of elderly
people, including: walking, sitting, falling form standing and falling from sitting. Then, using the
collected dataset, we have developed three evaluation scenarios based on the number of unobserved
video subsequences in the testing videos, including: fully-observed video sequence scenario, single
unobserved video subsequence of random lengths scenarios and two unobserved video subsequences
of random lengths scenarios. Experimental results show that the proposed approach achieved
an average recognition accuracy of 93.6%, 77.6% and 65.1%, in recognizing the activities during the
first, second and third evaluation scenario, respectively. These results demonstrate the feasibility of
the proposed approach to detect falls from partially-observed videos.

Keywords: fall detection; partially-observed videos; fall prediction; view-invariant geometric
descriptor; support vector machines; human representation; Kinect sensor

1. Introduction

The growing population of elderly people is becoming a pressing issue worldwide, especially in
developed countries. In Europe, the official projections indicate that the elderly population is expected
to grow rapidly by 58 million between 2004 and 2050 [1]. In the United States, 20% of the population is
expected to be elderly by 2030, while in 1994, the percentage of elderly people was only one in eight
Americans [2,3]. In fact, falls are among the major threats to the health of elderly people, particularly
those who live by themselves. According to [4], the percentage of elderly people who fall each year is
more than 33%. Falls can lead to both physiological and psychological problems for elderly people [5].
Moreover, in the case of falls that do not lead to immediate injuries, around one half of the non-injured
elderly fallers require assistance to get up, and hence, delayed assistance can result in long immobile
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periods, which might affect the faller’s health [5,6]. Therefore, accurate and efficient fall detection
systems are crucial to improve the safety of elderly people.

Recently, several fall detection systems have been proposed to detect fall incidents. Among
these systems, wearable and non-wearable sensor-based systems are the most commonly used [7].
Wearable sensor-based systems employ sensors that are attached to the subject to continuously monitor
the subject’s activities. For example, several fall detection systems utilize wearable devices that
are equipped with gyroscope and accelerometer sensors in order to identify fall incidents [8–10].
One limitation of wearable sensor-based fall detection systems is the requirement of wearing sensing
devices all of the time. Such a requirement might be impractical and inconvenient, especially that wearable
sensing devices need to be recharged on a regular basis. The second group of commonly-used fall
detection systems is based on using non-wearable sensing devices, such as vision and motion tracking
systems, to identify human activities [11–13]. RGB video cameras (2D cameras) and motion-capturing
systems are among the most widely-used non-wearable sensing devices for fall detection [14,15].
Fall detection systems that are based on analyzing RGB videos recorded by 2D cameras are highly
affected by several factors, such as occlusions, illumination, complex background and camera
view-angle. Such factors can reduce the accuracy of fall detection. Utilizing motion-capturing systems
for fall detection can be a remedy for the aforementioned factors. However, the high cost of the
motion-capturing systems and the need to mount markers on the subjects to track their motions might
limit the practical application of motion-capturing systems for fall detection.

Recently, Microsoft (Microsoft Corporation, Redmond, WA, USA) has introduced a low-cost
RGB-D sensor, called the Kinect sensor, which comprises both an RGB camera and a depth sensor.
The depth sensor of Kinect enables the recording of depth-map video sequences that preserve the
privacy of the subjects. This privacy feature makes the Kinect sensor a non-intrusive sensor compared
with the 2D cameras that reveal the identity of the subjects. Furthermore, the capability of the Kinect
sensor to detect and track the 3D positions of skeletal joints has attracted several researchers to utilize
the Kinect sensor to track human activities and detect falls by analyzing depth-map videos.

The literature reveals that the majority of fall detection systems that employ depth-map video
sequences are focused on detecting falls by analyzing the frames of a complete video sequence that
covers the entire fall incident [16–25], as illustrated in Figure 1a. Nonetheless, in real-life scenarios,
the fall incident might be partially observed due to the presence of an occlusion that blocks the view of
the camera or occludes the subject of interest. Moreover, power disconnections may result in missing
some video segments, which in turns can lead to partially-observed videos. Fall detection based on
partially-observed videos is considered challenging due to the fact that the unobserved subsequences
of video frames might be of different lengths and can occur at any time during video recording.
To address this challenge, researchers have recently attempted to predict falls using incomplete
depth-map video sequences [26,27]. Specifically, fall prediction aims to predict the falling event by
analyzing an incomplete depth-map video sequence in which a subset of frames that covers only the
beginning of the fall is observed, as depicted in Figure 1b. In fact, fall prediction can be viewed as
a special case of the general scenario of fall detection based on partially-observed videos, in which
the fall is identified by analyzing a video sequence that includes unobserved subsequences of video
frames having different durations and occurring at any time. Figure 1c illustrates the general scenario
of fall detection based on partially-observed videos.

Recently, several approaches have been proposed to detect falls under occluded conditions based
on analyzing the depth images acquired using the Kinect sensor. For example, Gasparrini et al. [23]
proposed a Kinect-based approach for detecting falls in indoor environments. The approach analyzes
the depth images acquired from the Kinect sensor using anthropometric relationships and features
to identify depth blobs that represent humans. Then, a fall is detected if the depth blob associated
with a human is near the floor. Stone and Skubic [28] proposed a two-stage fall detection approach
to identify three fall-related positions, including: standing, sitting and lying down. The first stage
of their approach analyzes the depth images acquired from a Kinect sensor to identify the vertical
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characteristics of each person and identify on-ground events based on the computed vertical state
information of the subject over time. Then, the second stage employs an ensemble of decision trees
classifier to identify falls in the on-ground events. Rougier et al. [24] proposed a Kinect-based system to
detect falls under occlusion conditions. Their system employs two features for fall detection, including
the subject’s centroid to measure the distance from the floor, as well as the body velocity. A fall is
detected when the velocity is larger than a certain threshold, while the distance from the ground to the
subject’s centroid is smaller than a specific threshold value.

Unlike the aforementioned approaches, in which fall-related activities were recognized while
the subject is partially occluded based on depth images, Cao et al. [29] proposed an approach
for recognizing human activities from partially-observed videos based on sparse coding analysis.
The reported experimental results in [29] show limited recognition accuracy, which might not be
suitable for real-world applications. Moreover, the approach employed in [29] considered only RGB
videos that include a single unobserved subsequence of video frames. As discussed previously, the use
of depth sensors, such as the Microsoft Kinect sensor, for fall detection provides several advantages
over the RGB cameras, including subject privacy preservation and the capability to acquire the 3D
positions of skeletal joints at interactive rates. To the best of our knowledge, the general scenario of fall
detection from partially-observed depth-map video sequences based on utilizing the 3D skeletal joint
positions has not been investigated in the literature.

Figure 1. Illustration of the different fall detection schemes. (a) Fall detection using a complete
depth-map video sequence in which the frames cover the entire fall incident [30]; (b) Fall prediction
using incomplete depth-map video sequence in which a subset of frames that cover the beginning of the
fall incident is observed, while the frames that cover the rest of the fall incident are not observed [27];
(c) Fall detection using a partially-observed depth-map video sequence in which the observed frames
cover discontinuous parts of the fall incident.

In this paper, we propose an approach for detecting falls from partially-observed depth-map
video sequences based on the 3D skeletal joint positions provided by the Kinect sensor. The proposed
approach utilizes the anatomical planes concept [31] to construct a human representation that can
capture both the poses and motions of the human body parts during fall-related activities. In particular,
we adopt and expand our earlier work [30,32] in which a motion pose geometric descriptor (MPGD)
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was proposed for analyzing human-human interactions and elderly fall detection using complete
depth-map video sequences. The MPGD consists of two profiles, namely motion and pose profiles.
These profiles enable effective capturing of the semantic context of human activities being performed at
each video frame. In this work, we expand the motion and pose profiles in the MPGD by introducing
a new set of geometrical relational-based features, to better describe fall-related activities. In order
to detect falls in partially-observed depth-map video sequences, we segment fully-observed training
video sequences into overlapping segments. Then, we construct a histogram-based representation
(HBR) of the MPGDs for the video frames of each segment. The HBR describes the distribution of
the MPGDs within each video segment and captures the spatiotemporal configurations encapsulated
within the activities of an elderly person during each video segment. Using the computed HBRs of
MPGDs, we train a support vector machine (SVM) classifier with a probabilistic output [33] to predict
the class of the performed activity in a given video segment. For any new video with unobserved
frames subsequences, we compute the HBR of the MPGDs that are associated with video frames in
each observed video subsequence. Then, for each observed video subsequence, we utilize the learned
SVM model to compute the class posteriori probability of the observed subsequence given its HBR.
Finally, to predict the class of the performed activity in the given partially-observed video, we combine
the obtained posteriori probabilities from all observed subsequences to obtain an overall posteriori
probability estimation for the partially-observed video.

In order to evaluate the proposed fall detection approach, we have utilized the Microsoft Kinect
sensor to record a dataset of depth-map video sequences that simulates fall-related activities of elderly
people. The recorded activities include: walking, sitting, falling form standing and falling from sitting.
Three evaluation procedures are developed to quantify the performance of the proposed approach at
various configurations, including: fully-observed video sequence, partially-observed video sequence
that includes one unobserved video subsequence of random length and partially-observed video
sequence that includes two unobserved video subsequences of random lengths. The experimental
results reported in this study demonstrate the feasibility of employing the proposed approach for
detecting falls based on partially-observed videos.

The remainder of this paper is organized as follows. In Section 2, we describe the collected dataset
of fall-related activities, the modified MPGD and HBR for human activities and the proposed fall
detection approach based on partially-observed depth-map videos. Section 3 presents the experimental
results and discussion. Finally, conclusions are presented in Section 4.

2. Materials and Methods

2.1. Dataset

Six healthy subjects (1 female and 5 males) volunteered to participate in the experiments.
The mean ± standard deviation age of the subjects was 33± 8.7 years. The experimental procedure
was explained in detail for each subject. A signed consent form was collected from each subject
before participating in the experiments. Furthermore, the participants had the chance to withdraw
from the study at anytime during the experimental procedure. The experimental procedure was
reviewed and approved by the Research Ethics Committee at the German Jordanian University. In this
study, each subject was asked to simulate four activities related to the fall event. These activities
are: walking, sitting, falling from standing and falling from sitting. The subjects performed the
activities several times, and each time, the activities were carried out with various speeds and styles
to capture the inter- and intra-personal variations between different subjects. This experiment was
performed in a laboratory environment in which a mattress was placed on the ground to protect the
subjects during falling. In order to record depth-map video sequences of the aforementioned four
activities, a Kinect Sensor for XBOX 360 (Microsoft, Redmond, WA, USA) with the Kinect SDK v1.0
beta 2 (Microsoft, Redmond, WA, USA) was utilized.The collected dataset consists of approximately
19,300 frames that represent 229 activity sequences. In fact, different activities have various time
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durations depending on the subject and the type of the activity. The average length of the recorded
activity sequences is approximately 84 frames. The activity sequences were captured at a rate of
15 frames per second (fps). The resolutions of the acquired RGB images and depth maps are 640× 480
and 320× 240, respectively. Simultaneous to the RGB images and depth maps, the Kinect sensor
enabled the acquisition of the three-dimensional (3D) coordinates of twenty skeletal joints at a rate of
15 fps. The acquired sequences of RGB images, depth maps and 3D coordinates of the skeletal joints
that correspond to each activity were manually annotated into multiple temporal segments, such that
each segment represents a sub-activity. For example, the falling from standing activity was divided
into three temporal segments. The first temporal segment represents the standing pose sub-activity.
The second temporal segment represents the falling from standing pose sub-activity. Finally, the third
temporal segment represents the fall pose sub-activity. The sub-activities associated with each of the
four recorded activities are provided in Table 1. Figure 2 provides sample images of the different
sub-activities associated with the fall-related activities.

Figure 2. Sample images of different sub-activities associated with the four fall-related activities
investigated in this study.
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Table 1. The sub-activities encapsulated within each activity.

Activity Sub-Activities

Walking Walking forward (i.e., walking towards the Kinect sensor) and walking
backward (i.e., walking away from the Kinect sensor).

Sitting Stand still pose, bending down for sitting and sitting pose.
Falling from standing Stand still pose, falling from standing pose and fall pose.
Falling from sitting Sitting pose, falling from sitting pose and fall pose.

2.2. Human Activity Representation

Recently, Alazrai et al. [32] proposed a view-invariant motion-pose geometric descriptor (MPGD)
that utilizes the anatomical planes concept [31] to model the interactions between two humans.
The MPGD employs the Microsoft Kinect sensor to capture the activities of two interacting humans by
analyzing the 3D locations of twenty skeletal joints of each human, including: hip center (hc), spine
(sp), shoulder center (sc), head (hd), left hand (lhd), right hand (rhd), left wrist(lwt), right wrist (rwt),
left elbow (lew), right elbow (rew), left shoulder (lsh), right shoulder (rsh), left hip (lhp), right hip
(rhp), left knee (lke), right knee (rke), left ankle (lak), right ankle (rak), left foot (lft) and right foot (rft).
Then, using the acquired skeletal joint positions, two profiles, namely motion and pose profiles, are
constructed to describe the movements of the body parts of the two interacting humans. Finally, the
MPGD is constructed by combining the motion and pose profiles. Using the two profiles of the MPGD,
different spatiotemporal configurations that are associated with various activities can be captured at
each video frame [32]. In this paper, we adopt and modify the MPGD to describe the four fall-related
activities described in Section 2.1. Specifically, the MPGD is modified to represent the activities of
a single human rather than two humans. In addition, the motion and pose profiles are expanded by
introducing a set of geometrical relational-based features to better characterize the fall-related activities.
In the next subsections, we provide a detailed description of the modified motion and pose profiles of
the MPGD.

2.2.1. Motion Profile

The movements of different body parts during various human activities can be described with
respect to three anatomical planes, namely the transverse plane (TP), coronal plane (CP) and sagittal
plane (SP), intersecting at a specific point on the human body [31]. Inspired by the concept of the
anatomical planes, we propose a view-invariant motion profile that can capture the movements of
different body parts during fall-related activities. Specifically, to construct a view-invariant motion
profile that is independent of the location of the Kinect sensor, we build a body-attached coordinate
system that is centered at a specific joint position. Then, the 3D positions of the skeletal joints, which are
acquired using the Kinect sensor, are recomputed with respect to the origin of the body-attached
coordinate system. Using the recomputed skeletal joint positions, we construct the three anatomical
planes, such that the three planes are intersecting at the origin of the body-attached coordinate
system. Finally, the movement of a specific body part can be described in terms of the position of
the displacement vector, which extends between the initial and final positions of the movement with
respect to the three anatomical planes. For example, the movement of the left hand in the upward
direction can be represented in terms of the position of the displacement vector constructed between
the initial and final positions of the hand movement with respect to the three anatomical planes.
The construction procedure of the motion profile for each frame in the depth-map video sequence is
as follows:

1. In order to analyze the depth-map video sequence, we utilize a sliding window of size W frames
and overlap of size O frames between any two consecutive positions of the sliding window.
Moreover, for a given position of the sliding window, the frames in the window are numbered
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sequentially between 1 and W. For each window position, we build a motion profile for the
human activities incorporated within the frames of the window as follows:

1.1 We create a body-attached coordinate system that is centered at the hip center (hc) joint.
Then, we recalculate the positions of all of the other skeletal joints with respect to the hc
joint. Figure 3 illustrates the constructed body-attached coordinate system.

1.2 Using the recalculated joint positions, we define the three anatomical planes, i.e., the TP,
CP and SP, such that the three planes intersect at the hc joint (see Figure 3). Each plane is
defined using three non-collinear skeletal joint positions as described below:

TP ≡< hc, ˜lhp, ˜rhp > . (1)

CP ≡< hc, lsh, rsh > . (2)

SP ≡< hc, sc, sp > . (3)

In Equation (1), ˜lhp and ˜rhp are the 3D positions of the left and right hip joints after
applying a translation transformation along the Y-axis of the body-attached coordinate
system to align the two joints with the hc joint.

1.3 We compute the displacement vectors for a subset of the skeletal joints, denoted as sdv,
that are related to the fall-event. In this study, the subset sdv is composed of the following
joints: sp, hd, rhd, lhd, rft and lft. The displacement vector of each skeletal joint X ∈ sdv is
computed with respect to the first frame in the sliding window as follows:

DVX(k) = [(X(k)− X(1)], (4)

where DVX(k) is the displacement vector of the joint X in the k-th frame within the current
sliding window. X(1) and X(k) are the 3D coordinates of the joint X in the first and
k-th frames, respectively, within the current sliding window, where k ∈ {2, 3, · · · , W}.
Then, we identify the direction of motion of each joint in the set sdv with respect to the
three anatomical planes by calculating the signed distance between the displacement
vector of that joint and each one of the three anatomical planes. The signed distance
(SgnDist) of the displacement vector DVX(k) with respect to the anatomical plane Y, where
Y ∈ {TP, CP, SP}, can be calculated as follows:

SgnDist(DVX(k), Y) =

(
(Y(2)− Y(1))× (Y(3)− Y(1))
‖ (Y(2)− Y(1))× (Y(3)− Y(1)) ‖

)
·DVX(k), (5)

where Y(i) is the i-th joint that was used to construct the plane Y and i ∈ {1, 2, 3}.
The operators · and × indicate the vector dot-product and cross-product operations,
respectively. Depending on the sign (positive or negative) of the SgnDist computed for
a specific displacement vector with respect to each one of the three anatomical planes,
we can determine if the displacement vector is located above or below the TP, in front or
behind the CP and to the left or right of the SP.

1.4 The motion profile of each video frame in the current window position is defined as
a vector, which consists of the calculated displacement vectors along with their associated
signed distances for the skeletal joints in the set sdv.

2. Then, we move the sliding window to the next position and repeat the procedure in the first step.
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In the next subsection, we describe the construction procedure of the pose profile for each frame
in the depth-map video sequence.

Figure 3. A schematic diagram that describes the construction of the body-attached coordinate system
at the hip center joint along with the three anatomical planes.

2.2.2. Pose Profile

Fall-related activities involve different sub-activities that occur over time, such as the sitting
pose, fall pose, stand still pose and other sub-activities, as described in Section 2.1. Having the ability
to distinguish between these different sub-activities is crucial to enhance the fall detection process.
However, different sub-activities may have similar body-postures due to inter- and intra-personal
variations, which make the process of identifying these sub-activities challenging. In order to recognize
different fall-related poses, we propose to construct a pose profile that can describe the different
human postures that are incorporated within the different fall-related sub-activities using two types
of geometrical relational-based features, namely the distance-based features (Pd f ) and angle-based
features (Pa f ).

In order to obtain the distance-based features, we compute the Euclidean distances between the
3D locations of every pair of the skeletal joints as follows:

Pd f (i, j) =‖ Si − Sj ‖ , ∀i 6= j, (6)

where (i, j) represents any pair of the twenty skeletal joints employed in this study for detecting the
fall-related activities as described in Section 2.2. Si and Sj are the 3D positions of the i-th and j-th
skeletal joints, respectively. Then, for a video frame at index t, the distance-based features Pd f (t) are
defined as the vector combining all of the distances Pd f (i, j) for all i 6= j.

The angle-based features is represented as the set of time-varying angles between the different
body parts associated with the fall-related sub-activities. Specifically, for each video frame, we utilize
the skeletal joint positions to compute the angles listed in Table 2. Then, for a video frame at index t,
the angle-based features Pa f (t) are defined as a vector, which consists of the values of the nine angles
listed in Table 2.
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Table 2. The angle-based features employed in the pose profile.

Angle Description Mathematical Formulation

θLshank The angle between the left shank and
a translated transverse plane (TP1) that
passes through the left ankle joint position,
where the left shank is defined as a line in
the space that passes through the left ankle
and left knee joint positions.

θLshank = arcsin
|~nTP1 · ~uLshank|
‖ ~nTP1 ‖‖ ~uLshank ‖

, (7)

where ~nTP1 is the normal vector of the
translated transverse plane TP1, and~uLshank
is the direction vector of the left shank line.

θLthigh The angle between the left thigh and
a translated transverse plane (TP2) that
passes through the left knee joint position,
where the left thigh is defined as a line in
the space that passes through the left hip
and left knee joint positions.

θLthigh = arcsin
|~nTP2 · ~uLthigh|
‖ ~nTP2 ‖‖ ~uLthigh ‖

, (8)

where ~nTP2 is the normal vector of the
translated transverse plane TP2, and ~uLthigh
is the direction vector of the left thigh line.

θLknee The angle between the left thigh and left
shank.

θLknee = θLthigh − θLshank (9)

θRshank The angle between the right shank and
a translated transverse plane (TP3) that
passes through the right ankle joint position,
where the right shank is defined as the line
in the space that passes through the right
ankle and right knee joint positions.

θRshank = arcsin
|~nTP3 · ~uRshank|
‖ ~nTP3 ‖‖ ~uRshank ‖

, (10)

where ~nTP3 is the normal vector of the
translated transverse plane TP3 and ~uRshank
is the direction vector of the right shank line.

θRthigh The angle between the right thigh and
a translated transverse plane (TP4) that
passes through the right knee joint position,
where the right thigh is defined as the line
in the space that passes through the right
hip and right knee joint positions.

θRthigh = arcsin
|~nTP4 · ~uRthigh|
‖ ~nTP4 ‖‖ ~uRthigh ‖

, (11)

where ~nTP4 is the normal vector of the
translated transverse plane TP4, and ~uRthigh
is the direction vector of the right thigh line.

θRknee The angle between the right thigh and
right shank.

θRknee = θRthigh − θRshank (12)

θtrunck The angle between the trunk and the
transverse plane (TP), where the truck is
defined as the line in the space that passes
through the the hip center and shoulder
center joint positions.

θtrunk = arcsin
|~nTP · ~utrunk|
‖ ~nTP ‖‖ ~utrunk ‖

, (13)

where ~nTP is the normal vector of the
transverse plane TP and ~utrunk is the
direction vector of the trunk line.

θLhip The angle between the trunk and left thigh.
θLhip = θLthigh − θtrunk (14)

θRhip The angle between the trunk and the
right thigh.

θRhip = θRthigh − θtrunk (15)

After computing the motion and pose profiles, the modified MPGD of the frame at index t in
a depth-map video sequence is constructed by combining both the motion and pose profiles to form
a descriptor vector as follows:

MPGD(t) = [MP(t), Pd f (t), Pa f (t)], (16)

where MP(t) represents the motion profile of the video frame at index t. In the next subsection,
we describe the proposed classification framework for detecting falls from partially-observed
depth-map video sequences.

2.3. Fall Detection from Partially-Observed Depth-Map Video Sequences

A partially-observed depth-map video sequence (V) that consists of s observed video
subsequences can be represented as the union of the observed video subsequences. Specifically,
V can be defined as follows:
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V ≡
s⋃

r=1

Vr[tr(1) : tr(l)], (17)

where Vr[tr(1) : tr(l)] is the r-th observed subsequence of frames and tr(1) and tr(l) are the indices of
the first and last frames in the r-th observed video subsequence, respectively. In Figure 4, we illustrate
the representation of partially-observed video sequences described in Equation (17). In particular,
Figure 4 provides an example of a partially-observed depth-map video sequence that consists of three
observed video subsequences. Such a partially-observed video can be represented as the union of the
three observed video subsequences, namely V1[t1(1) : t1(l)], V2[t2(1) : t2(l)] and V3[t3(1) : t3(l)].

Figure 4. A partially-observed depth-map video sequence composed of three observed video subsequence.

In this work, we aim at classifying a partially-observed video sequence V into one of the four
fall-related activities, namely walking (ω1), sitting (ω2), falling from standing (ω3) and falling from
sitting (ω4). Let us denote the set of fall-related activities as Ω = {ωc}, c ∈ {1, 2, 3, 4}. Then, the class
posteriori probability that a partially-observed video V belongs to the activity class ωc given the
observed subsequences can be defined as follows:

P
(

ωc|
s⋃

r=1

Vr[tr(1) : tr(l)]
)

∝
s

∑
r=1

αrP
(

ωc|Vr[tr(1) : tr(l)]
)

, (18)

where P(ωc|Vr[tr(1) : tr(l)]) is the class posteriori probability that the r-th observed video subsequence
Vr[tr(1) : tr(l)] belongs to the class ωc. αr represents the ratio between the length of the subsequence
Vr[tr(1) : tr(l)] and the sum of the lengths of the observed subsequences. The class of the partially-
observed video V is the activity with the index c∗ that maximizes the posteriori probability in
Equation (18) and can be written as follows:

c∗ = arg max
c

P
(

ωc|
s⋃

r=1

Vr[tr(1) : tr(l)]
)

. (19)

Partially-observed depth-map video sequences have different lengths. At the same time,
the unobserved video subsequences can occur at any time and have various durations. Hence, in order
to estimate the posteriori probability described in Equation (18), we need to have a length-independent
representation of the observed video subsequences. In this paper, we propose to represent each
observed video subsequence using a histogram of MPGDs that consists of n bins. In particular,
the proposed histogram-based representation (HBR) employs the k-means clustering algorithm to
build a codebook that consists of n codewords using the MPGDs extracted from the fully-observed
training video sequences. The number of codewords n is selected to match the number of sub-activities
in our dataset, which is equal to eight. Then, for any new video subsequence, we construct a histogram
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of eight bins, where each bin is associated with a specific codeword. The value of each bin represents the
number of MPGDs in the given video subsequence that belong to a specific codeword after performing
the k-means clustering algorithm. Therefore, the HBR can represent any video subsequence in our
dataset using a vector H ∈ R8.

In order to estimate the class posteriori probability P
(

ωc|
⋃s

r=1 Vr[tr(1) : tr(l)]
)

, we start by
constructing the HBR for each observed video subsequence. Specifically, the HBR for the r-th observed
video subsequence Vr[tr(1) : tr(l)] is denoted as HVr [tr(1):tr(l)]. Then, the class posteriori probability in
Equation (18) can be formulated as:

P
(

ωc|HV1[t1(1):t1(l)], · · · , HVr [tr(1):tr(l)], · · · , HVs [ts(1):ts(l)]

)
∝

s

∑
r=1

αrP(ωc|HVr [tr(1):tr(l)]), (20)

where P(ωc|HVr [tr(1):tr(l)]) is the class posteriori probability given the HBR of the r-th observed
subsequence Vr[tr(1) : tr(l)]. In this work, we propose to utilize a multi-class support vector machine
(SVM) classifier with a Gaussian radial basis function (RBF) kernel [33,34] to estimate the class posteriori
probabilities of the observed video subsequences described in Equation (20). In order to train the
multi-class SVM classifier, we utilize a one-against-one scheme using fully-observed video sequences.
In particular, we divide each training sequence into ξ overlapped video segments, then using the
extracted video segments, we construct a set of training pairs for each training video as follows:

(Vtrn, ωc) = {(HVtrn [t1(1):t1(l)], ωc), · · · , (HVtrn [tj(1):tj(l)], ωc), · · · , (HVtrn [tξ (1):tξ (l)], ωc)}, (21)

where Vtrn is a fully-observed training video of class ωc. HVtrn [tj(1):tj(l)] is the histogram-based
representation of the j-th segment of the training video Vtrn, and tj(1) and tj(l) are the indices of
the first and last frames in the j-th video segment, respectively. After constructing the training pairs
from each training video sequence, we employ a leave one video sequence out cross-validation
procedure (LOVSO-CV) to train the multi-class SVM classifier and a grid-based search to tune the RBF
kernel parameter σ > 0 and the regularization parameter C > 0. Using the trained multi-class SVM
model and Equation (20), the class of a partially-observed video sequence V can be determined by
rewriting Equation (19) as follows:

c∗ = arg max
c

P
(

ωc|HV1[t1(1):t1(l)], · · · , HVr [tr(1):tr(l)], · · · , HVs [ts(1):ts(l)]

)
. (22)

In particular, to predict the class of a partially-observed testing video sequence, we compute
the HBR of each observed video subsequence in the testing video. Then, we utilize the trained
multi-class SVM model to approximate the class posteriori probability given the HBRs of the observed
subsequences as described in Equation (20). Finally, the class of the testing video is determined using
Equation (22), such that the testing video will be assigned to the activity class that has the maximum
posterior probability given the HBRs of the observed video subsequences.

3. Experimental Results and Discussion

In order to evaluate the performance of the proposed approach, we utilize the collected dataset,
described in Section 2.1, to develop three evaluation scenarios based on the number of unobserved
video subsequences in the testing videos, including: fully-observed video sequences, single unobserved
video subsequence with random length and two unobserved video subsequences with random
lengths. Moreover, we utilize the LOVSO-CV procedure to evaluate the performance of each scenario.
In particular, the classifiers in each scenario are trained using all of the video sequences except one
video sequence that is used for testing. This evaluation scheme is repeated for all possible combinations,
and the overall result is computed by averaging the results obtained from each repetition. For all
evaluation scenarios, the window size W and the overlap size O of the motion profile are selected
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experimentally and are equal to three frames and one frame, respectively. In order to train the
SVM classifiers in the second and third evaluation scenarios, we divided each video sequence into
overlapping segments. The size of each segment is equal to 20% of the total number of frames in the
video sequence, and the overlap between any two consecutive segments is equal to 50%. Moreover,
as the lengths of the unobserved video sequences are random, we evaluate the performance of
the proposed approach for the second and third evaluation scenarios by repeating the LOVSO-CV
procedure ten times, such that in each repetition, we generate unobserved video subsequences
with different random lengths in the testing sequences. Then, the average values of the recognition
accuracy, precision, recall and F1-measure are computed as performance evaluation metrics over the
ten LOVSO-CV train-test repetitions. These metrics are defined as follows:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
, (23)

Precision =
TP

(TP + FP)
, (24)

Recall =
TP

(TP + FN)
, (25)

F1 −measure =
2TP

(2TP + FP + FN)
, (26)

where TP is the number of true positive cases, TN is the number of true negative cases, FP is the
number of false positive cases and FN is the number of false negative cases. Next, we discuss the
results of our proposed approach for each evaluation scenario.

3.1. Evaluation on the Fully-Observed Video Sequences Scenario

In this section, we evaluate the performance of the proposed approach in recognizing the four
fall-related activities from fully-observed video sequences. Specifically, in this evaluation scenario,
the video sequences are fully observed as described in Figure 1a. For the purpose of this evaluation
scenario, we have trained a multi-class SVM classifier using the HBRs obtained from unsegmented
training video sequences. In particular, for each training video Vtrn of length N frames, we construct
the HBR of the video frames with indices between one and N. Using the obtained HBR from each
training video sequence, we train the multi-class SVM classifier to identify the four fall-related activities
in our dataset.

In order to classify a testing video sequence Vtst of length T, we construct the HBR of the video
frames with indices between one and T in the video Vtst, namely HVtst [1:T]. Then, using the trained
multi-class SVM classifier, the class of Vtst can be determined by rewriting Equation (22) as follows:

c∗ = arg max
c

P(ωc|HVtst [1:T]). (27)

Table 3 shows the results of recognizing the four fall-related activities expressed using the
precision, recall and F1-measure as an evaluation metric. The average recognition accuracy of
fully-observed video sequences is 93.6%. The results demonstrate the capability of the proposed
approach to detect falls from fully-observed video sequences.
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Table 3. The recognition results of the four fall-related activities from fully-observed video sequences.

Activity Precision Recall F1-Measure

Walking 95.0% 94.4% 94.7%
Sitting 92.1% 90.1% 91.1%
Falling from sitting 97.0% 96.5% 96.7%
Falling from standing 96.1% 95.3% 95.7%

Overall average 95.1% 92.8% 94.6%

In comparison, the Kinect-based approach proposed by Marzahl et al. [35], which was evaluated
using 55 fall depth-map videos, achieved an average fall classification accuracy of 93%. Similarly,
the Kinect-based system introduced by Planinc and Kampel [36] achieved fall detection accuracies
between 86.1% and 89.3% based on a dataset that includes 40 falls and 32 non-falls depth-map videos.
In fact, the results reported in our study for the fully-observed depth-map video sequences are
comparable to the results reported in the previous approaches. It is worth noting that the main focus
of our work is to detect falls form partially-observed depth-map video sequences, which has not been
investigated in previous studies. The following subsections provide the performance evaluation results
obtained by our approach for the partially-observed depth-map video sequences.

3.2. Evaluation on the Single Unobserved Video Subsequence with Random Length Scenarios

In this section, we evaluate the performance of the proposed approach in recognizing the four
fall-related activities from partially-observed video sequences. In particular, we have constructed
partially-observed video sequences by generating temporal gaps with random lengths at the beginning,
end and middle of the testing video sequences. Next, we discuss the evaluation results of our proposed
approach for each temporal gap configuration.

3.2.1. Evaluation Results When the Temporal Gap Is at the Beginning of the Video Sequences

In this evaluation scenario, we aim at evaluating the performance of the proposed approach in
recognizing the four fall-related activities when the unobserved video subsequence is happening at
the beginning of the video sequence. In particular, we have investigated the scenario in which the
temporal gap is mainly affecting the video frames belonging to the first sub-activity and a subset of
the second sub-activity in each of the four fall-related activities. Hence, our assumption is that the
majority of the observed video frames belong to the last sub-activity. To achieve this goal, we have
set the temporal gap interval to [1 : λ], where λ is a random integer that is larger than one and less
than 60% of the total length of the video sequence. Table 4 shows the results of recognizing the four
fall-related activities expressed in terms of the precision, recall and F1-measure as an evaluation metric.
In addition, Table 4 provides the average length of the temporal gaps introduced in the testing video
sequences for each activity over the 10 repetitions of the LOVSO-CV procedure. The proposed approach
achieved an average recognition accuracy of 81.3% in identifying the four fall-related activities from
partially-observed video sequences.

Table 4. The recognition results of the four fall-related activities from partially-observed videos when
the missing subsequence of frames is at the beginning of the testing video sequences.

Activity Precision Recall F1-Measure Average Gap’s Length (Frames)

Walking 90.8% 81.5% 85.9% 32
Sitting 84.0% 85.0% 84.5% 37
Falling from sitting 76.2% 79.0% 77.6% 34
Falling from standing 77.0% 78.4% 77.7% 38

Overall average 82.0% 81.0% 81.4% 35
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The results in Table 4 indicate that the average recognition accuracy has been reduced to 81.3%
compared to 93.6% that was obtained in the fully-observed scenario. This can be attributed to the fact
that the ratio of the average length of the introduced temporal gaps across the four activities in this
scenario, which is equal to 35 frames, to the average sequence length in our dataset, which is equal
to 84 frames, is approximately 42%. The relatively high lengths of the introduced temporal gaps can
generate unobserved subsequences that represent multiple sub-activities, which in turn reduces the
recognition accuracy. For example, when the unobserved video subsequence is spanning the first two
sub-activities in the falling from sitting and falling from standing activities, the remaining sub-activity
represents the falling pose, which is common to both activities. This can reduce the ability of the
proposed approach to distinguish between different activities that involve fall-related events.

3.2.2. Evaluation Results When the Temporal Gap Is at the End of the Video Sequences

In this evaluation scenario, we aim at evaluating the performance of the proposed approach
in recognizing the four fall-related activities when the unobserved video subsequence is happening
at the end of the video sequence. This is similar to the prediction scenario illustrated in Figure 1b.
In particular, we have investigated the scenario in which the temporal gap is mainly affecting the
video frames belonging to the last sub-activity and a subset of the second sub-activity in each of
the four fall-related activities. Hence, our assumption is that the majority of the observed video
frames belong to the first sub-activity. To achieve this goal, we have set the temporal gap interval
to [γ : T], where γ is a random integer in the range ( 4T

10 , T). Table 5 provides the recognition results
of the four fall-related activities expressed in terms of the precision, recall and F1-measure as an
evaluation metric. In addition, Table 5 provides the average length of the temporal gaps introduced
in the testing video sequences for each activity over the 10 repetitions of the LOVSO-CV procedure.
The proposed approach achieved an average recognition accuracy of 73.3% in recognizing the four
fall-related activities from partially-observed video sequences.

Table 5. The recognition results of the four fall-related activities from partially-observed videos when
the missing subsequence of frames is at the end of the testing video sequences.

Activity Precision Recall F1-Measure Average Gap’s Length (Frames)

Walking 79.7% 81.2% 80.4% 29
Sitting 69.3% 80.0% 74.3% 35
Falling from sitting 71.5% 74.0% 72.7% 32
Falling from standing 61.8% 68.0% 64.7% 36

Overall average 70.6% 75.8% 73.0% 33

Recognizing human activities from partially-observed video sequences with the unobserved
video subsequence at the end of the video is considered challenging. The reason behind that is the
absence of some key sub-activities that can distinguish different activities from each other. For example,
when the sub-activity that represents the falling pose is unobserved, distinguishing between sitting
and falling from sitting activities becomes challenging, especially when the duration of the falling
from sitting pose sub-activity is short. Similarly, the absent of the fall pose increases the difficulty in
distinguishing between the walking and falling from standing activities. This explain the reduction
in the average recognition accuracy between this evaluation scenario and the previously described
scenario in Section 3.2.1.

3.2.3. Evaluation Results When the Temporal Gap Is at the Middle of the Video Sequences

In this evaluation scenario, we aim at evaluating the performance of the proposed approach
in recognizing the four fall-related activities when the unobserved video subsequence is happening
at the middle of the video sequence. In particular, we have investigated the scenario in which the
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temporal gap is mainly affecting the video frames belonging to the second sub-activity, along with
a subset of the frames that belong to the first and last sub-activities in the four fall-related activities.
Hence, our assumption is that the majority of the observed video frames are belonging to the first
and last sub-activities. To achieve this goal, we have set the temporal gap interval to [β1, β2], where
β1 and β2 are random integers that satisfy 2T

10 < β1 < β2 < 8T
10 . The scenario in this section can

be viewed as a simplified version of the scenario described in Figure 1c, as it consists of a single
unobserved subsequence of frames. Table 6 presents the recognition results of the four fall-related
activities expressed in terms of the precision, recall and F1-measure as an evaluation metric. The last
column in Table 4 provides the average length of the temporal gaps introduced in the testing video
sequences for each activity over the 10 repetitions of the LOVSO-CV procedure. The proposed approach
achieved an average recognition accuracy of 78.1% in recognizing the four fall-related activities from
partially-observed video sequences.

Table 6. The recognition results of the four fall-related activities from partially-observed videos when
the missing subsequence of frames is at the middle of the testing video sequences.

Activity Precision Recall F1-Measure Average Gap’s Length (Frames)

Walking 86.0% 72.7% 78.8% 21
Sitting 76.2% 85.0% 80.4% 27
Falling from sitting 82.1% 84.0% 83.0% 24
Falling from standing 73.2% 82.0% 77.3% 22

Overall average 79.4% 80.9% 79.9% 24

The results in Table 6 show that the proposed approach achieved a better recognition accuracy in
comparison with the results obtained when the unobserved video subsequences were at the end of the
video sequences, as described in Section 3.2.2. This can be attributed to the fact that, in this scenario,
we observe two video subsequences from each testing video. These observed video subsequences
comprise the starting and ending sub-activities of each activity. Furthermore, the observed video
subsequences might contain subsets of the video frames that belong to the intermediate sub-activities
in each activity. This in turn can enhance the recognition accuracy as depicted in Table 6.

3.3. Evaluation of the Two Unobserved Video Subsequences with Random Lengths Scenarios

In this section, we evaluate the performance of the proposed approach in recognizing the
four fall-related activities from partially-observed video sequences with two unobserved frame
subsequences. In particular, we consider two configurations for the locations of the two unobserved
frames subsequences. In the first configuration, we construct partially-observed video sequences by
generating two temporal gaps with random lengths at the beginning and the end of the testing video
sequences. In the second configuration, we generate two temporal gaps with random lengths between
the beginning and the end of the testing video sequences. Next we discuss the evaluation results of
our proposed approach for the aforementioned two configurations.

3.3.1. Evaluation Results When the Two Temporal Gaps Are at the Beginning and the End of the
Video Sequences

In this evaluation scenario, we aim at evaluating the performance of the proposed approach
in recognizing the four fall-related activities when the unobserved video subsequences are at the
beginning and the end of the video sequence. To achieve that, we created two temporal gaps. The first
temporal gap spans a subset of video frames that belong to the first and second sub-activities; while the
second gap spans video frames that belong to the second and last sub-activities. Hence, the majority of
the remaining frames belong to the second sub-activity. To achieve this goal, we have set the intervals
of the two temporal gaps to [1, β1] and [β2, T], where β1 and β2 are two random integers in the ranges
of 1 < β1 < 4T

10 and 6T
10 < β2 < T, respectively. Table 7 presents the recognition results of the four
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fall-related activities expressed in terms of the precision, recall and F1-measure as an evaluation metric.
The last two columns in Table 7 provide the average lengths of the two temporal gaps introduced
in the testing video sequences of each activity over the 10 repetitions of the LOVSO-CV procedure.
The proposed approach achieved an average recognition accuracy of 58.8% in identifying the four
fall-related activities from partially-observed video sequences.

Table 7. Recognition results of the fall-related activities from partially-observed videos with missing
video subsequences at the beginning (first temporal gap) and the end (second temporal gap) of the
video sequences.

Activity Precision Recall F1-Measure
Average Length of Average Length of
the First Temporal the Second Temporal

Gap (Frames) Gap (Frames)

Walking 63.3% 52.7% 57.5% 18 16
Sitting 64.4% 62.0% 68.7% 22 27
Falling from sitting 57.0% 66.0% 61.1% 20 18
Falling from standing 54.2% 64.0% 58.7% 17 19

Overall average 59.7% 61.2% 61.5% 19 20

Table 7 shows that the recognition results have been reduced drastically compared with the results
of the previous evaluation scenarios. This reduction in the recognition accuracy is due to the large
amount of unobserved video frames, which are mainly frames from the first and the last sub-activities
of each activity. These sub-activities have a key role in distinguishing between different fall-related
activities, such as sitting and falling from sitting activities.

3.3.2. Evaluation Results When the Two Temporal Gaps Are between the Beginning and the End of the
Video Sequences

In this evaluation scenario, we aim at evaluating the performance of the proposed approach in
recognizing the four fall-related activities; the unobserved video subsequences are at random locations
between the beginning and the end of the video sequence, which is similar to the scenario described in
Figure 1c. To achieve that, we created two temporal gaps. The first gap spans a subset of the video
frames that belong to the first and second sub-activities. While the second gap spans a subset of
the video frames that belong to the second and last sub-activities. Hence, the remaining frames are
sparsely distributed between the first, second and last sub-activities. To implement the temporal gaps
in this evaluation scenario, we have set the intervals of the two temporal gaps to [β1, β2] and [γ1, γ2],
where β1, β2, γ1 and γ2 are random integers that satisfy the two conditions: 2T

10 < β1 < β2 < 4T
10

and 6T
10 < γ1 < γ2 < 8T

10 . Table 8 provides the recognition results of the four fall-related activities
expressed in terms of the precision, recall and F1-measure as an evaluation metrics. The last two
columns in Table 8 provide the average lengths of the two temporal gaps introduced in the testing video
sequences of each activity over the 10 repetitions of the LOVSO-CV procedure. The proposed approach
achieved an average recognition accuracy of 71.4% in identifying the four fall-related activities from
partially-observed video sequences.

Table 8. Recognition results of the four fall-related activities from partially-observed videos with
two unobserved video subsequences between the beginning and the end of each testing video sequence.

Activity Precision Recall F1-Measure
Average Length of Average Length of
the First Temporal the Second Temporal

Gap (Frames) Gap (Frames)

Walking 78.3% 73.6% 75.9% 10 9
Sitting 73.1% 72.0% 72.5% 11 12
Falling from sitting 71.6% 76.3% 73.9% 13 10
Falling from standing 72.2% 78.1% 75.0% 12 11

Overall average 73.8% 75.0% 74.3% 11 10
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The results in Table 8 show that, in this evaluation scenario, the proposed approach achieved
a better recognition accuracy compared with the results obtained when the two temporal gaps were
at the beginning and the end of the testing video sequences, as described in Section 3.3.1. This can
be justified by observing that each testing video consists of three observed video subsequences after
creating the temporal gaps. The first observed video subsequence is at the beginning of the testing
video and consists of video frames from the first sub-activity. The second observed video subsequence
is at the middle of the testing video and might contain frames from more than one sub-activity
depending on the lengths of the temporal gaps. The third observed video subsequence is at the end of
the testing video and consists of video frames from the last sub-activity. This implies that the observed
video subsequences are comprising video frames from the different sub-activities of an activity in
a given testing video, which can enhance the recognition accuracy.

4. Conclusions

In this paper, we proposed an approach for fall detection from partially-observed depth-map
video sequences. The proposed approach utilizes the Microsoft Kinect sensor to build a view-invariant
descriptor for human activities, namely the motion-pose geometric descriptor (MPGD). To detect
falls in the partially-observed depth-map video sequence, we segmented fully-observed training
video sequences into overlapping video segments. Then, we constructed an HBR of the MPGDs
extracted from the video frames within each segment. Using the computed HBRs, we trained an
SVM classifier with a probabilistic output to predict the class of the performed activity in a given
partially-observed video. To classify a new video with unobserved frames subsequences, we utilized
the trained SVM models to compute the class posteriori probability of each observed subsequence.
Then, we combined the computed posteriori probabilities from all observed subsequences to obtain
an overall class posteriori probability for the partially-observed video. In order to evaluate the
performance of the proposed approach, we utilized the Kinect sensor to record a dataset of depth-map
video sequences that simulates four fall-related activities of elderly people, namely walking, sitting,
falling form standing and falling from sitting. Furthermore, using the collected dataset, we have
developed three evaluation scenarios based on the number of unobserved video subsequence in the
testing videos. Experimental results show the potential of the proposed approach to detect falls from
partially-observed videos efficiently.

In the future, we intend to extend our approach to utilize multiple Kinect sensors to overcome the
distance limitation of the Kinect sensor, the subject occlusion problem and the requirement of having
the subject in the frontal or near-frontal view with respect to the Kinect sensor. Such an extension
can also enhance the accuracy of localizing the 3D skeletal joint positions. Furthermore, we plan to
extend our dataset to evaluate the performance of the proposed approach in recognizing a larger
number of human activities in partially-observed depth-map video sequences. Moreover, we plan to
evaluate the proposed approach using more complex datasets that comprise activities of more than
one person. In addition, for each examined human activity, a higher number of evaluation trails will be
employed that include various configurations, such as different lengths and locations of the induced
temporal gaps.
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