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Abstract: Empirical mode decomposition (EMD) is an adaptive method for decomposing a signal
into intrinsic mode functions (IMFs).This study explored using EMD of ultrasound imaging for
gain-independent measurements on tissue echogenicity. The IMF-based echogenicity ratio (IER) was
proposed using the first (C1) and second IMFs (C2) of ultrasound radiofrequency data. Experiments
on lipid phantoms were conducted to investigate the practical performance of IER. Phantoms
with lipid concentrations 0%–30% (n = 36) were scanned using a clinical ultrasound scanner to
acquire the radiofrequency data under different gains (12–33 dB) for EMD and IER calculations.
Experiments on a tissue-mimicking phantom were further performed using the same ultrasound
system and data acquisition procedure to investigate the effect of ultrasound frequency on the IER
at5–8 MHz.Experimental results showed that the IER measured under 33-dB gain decreased from
6.65 ± 0.23 to 3.97 ± 0.10 when the lipid concentrations were increased from 0% to 30%. When
12-dB gain was used, the IER decreased from 6.21 ± 0.29 to 3.39 ± 0.07. However, whenincreasing
the frequency, the IER had a mean decreasing rate of −8.67% per MHz, which was lower than
those of the C1 and C2 intensities.The proposed IER may allow gain-independent measurement on
tissue echogenicity.
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1. Introduction

Ultrasound imaging is an essential clinical tool for screening tissue structures. The intensity of
an ultrasound grayscale image (B-mode) is determined based on the amplitude of the backscattered
signals resulting from the interactions between acoustic scatterers and the incident wave. When the
degree of an acoustic impedance mismatch is increased, the signal amplitude and the corresponding
B-scan brightness increase accordingly. In clinical settings, B-scan brightness is generally used to
describe the echogenicities of the scatterers in a tissue for diagnosis. Although several functional
imaging techniques are available in current ultrasound systems, the conventional B-scan is still widely
adopted as a convenient screening tool for describing echogenicity in clinical evaluation [1–5], because
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diseases typically accompany changes in acoustic properties of scatterers in tissues (e.g., liver steatosis
or muscle fibrosis) [3–5].

In addition to the effects of an acoustic impedance mismatch, the brightness of B-scans depends on
system factors such as system gain, time gain compensation (TGC), log compression, and signal/image
processing; among these, system gain is a dominant factor for determining the amplitudes of received
signals and the corresponding image brightness. The most frequent problem in clinical settings
entails different users using different gains for screening, thus resulting in varied explanations for
the echogenicity of examined tissues. In some conditions, the above problem may be overcome by
normalizing the intensity with the background image data (e.g., liver-to-kidney intensity ratio for
fatty liver assessment). However, for different types of tissues, it is not necessary to have appropriate
background information that can be used for normalization. This might explain why researchers
cannot reach a definitive diagnosis when using B-scans alone. Thus, establishing an objective index
or a measurement protocol that is independent of the system gain is essential when describing tissue
echogenicity by using B-scans in routine clinical examinations. However, no relevant studies have
explored this concern. This paper addresses the following fundamental question: Can the image
intensity measure be independent of the system gain?

Understanding the ultrasound backscattered signal model may be an effective foundation for
answering the posed question. Previous studies have described that under ideal conditions, ultrasound
backscattered signals s(t) can be modeled as a result of the convolution of the incident wave with the
tissue function [6–8],

s(t) = h(t)⊗ z(t) (1)

where h(t) represents the transfer function of the transducer (i.e., the incident wave), and z(t) denotes
the spatial distribution function of the scatterers. After amplification by using an ultrasound system,
the following equation is obtained:

s(t) = G × [h(t)⊗ z(t)] (2)

where G denotes the system gain. Apparently, a gain effect was intrinsic to the signals output from a
system and therefore unavoidable. We assume that signal processing based on self-decomposition and
normalization may provide an effective solution to eliminating the gain effect from the ultrasound echo
measurements. The reason is explained as follows. Signal self-decomposition produces several
sub-signals with the same gain effect, and these sub-signals can be used for normalization to
eliminate the gain effect. In the meantime, the signal normalization results must contain physical
meanings associated with h(t) and z(t) to enable describing the tissue echogenicity. Therefore,
selecting an appropriate decomposition method for signal normalization may be critical to satisfy
these requirements.

Recently, the Hilbert-Huang Transform (HHT) has become a highly attractive time-frequency
analysis method for nonlinear and non-stationary data [9–12]. In the HHT, an empirical mode
decomposition (EMD) was developed for meaningfully determining the instantaneous frequency
of a signal. When EMD is used, a signal can be decomposed into a set of intrinsic mode functions
(IMFs) for calculating the instantaneous frequencies through the HHT. In particular, the advantage of
EMD over other signal decomposition methods (e.g., wavelet) is that EMD requires no signal base
for signal decomposition; therefore, a signal can be adaptively decomposed into n empirical modes.
The gain effect exists in each IMF component produced from the EMD of the ultrasound signals, and
thus it may be eliminated using various IMFs for signal normalization. Note that the above assumption
has been preliminarily validated by experiments on newly-formed and aged thrombi [13]. In the
current stage, three fundamental issues need to be further clarified: (i) the proposed idea needs to be
demonstrated theoretically; (ii) different system gains result in different signal-to-noise ratios (SNRs).
The effects of SNR on the proposed method should be explored; and (iii) considering that the factors G,
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h(t), and z(t) are essentially functions of ultrasound frequency, the frequency effect on the proposed
method also needs to be investigated.

To address the feasibility of using EMD as an adaptive strategy forestablishing a gain-independent
index for describing tissue echogenicity, in the subsequent sections we review the principles of EMD
and present an ultrasound signal model to theoretically demonstrate that the gain effect can be
eliminated by signal normalization using the IMFs. We then define an echogenicity index based
on using the IMFs to validate its performance in quantifying the image intensity of ultrasound
B-scans under various system gains (i.e., signal-to-noise ratios [SNRs]) and explore its dependency
of ultrasound frequency. Finally, we discuss the potential impacts of using the proposed method in
future applications.

2. Theory

EMD is a key constituent of the HHT, an adaptive time-frequency analysis method for nonlinear
and non-stationary data. Previous studies have described the HHT in detail [9,10]. Here, we briefly
explain how to perform the EMD.

First, we determine the local maxima and minima of a signal x(t) and use cubic spline interpolation
to obtain its upper and lower envelopes. If the mean of these two envelopes is d1(t), then the difference
between the signal and d1(t) is the first component h1(t):

h1(t) = x(t)− d1(t). (3)

This is called the sifting process. To determine whether h1(t) is an IMF, it must be a
single-component signal that fulfills the following conditions: (i) the number of zero crossings and
extrema must be no more than one forthe entire data set; and (ii) the mean value of the upper and
lower envelopes, which are defined using the local maxima and minima, respectively, is zero at any
time, meaning that the two envelope curves are symmetric about the time axis. Ideally, when the
cubic spline interpolation is perfect, with no gentle hump on the signal slope, h1(t) must satisfy the
IMF requirements. However, imperfect fitting commonly produces overshoots and undershoots that
generate new extrema and shift or exaggerate existing ones. Even when the fitting is perfect, humps
may become local extrema after the first round of sifting. Moreover, the envelope mean may differ
from the true local mean of the signal for non-stationary data, resulting in an asymmetric waveform.
Therefore, the sifting process must be repeated k times until the extracted difference is an IMF. In the
second iteration, h1(t) is treated as the original data in the second sifting process:

h1(t)− d11(t) = h11(t). (4)

The sifting process is repeated k times until h1k(t) is determined, which is an IMF:

h1(k−1)(t)− d1k(t) = h1k(t). (5)

Then, we define
C1(t) = h1k(t) (6)

as the first IMF component (i.e., component C1) for the data. Overall, C1 contains the finest and shortest
period component of the signal. Subsequently, we can subtract C1(t) from the signal:

x(t)− C1(t) = r1(t). (7)

Because residue r1(t) still contains information about the components with longer periods, we
consider it new original data and apply the same aforementioned sifting process. This procedure can
be repeated for all subsequent rj(t) values, yielding
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r1(t)− C2(t) = r2(t), . . . , rn−1(t)− Cn(t) = rn(t). (8)

Summing Equations (6)–(8) ultimately yields

x(t) =
n

∑
i=1

Ci(t) + rn(t). (9)

This indicates that x(t) is decomposed by EMD into n IMFs (C1, C2, C3, . . . , Ci, from high-frequency
to low-frequency components) and a residue rn(t), which is the signal trend with a maximum of one
extremum or a constant.

3. Materials and Methods

Three parts are organized in this section. First, mathematical demonstrations were used to confirm
the feasibility of developing a gain-independent index based on EMD for describing tissue echogenicity,
and computer simulations were performed for validations of mathematical equations. Second,
experiments on lipid phantoms were carried out to explore the ability of the gain-independent index
to describeechogenicity under different gains. Third, experiments on a tissue-mimicking phantom
were performed to investigate the effect of ultrasound frequency on the proposed gain-independent
index in a more realistic condition.

3.1. Theoretical Demonstration

According to the properties of EMD, the ultrasound backscattered data s(t) can be decomposed
into numerous IMFs expressed as follows:

s(t) = s1(t) + s2(t) + . . . . .+sn(t). (10)

We assume that the incident wave of ultrasound h(t) can be decomposed by the EMD, and then
we can obtain the following:

h(t) = h1(t) + h2(t) + . . . . .+hn(t). (11)

According to Equation (2), we can obtain the following:

s1(t) = G × [h1(t)⊗ z(t)], s2(t) = G × [h2(t)⊗ z(t)], ..., sn(t) = G × [hn(t)⊗ z(t)]. (12)

Summing all the signals in Equation (12), we can obtain the following:

s1(t) + s2(t) + . . . . . sn(t) = G × [h1(t)⊗ z(t)] + G × [h2(t)⊗ z(t)] + ... + G × [hn(t)⊗ z(t)]
= G × [h1(t)⊗ z(t) + h2(t)⊗ z(t) + ... + hn(t)⊗ z(t)]
= G × [(h1(t) + h2(t) + ... + hn(t))⊗ z(t)]
= G × [h(t)⊗ z(t)]
= s(t)

(13)

Notably, Equation (13) appears to be an inverse demonstration of Equation (10), indicating the
following properties: (i) summing s1(t), s2(t), . . . , sn(t) can reconstruct the original backscattered
signal s(t); (ii) the incident wave h(t) can be decomposed into h1(t), h2(t), . . . , hn(t), which can be
further treated as the incident ultrasound waves with different frequency components; and (iii)
the IMFs of the backscattered signals [s1(t), s2(t), . . . , sn(t)] are the echo signals generated by the
transmitting incident waves h1(t), h2(t), . . . , hn(t) into the tissue z(t) for interactions. In this condition,
two arbitrary IMFs of the backscattered signal can be further used for normalization. For ultrasound
signals, higher-frequency IMFs have larger signal amplitudes and relevant physical meanings [14].
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In particular, the amplitude of the third IMF starts to be smaller than 10% of that of the original
backscattered signals [14], and thus the IMFs from C3 to Cn may not be the primary components of the
signals. For the above reasons, an IMF-based echogenicity ratio (IER) was defined using the first and
second IMFs of the backscattered signals for signal normalization:

IER =
s1(t)
s2(t)

=
G × [h1(t)⊗ z(t)]
G × [h2(t)⊗ z(t)]

=
h1(t)⊗ z(t)
h2(t)⊗ z(t)

. (14)

In practice, the IER is calculated using the ratio of the envelope amplitude of the first IMF to that
of the second IMF. Ideally, the calculation of the IER allows self-normalization of the signal, which
produces a gain-independent index that is associated with h(t) and z(t). This suggests the presence of a
correlation between the IER and the B-scan intensity.

To confirm the proposed equations, one-dimensional computer simulations were performed for
validations. A 5-MHzGaussian pulse with a bandwidth of 60% was generated as the incident wave h(t).
A computer phantom z(t) with a concentration of 32 scatterers/mm3 was constructed by a sequence
with randomly positioned delta functions. The sampling rate was 100 MHz. Gain factors G of 5, 10
and 20 were set. The ultrasound backscattered signals s(t) were then obtained using Equation (2).

3.2. Experiments on Lipid Phantoms

Experiments on phantoms with different behaviors of echogenicity were performed. The phantom
was prepared by boiling the agar-water mixture (dissolving 1.5 g of agar powder in 200 mL of
water) and cooling it to form a solid gel. The graphite powder with <20-µm particles (Model 282863,
Sigma-Aldrich, St. Louis, MO, USA) was added to the phantom to simulate the scatterers in tissue.
The number density of the scatterers in the phantom was 128 scatterers/mm3, which was adequately
large to produce a fully developed speckle pattern in a B-mode image. To further produce different
image intensities of the B-scan, various proportions of soybean-oil lipid emulsion (Intrafat, Nihon
Pharmaceutical Industry, Osaka, Japan) were added to the phantoms to produce varying degrees
of attenuation, as presented in Figure 1a,b. The lipid concentrations ranged from 0% to 30%,
corresponding to the range of attenuation coefficient from 0.684 to 1.108 dB/cm·MHz (the attenuation
coefficient of each phantom was calculated using the standard substitution method). A previous
study reported that when the lipid concentrations are increased, the brightness of the B-scan decreases
accordingly [15]. In total, six independent phantoms were prepared for each lipid concentration
(n = 36).

A commercial ultrasound scanner (Model 3000, Terason, Burlington, MA, USA) was used to
scan the phantoms. The applied probe was a wideband linear array with a central frequency of
7 MHz and 128 elements (Model 10L5, Terason). An agar phantom with the same graphite powder
concentrations was prepared to calibrate the gain setting in the imaging system. A cyst was created
as an anechoic region in the center of the phantom, and the image intensities, calculated using the
square of the envelope amplitude, corresponding to the cyst and the phantom background were used
to estimate the SNRs, as shown in Figure 1c. The calibration results obtained from six independent
measurements are shown in Figure 1d. When the digital gain index in the system was adjusted from 1
to 6, the SNRs produced ranged from 12 to 33 dB, which was used as the range of gain applied to the
phantom scanning.
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Figure 1. Phantoms (a,b) were prepared using graphite powder. To produce different image intensities
of the B-scan, various proportions of soybean-oil lipid emulsions (0%–30%) were added to the phantoms
to produce varying degrees of attenuation; (c) B-mode image of the cyst phantom that was used for
calibrating the system gain; (d) The signal-to-noise ratio (SNR) that was used to represent the gain
increase from 12 to 33 dB when the digital gain index in the system increased from 1 to 6.

Each lipid phantom was immersed in a water tank and scanned using the ultrasound system
with different system gains that ranged from 12 to 33 dB. The image raw beamformed radiofrequency
(RF) data were acquired from the phantom at a 30-MHz sampling rate. In total, the image comprised
128 scan lines of the backscattered echoes, corresponding to a size of 3 × 3.5 cm (depth × width).
The image scan lines were demodulated using the absolute value of the Hilbert transform to obtain
the envelope image, which was then normalized and compressed using logarithmic calculations to
obtain the B-mode image at a dynamic range of 40 dB (i.e., the pixel values range between 0 and 40 dB).
Concurrently, the raw RF image data were decomposed into the IMFs by using a two-dimensional
(2D) EMD, which was developed by Wu et al. [16] for image EMD processing. After applying 2D EMD
on the RF signals, each IMF signal was demodulated and log-compressed to display the IMF-based
B-mode images (i.e., C1, C2, . . . , Ci images). Based on Equation (14), we selected a 1×1cmsizedregion
of interest (ROI) to calculate the average image intensities(the square of the envelope amplitude) of
the C1 and C2 images for calculating the IER, as shown in Figure 2. The relationships among these
values (C1 intensity, C2 intensity, and IER), gain, and lipid concentrations were compared to evaluate
the performance of the proposed IER parameter in describing the tissue echogenicity.To evaluate
the tolerance of the proposed method to the gain setting, the measurement errors of the C1 intensity,
C2 intensity, and IERwere estimated using the following:

Measurement error =

∣∣∣∣∣ x − x(33dB)

x(33dB)

∣∣∣∣∣× 100%, (15)

where x means the individual intensity value of C1, C2, and IER, and x(33dB) represents the average
value at the maximum gain obtained from six phantoms.
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Figure 2. Illustration to explain the intrinsic mode functions (IMF) based echogenicity ratio (IER)
calculation. The raw RF image data were decomposed into the IMFs) by using the 2D empirical mode
decomposition (EMD). Higher-frequency IMFs exhibit larger signal amplitudes and relevant physical
meanings; thus, IER was defined using the first (C1) and second (C2) IMFs for signal normalization.

3.3. Experiments on a Tissue-Mimicking Phantom

A tissue-mimicking breast phantom (Model BPB170, Blue Phantom, Redmond, WA, USA) was
used to provide a simulated mass, as shown in Figure 3. Five independent scans of the simulated
mass were performed using the same Terason ultrasound scanner and the transducer. For each scan,
the transmitting central frequency was set at approximately 5, 5.5, 6, 7.5 and 8 MHz by using the
software development kit to acquire image RF data corresponding to different frequencies. The RF
data comprised 128 scan lines of the backscattered echoes, corresponding to a size of 3.5 × 3.5 cm
(depth × width). The same procedures as mentioned in the previous subsection were used to obtain
the B-mode and IMF-based images. For each image, a ROI with a size of 5×5mm was located in the
mass to calculate the average intensities of the C1 and C2 images for calculating the IER. The image
intensities (C1 and C2) and the IER as functions of frequency were plotted for comparison.
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4. Results

Figure 4 shows the backscattered signals s(t) with different gain factors obtained from simulations
and the corresponding IMFs after applying EMD of s(t). In practice, the ratios of amplitude between
different IMFs may depend on the degree of noise interference on the signal. However, while using the
raw backscattered signals without any postprocessing for EMD, the primary components of the original
signals were assigned to the first and second IMFs. The quantitative analysis of the signals showed
that the C1 and C2 account for up to 90% of the amplitude of the backscattered signals, as shown in
Figure 5. This finding agreed well with the previous study [14], supporting the selection of C1 and C2

for the definition of the IER. Moreover, the results in Figure 4 further showed that the summation of
each IMF multiplied by the gain factor equals the signal multiplied using the same gain, demonstrating
the reasonability of Equations (12) and (13).

Figure 6a–f present the B-mode images and the corresponding C1, C2, C3, and C4 images of the
phantoms with varied lipid concentrations ranging from 0% to 30%. The speckle patterns in the
B-mode images of different phantoms were similar because the number density of the scatterers in
each phantom was set the same.For each lipid concentration, the speckle pattern of the C1 image
was similar to that of the B-mode image. Notably, the EMD decomposed image data to produce the
IMFs from high- to low-frequency components. The first IMF was the data with the highest-frequency
components compared with the other IMFs; therefore, the signal waveforms in the C1 image were
similar to those of the original backscattered RF echoes but more symmetrical in the upper and lower
envelopes [14,17]. This also explains why the other IMF-based images (C2, C3 and C4 images in
Figure 6) exhibited poorer spatial resolutions compared with the C1 image.
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Figure 6. B-mode and C1–C4 images of the phantoms with lipid concentrations ranging from 0% to 30%.
(a) 0%, (b) 5%, (c) 10%, (d) 15%, (e) 20% and (f) 30%. B-mode and IMF-based images are constructed
using the log-compressed envelopes of the RF and IMF data obtained from the EMD. ROI: region
of interest.
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The C1 image intensities were observed as a function of the lipid concentrations obtained
using gains ranging from 12 to 33 dB (Figure 7a). At 33-dB gain, the C1 intensity decreased from
185.89 ± 19.74 to 61.91 ± 3.09 when the lipid concentrations were increased. Because of the extreme
resemblance between the C1 and the RF signals, the C1 image intensity could be considered as
that measured using the RF data. When the gain decreased to 12 dB, the C1 intensity decreased
from 76.31 ± 7.72 to 26.46 ± 1.12 in the same range of lipid concentrations. As shown in Figure 7b,
when the system gain decreased to 12 dB, the average error for the various lipid concentrations was
larger than 50%. Note that the C1 image findings were also observed in the C2 image, as shown in
Figure 7c,d. The C2 intensities measured using 33 and 12 dB decreased from 27.92 ± 2.59 to 15.58 ± 0.56
and from 12.26 ± 0.94 to 7.78 ± 0.27, respectively; the measurement error at 12 dB was also >50%.
These results demonstrated that the intensity measurement was significantlyaffected by the gain effect.
Figure 7e displays the IERs as a function of the lipid concentrations at different system gains. The IERs
measured using 33 and 12 dB decreased from 6.65 ± 0.23 to 3.97 ± 0.10 and from 6.21 ± 0.29 to
3.39 ± 0.07, respectively, when the lipid concentrations were increased from 0% to 30%, respectively.
Evidently, the proposed IER largely reduces the dependency of intensity measurement on the system
gain factor and the measurement error, as shown in Figure 7f.
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Figure 7. Results of the EMD-based parameters as a function of lipid concentration obtained at various
system gains. (a) C1 image intensity; (b) Measurement error forthe C1 intensity; (c) C2 image intensity;
(d) Measurement error forthe C2 intensity; (e) IER; (f) Measurement error forthe IER. The results
indicated that the IER is less affected by the system gain because its measurement error is much lower
than the errors forthe C1 and C2 data.
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In particular, we found that the measurement errors further decreased when the gain increased,
as shown in Figure 8. Figure 9 shows the B-mode and the corresponding C1 and C2 images of the
simulated mass measured using different ultrasound frequencies. With an increaseinfrequency, the
speckle patterns became more meticulous, resulting in an improved spatial resolution of theimage.
The quantitative analysis of the image intensity and the IER as a function of ultrasound frequency is
shown in Figure 10. The C1 intensity decreased from 48.6 ± 6.94 to 24.2 ± 1.08 when the ultrasound
frequency increased from 5 to 8 MHz, corresponding to a mean decreasing rate of −16.67% per MHz.
Forthe same frequency range, the C2 intensity decreased from 10.1 ± 0.70 to 6.41 ± 0.29 with a mean
decreasing rate of −11.67% per MHz. Compared to the C1 and C2 intensities, the IER decreased from
4.90 ± 0.93 to 3.78 ± 1.33 in accordance with a mean decreasing rate of −8.67% per MHz.
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Figure 10. The image intensities of C1 (a) and C2 (b) modes and the IER (c) as a function of ultrasound
frequency. Whenincreasing the frequency, the IER had a mean decreasing rate of −8.67% per MHz,
which was lower than those of the C1 and C2 intensities.

5. Discussion

This study used EMD as a strategy to develop a gain-independent index for describing the
echogenicity of a scattering medium. An ideal echo model was used to concord with the EMD
properties to demonstrate theoretically the feasibility of the proposed hypothesis. The current
experimental results obtained from the phantoms demonstrated that the proposed IER maybe less
affected by the gain setting. EMD has been widely applied in resolving several engineering and
scientific problems [18]. Increasingly, more studies have investigated EMD applications in the
field of medical ultrasound imaging, including tissue harmonic imaging [17], signal filtering [19],
improvements in tissue characterization by using statistical parameters [20,21], image contrast
enhancement [22,23], and elastography construction [24].This study is the first to explain how EMD
eliminates the effects of the system gain from echogenicity measurement.

In this study, the IER was defined using the C1 and C2 of the backscattered signals. Thecurrent
findings and explanations are summarized below to support the proposed method: (i) referring to
the schematic of an ultrasound imaging system (Figure 2), ultrasound echo signals are received by a
transducer with a specific bandwidth. The received signals are subsequently amplified using the same
amplifier stage with a passband that is typically designed to overlap with the transducer bandwidth
for amplifying the signals with the same gain; (ii) the results showed that the C1 and C2 account for up
to 90% of the amplitude of the backscattered signals, demonstrating that the first and second IMFs are
the primary components of the original signals; and (iii) the summation of each IMF multiplied by
the gain factor equals the signal multiplied using the same gain. For these reasons, it is convincing to
define the IER using the first and second IMFs based on the proposed Equations (12) and (13).

It is interesting to discuss the physical meanings of the IER. As indicated in Figure 7, the C1 and
C2 intensities decreased as the lipid concentrations were increased. This is because when the lipid
emulsion concentration increases, the phantom increases the attenuation effects to reduce the echo
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intensity [15]. It should be noted that the IER also decreased as the lipid concentrations were increased.
Comparing the results in Figure 7 suggests a considerable difference in the sensitivities of C1 and C2

intensities to respond to variations in the lipid concentrations. The first C1 IMF adequately follows
the form of the original ultrasound signal and is the highest-frequency component [17]. Because
the attenuation effect is proportional to the signal frequency, the C1 signal intensity may be more
sensitive to the attenuation effect and may thus weaken in a high-attenuation scattering medium.
Although the C2 intensity decreases as the attenuation effect increases, the influence of attenuation on
the signal intensity is relatively weaker because the C2 IMF is a relatively low-frequency signal. In
other words, the IER not only depends on the backscattered intensity but also correlates with the effect
of ultrasound frequency.

As mentioned in Introduction, the factors G, h(t), and z(t) are functions of frequency. In modern
ultrasound systems, the frequency effect of the system gain G may be ignored because wideband
electronic amplifiers are typically used in circuits to ensure that the frequency-independent passbands
in the Bode Plots of the amplifiers can cover the bandwidth of the transducer. However, the transfer
function of the transducer h(t) is frequency-dependent. The spatial distribution function of the
scatterers z(t) is also dependent on the frequency because the scattering cross-sections of the scatterers
are proportional to the fourth power of ultrasound frequency [25].The above issues imply that the IER
is a frequency-dependent parameter, as supported by the results obtained from the tissue-mimicking
phantom(See Figure 10). The C1, C2, and IER values were inversely proportional to the ultrasound
frequency. The difference is that the IER performed better than the C1 and C2 image intensities in
reducing the mean decreasing rate with frequency, although in principle its frequency dependence is
an unavoidable property. According to observations on the results in Figure 10, the IER value dropped
down when the frequency was larger than 5.5 MHz. In order to allow the IER characterizing tissues
with a larger dynamic range, ultrasound frequencies lower than 5.5 MHz may be used.

On the other hand, noise is the other potential issue to influence the IER. The phantom results
indicated that the gain independence of IER performs worse when the gain is small, as indicated
by the results in Figure 8. This may be explained by the noise effect on EMD that has been clarified
in the previous study [12]. In general, the sources of external noise are numerous and complex,
which mainly originate from the environment and user operation such as electromagnetic fields,
instrument switching, or personnel contacting. Internal noises come from the electronic components
and conduction wires within a system that may be a summation of various noises including thermal
noise, shot noise, flicker noise, partition noise, and burst noise [26]. Due to those external and internal
noises respectively exhibiting different frequency characteristics, the white noise, the summation of
noises from all aspects, is the most commonly encountered electrical noise that affects the characteristics
of input and output signals [27]. Smaller gains easily generate significant white noise interference
to affect the EMD outcomes. White noise has a large bandwidth (a uniform distribution for an
ideal condition) and contains fluctuations at higher frequencies compared with those in the signal.
Therefore, noise provides the signal waveform with additional local extrema, thereby altering the
probability of detecting local extrema for large- and small-amplitude waveforms in the signals [12].
The waveforms for the large-amplitude oscillations exhibit a relatively steeper slope compared with
the small-amplitude waveforms; thus, the extrema of noise may not be conspicuous in the signal.
By contrast, for the small-amplitude waveforms, the extrema from noise may be conspicuous and
detectable. In this condition, IMF contains severe mode-mixing effects to affect EMD of data [12,28].
As supported by the results in Figure 7, the IER decreased with decreasing the SNR (i.e., equivalently
increasing the noise interference). Thus, a larger gain and any strategiesfornoise reductionare suggested
to improve the measurement error of the IER.

6. Conclusions

In this study, we have proposed a gain-independent index (i.e., IER) based on the first and
second IMF components (i.e., C1 and C2 images) obtained from EMD. The contributions of this study
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are summarized below: (i) the theoretical demonstration showed that signal decomposition and
normalization by using EMD can eliminate the gain effect from the IER; (ii) the experimental results
indicated that the IER can describe the echogenicity and that its value is less affected by the gain factor;
and (iii) the image intensities (C1 and C2) and the IER are frequency-dependent. However, the IER has
advantages over the C1 and C2 intensities in reducing the mean decreasing rate with frequency. This
means that using the IER to describe the echogenicity provides a relatively low degree of frequency
dependence compared with using the image intensities for the same measurement purpose. The
current findings reveal that the gain-independent measurement on the echogenicity is possible when
signal decomposition and normalization techniques are applied to image data.
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