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Abstract: This paper presents an improved maximum power point tracking (MPPT) algorithm using
a fuzzy logic controller (FLC) in order to extract potential maximum power from photovoltaic cells.
The objectives of the proposed algorithm are to improve the tracking speed, and to simultaneously
solve the inherent drawbacks such as slow tracking in the conventional perturb and observe (P and O)
algorithm. The performances of the conventional P and O algorithm and the proposed algorithm are
compared by using MATLAB/Simulink in terms of the tracking speed and steady-state oscillations.
Additionally, both algorithms were experimentally validated through a digital signal processor
(DSP)-based controlled-boost DC-DC converter. The experimental results show that the proposed
algorithm performs with a shorter tracking time, smaller output power oscillation, and higher
efficiency, compared with the conventional P and O algorithm.
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1. Introduction

As the demand for solar energy is dramatically increasing, solar energy applications have been
massively studied for the last few decades. Solar panels can conveniently convert the received light
energy to electricity without any pollution. However, the characteristics of any solar panel heavily
depend on irradiation and temperature conditions in terms of the photovoltaic voltage and current [1].
To achieve the maximum power point (MPP) of photovoltaics, MPPT algorithms are normally used.
Among fundamental MPPT algorithms, the incremental conductance (INC) algorithm mainly relies
on the tangential value of the photovoltaic (PV) operation point to predict the right direction of the
maximum power point (MPP). The fixed step-size INC algorithm aims at stability and effectiveness
of the algorithm due to the fact that adaptive step-size will adversely affect the MPPT controller
under certain circumstances with noise and environmental changes, while the disadvantage of the
fixed step-size INC is the slow response to the insolation condition changes [2]. The other popular
MPPT algorithm, perturb and observe (P and O) can iteratively perturb the PV voltage and observe
the changes in PV power so that it can continuously move the operation point along the direction
towards the MPP. The P and O algorithm does not involve derivative operations [3], hence, it would
have easy implementation. However, the conventional P and O algorithm is exposed to the same
issue as the INC algorithm, in which the tracking speed has to be sacrificed in order to improve
MPPT efficiency, and to suppress the steady-state oscillation. To enhance MPPT control, several
MPPT techniques have been investigated for creating adaptive perturbing step-sizes [4,5]. Due to
the nature of the P-V characteristics of solar cells, an increase in PV voltage will result in a decrease
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in PV current. Additionally, PV power will eventually converge to zero as long as the PV voltage
monotonously increases to the open-circuit voltage. Based on this nature, in [6], a discrete-time PI
controller was proposed for MPPT control. The error signal of this PI controller is the change in PV
power caused by operation point shifting, and the output signal of this PI controller is the step-size
of the perturbation offset for the next perturbation. This PI controller is to automatically generate an
adaptive step-size with simple control parameters. In fact, the gains of this controller are to be also
adaptive under the changeable environmental conditions. Moreover, to reduce the steady-state error
of this PI controller, the limits of this PI controller should be changed by considering variable P-V
characteristics of solar cells. In [7], the authors adopted the sliding mode control (SMC) strategy for
achieving the maximum power point (MPP) and selected the sliding surface where the derivation of
PV operation point equals zero. According to the nature of SMC, chattering around the sliding surface
can be seen in most cases, in which this chattering is related to the steady-state power oscillation.
This chattering issue could keep the SMC from generating adaptive step-size. In [8,9], the authors
directly change the duty-ratios of switching signals where such perturbations in duty-ratios are used
as variables. The advantage of the MPPT controllers in [8,9] is that the MPPT controllers do not
necessarily deal with PV voltage regulation or PV current regulation, so the complicated programing
can be avoided. The disadvantage of this type of controller is that desired MPPT efficiency and
accuracy cannot be guaranteed, as suggested in [10,11]. In [10–13], artificial neural networks (ANN)
were adopted to enhance the MPPT algorithm in terms of accelerating the tracking speed and reducing
steady-state power oscillation. The ANN-based MPPT algorithm generally demonstrates a better
performance compared to traditional MPPT algorithms, such as P and O, INC, and hill climbing.
To improve the robustness of the ANN based MPPT algorithm, multiple parameters of photovoltaic
products are normally required to train the ANN and calculate the optimized weight coefficients.
Under different environmental conditions, such as temperature, insolation, and shading patterns, solar
panels can present various P-V characteristics, which means that the optimized weight coefficients
of ANN could be changed to achieve the best solution for each case. In fact, weight parameters of
ANNs are fixed in real-time control systems. Therefore, such ANNs may not demonstrate the best
performance under all environmental conditions. For reducing the complexity of design of the MPPT
algorithm, fuzzy logic control (FLC)-based MPPT algorithms have been proposed in [14–22]. Unlike
ANNs, the FLC design is required to recognize patterns of P-V characteristics of photovoltaics under
different operating conditions. The fuzzy logic controller used for MPPT will be designed based
on those recognized patterns. In [14–18], the input signals of FLCs mainly consist of PV voltage,
PV current, incremental change in the PV voltage, incremental change in the PV power, and the ratios
of the incremental change in PV power to the change in PV voltage or current. In [19], the change
in PV power, ∆P and change in PV current, ∆I are selected as the input signals to FLC. According
to the PVs’ characteristics, the derivative of PV power with respect to the PV current is zero at the
MPP. Additionally, the PV power will decay to zero as the PV voltage increases to the open-circuit
voltage. The output of the FLC suggested in [19] is the duty-ratio, D. The maximum step-size of this
duty-ratio is about 0.8% so that no large step-up or -down change in PV current can be expected.
In this case, the transition of such FLC-controlled PV system responding to the rapid weather change
may be slow. In [20], the authors combined ANN with FLC for improving the MPPT performance
under shading conditions. This ANN was used for estimating the optimal PV voltage and PV power,
while this FLC was used as an actuator for voltage regulations. The complicated calculations proposed
in [20] can indeed improve the MPPT algorithm in terms of tracking speed and convergence to the
global MPP under shading conditions. However, high-performance microcontrollers are generally
needed for this complex algorithm, and the additional cost of such PV systems could be expensive.
In [19], this FLC can only demonstrate the tracking speed and small oscillation under the ideal cases
in which the insolation and temperature conditions are relatively stable. In fact, the environmental
condition variations may introduce unexpected factors to this control algorithm and further make
this FLC algorithm unstable. There is also much research related to improving FLC-based MPPT
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algorithms [21–23]. Even though FLC-based algorithms may differ in complexity and effectiveness, the
strategies of the algorithms generally consist of three stages: estimation, execution, and observation.
The significant stage among those three stages is estimation. Knowing that the P-V characteristics of
solar cells can vary at different moments in a day, to be efficient, the MPPT algorithm should have
capability to recognize variation of P-V characteristics of solar cells and re-evaluate the operating
status of the PV system. In this paper, an improved FLC-based MPPT algorithm with a self-evaluation
mechanism is proposed. The two inputs of the proposed FLC are the changes in PV voltage (∆V),
and the derivative of power with respect to voltage, (∆P/∆V). To simplify the system structure, no
irradiation and temperature signal is needed in the proposed FLC. The objective of the proposed FLC
is to optimize the P and O algorithm in terms of accelerating tracking speed, suppressing steady-state
power oscillations, and enhancing the robustness of the algorithm. In Section 2, the issues in the
conventional P and O algorithm are discussed. In Section 3, the methodologies of designing the
proposed FLC for MPPT control are explained. Simulation results of the proposed FLC algorithm and
conventional P and O MPPT are compared in Section 4.1. Section 4.2 shows experimental results for
the validation of the proposed FLC algorithm for PV applications. Section 5 concludes the paper.

2. Issues in the Conventional P and O Algorithm

The objective of the P and O algorithm is to shift the operation point (V, P) toward the MPP
by continuously perturbing the PV voltage or PV current with a fixed step size. To illustrate the
nonlinear characteristics of solar cells, Figures 1 and 2 present current versus voltage (I-V), and power
versus voltage (P-V) curves of a commercial solar panel, SW-260-mono [24] operating at different
irradiation conditions.
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In Figure 3, P1 through P3 are three consecutive locations of the PV operation point, and shifting
of the operation point is conducted by the MPPT algorithm. S1 through S6 are six possibilities that can
be observed in the tracking progress of the traditional P and O. For example, the case that S1 consists of
several steps: (1) the PV voltage increases; (2) the operation point moves from P1 to P2; (3) an increase
in the PV power is observed; (4) the PV voltage keeps increasing because the direction of the previous
perturbation results in an increase in PV power; (5) the operation point moves from P2 to P3. As shown
in the case S3, a decrease in PV voltage can lead the PV power to increase so that the PV voltage keeps
decreasing. Sometimes, the direction of perturbation iteratively changes, especially whenever the
operation point is located within the region near the real MPP such as S4~S6. For instance, in S4 in
Figure 3, the decrease in the PV power causes that the operation point moves from P1 to P2, and a
decrease in PV power can be observed. To increase the PV power, then the direction of the following
perturbation (P2 to P3) should be inversed. For the transitions from S4 to S6 and the transitions from
S6 to S4, the PV power will periodically increase and decrease. And this is the reason why power
oscillations can be observed in a PV system.
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Power points around MPP can generate less power, compared to the exact MPP. Plus, the direction
of perturbation for the operation point will be inversed as long as decreases in power are observed.
Hence, it could be predicted that the operation point will move among three reachable power points
which are near MPP, as shown in Figure 4. In Figure 4, the traces of the shifting of the operation
point can be concluded as two cases: P1→P2→P3 and P3→P2→P1. It is worthwhile to note that in
a real PV system, P2 may not always exactly overlay MPP due to many imperfect factors such as
resolutions of the switching signal and steady-state error of the voltage regulation module. In the
steady state of a traditional P and O controlled PV system, the above two cases about the shifting of PV
operation point will endlessly circulate so that the steady state power oscillation cannot be avoided.
Fortunately, the magnitude of such steady state power oscillation can be suppressed if the step size of
the perturbation of the operation point is ideally small, and is close to zero. The conventional P and O
and INC algorithms using fixed step-size (∆V) could waste time and energy in the low power region in
which the operation point is far from the real MPP. In the simulation results shown in Figure 5, the real
maximum power point voltage (Vmpp) and maximum power point power (Pmpp) are 27.03 V and
98.23 W, respectively. Different fixed step-sizes for PV voltage perturbation result in different tracking
performance in terms of the tracking time and steady-state power oscillation. As shown in Figure 3,
the P and O with step-size, 0.1 V presents a smaller steady-state power oscillation compared that of the
P and O with step-size, 2.0 V. On the other hand, the P and O with step-size, 2.0 V shows a fast tracking
speed, and the P and O with step-size (0.1 V) requires much more time for pushing the operation point
away from the low power region (less than 80 W). As a successful PV system, the tracking time should
be as short as possible, meanwhile the steady state power oscillation is supposed to be as small as
possible. To simultaneously achieve the above two goals, many authors [2–23] have been proposing
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concepts of adaptive perturbations in PV voltage or PV current and estimated optimal operation point.
In these studies [2–23], it can be recognized that implementations of the more advanced algorithms
require more powerful control units and complicated calculations. In some cases, the control strategy
for PVs may be too expensive to be adopted. In this paper, two input signals, PV voltage and PV
current, are fed into the FLC. Moreover, a self-evaluation mechanism is designed and combined with
the multi-rule table so that no extra computation loop is needed to add into the control algorithm.
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Figure 5. P and O: tracking traces with different perturbation offsets.

It is worthwhile to note that the PV DC-DC boost system can be generally modeled by the Figure 6.
The system consists of the power-stage and control module. In Figure 6, the DC link is presented by a
battery. The voltage level of the DC link of a PV system is stable. In the topology shown by Figure 6,
the voltage level of the solar panel is related to the voltage level of the DC link and the duty-ratio of
the switching signal. Assuming that the voltage level of the DC link is constant, the perturbation in
duty-ratio of the switching signal (Gs) will cause a variation in the voltage level of the solar panel
so that the operation point of the solar panel could shift. The key of the MPPT algorithm is to figure
out the appropriate value for the duty-ratio, which can lead the solar panel to achieve its maximum
power point.
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3. Fuzzy Logic Controller

As an MPPT algorithm keeps perturbing the PV operation point, the incremental changes in
PV power and the previous perturbation offset can produce some non-quantitative information, i.e.,
the PV operation point is either far away from the MPP, or not, and the PV operation point is either
on the left-hand side of the MPP or not. Although, the non-quantitative information may not directly
contribute to calculations, those can still assist MPPT algorithms in terms of providing correct timings
for changing perturbation offset. In consequence, the PV operation could be pushed to the MPP with
few trials. For example, as seen in Figure 7, in the “PB” zone, the slope is relatively constant because
the points in this zone are distant from the MPP. Thus, the perturbation offset can be enlarged for
quickly pushing the operation point out of this zone, and the PV power can increase rapidly. As the
operation point moves within the “PS” area, the incremental changes in PV power decrease towards
zero. Hence, the perturbation offset needs to be diminished in order to carefully increase the power
point to the peak value. Otherwise, the operation point may easily miss the MPP. If the operation
point shifts into the “PZ” and “NZ” zones, where points within in these zones are “extremely close” to
the MPP, the ideal perturbation offset should be extremely weak for suppressing power oscillations
around the MPP.
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The power oscillations around the MPP will be suprresed, not eliminated. The reason is that due
to enviornmental changes, such as irradiation or temperature variations, photovoltaics demostrate
various P-V characteristics (shown in Figure 1). The real MPP of photovoltaics may shift at any
time[25–27]. As a result, the MPPT algrotihm can detect the potential change of the P-V curve by
continously pertubing the operation point with extremely small offsets.

3.1. Principles of the Proposed Fuzzy Logic Controller

Fuzzification, logic judgment, and defuzzification are the three consecutive stages of an FLC [28].
The fundamental structure of a fuzzy logic controller is shown in Figure 8.
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At the stage of fuzzification, the numerical ratio, dP/dV (the change in PV power to the change in
PV voltage, ∆P/∆V) is translated into a linguistic variable via membership functions. The numerical
offset, dV is the previous perturbation offset, ∆V. “dP/dV” and “dV” are two input linguistic variables
of the FLC. The output of the FLC, PT is the numerical offset for the next perturbation. The two input
variables of the FLC are given by Equations (1) and (2):

dP/dV =
P[k]− P[k− 1]
V[k]−V[k− 1]

(1)

dV = V[k]−V[k− 1] (2)

At the beginning of every control interval of the FLC, the numerical inputs are translated into logic
linguistic elements. According to the membership functions of dP/dV and dV, the input variables can
be classified as “Positive Big”, “Negative Big”, “Positive Small”, “Negative Small”, “Positive Zero”, and
“Negative Zero”. Different from binary logic controllers, FLCs not only define variables with binary
logic values, 0 and 1, but also provide degrees of variables. For example, according to membership
functions, the FLC may consider the slope of the present operation point as: 50% PB, 10% PS, 5% PZ,
etc. Hence, descriptions for variables could be more diverse and precise in terms of logic control. At
the stage of the logic judgment, given fuzzified input variables, the FLC will look up its rule-base
to find out all reasonable logic consequences. For example, rule #1 (IF dP/dV is “PB” and dV
is “PB”, then PT is “PZ”) and rule #2 (IF dP/dV is “PS” and dV is “PS”, then PT is “PS”) can
be simultaneously activated, when the FLC detects incoming input pairs, {dP/dV,dV}. This is the
outstanding characteristic of the FLC, compared to other binary logic controller. In the sense of
statistics, multiple logic consequences will improve the accuracy of final weighted results which are
expectation-type solutions. Defuzzification is an inverse procedure with respect to the fuzzification.
In the processing of defuzzification, a linguistic output will be translated into a numerical value by
adopting a weighting operation. The general expression of such operations is that:

Next perturbation
∑ uAi (x)× Bi

∑ uAi (x)
(3)

where uAi (x) is the membership function of the output variable fuzzy set and Bi is the fuzzy set’s
numerical solution.

3.2. Rule Base Tuning

Every rule in the rule base presents one possible reasoning. The effectiveness and rationality of
every rule determines the overall performance of the FLC. The traces shown in Figure 3 present a
simple reasoning logic: if the previous perturbation can result in an increase in PV power, the next
perturbation in PV voltage will follow the previous direction with the same offset, and vice versa.
However, it is not sufficiently effective. As discussed at the beginning of this section, the perturbation
offset should be adaptive in order to accelerate tracking process and to suppress the power oscillation
around the MPP. Therefore, several reasoning rules can be added, i.e.,:

IF dP/dV is “PB” and dV is “PB”, then PT is “PB”
IF dP/dV is “PB” and dV is “PS”, then PT is “PB”
IF dP/dV is “NB” and dV is “NS”, then PT is “NB”
IF dP/dV is “NB” and dV is “NB”, then PT is “NB”

The above rules can efficiently push the operation point towards the MPP within a few steps,
when the operation point is far from the MPP. However, they are not efficient when the operation
point approaches the transition areas where the slope of the P-V curve rapidly increases or decreases.
Additionally, considering that the operation point may not move along a single P-V curve due to
the environmental changes, the incremental changes in PV power may not be meaningful, in real
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environmental conditions. Figure 6 illustrates several conditions which may lead the FLC to make
wrong decisions. As seen in Figure 9a, the first perturbation pushes the operation point from P1 to
P2 when the large incremental change in PV power is detected, while at this moment, if the FLC
cannot detect the fact that the operation point being located at P2 is near MPP, the FLC will probably
keep perturbing the operation point to the right with a large perturbation offset. If so, the operation
point could be shifted to P3. Given the hill shape of P-V curves, the incremental change between
P2 and P3 may be still positive so that the operation point could be further perturbed to P4. Then,
wrong decisions will be made. Moreover, wrong decisions generated by the FLC may not be easily
found because the process shown in Figure 9 is invisible. Other conditions that can result in wrong
decisions are presented by Figure 9c,d. Assuming that the FLC changes the perturbation offset in a
timely manner, the operation point moves slowly towards the MPP. However, if the environmental
conditions, such as irradiation and temperature, change the P-V characteristics of photovoltaics will
vary immediately. As seen in Figure 9c, irradiation increasing makes the operation point move to
another P-V curve so that the incremental change in PV power between P2 and P3 is enlarged. The FLC
may consider that the operation point is far from the MPP, whereas P3 is actually close to the new MPP.
Therefore, the operation point could be perturbed from P3 to P4. Given the Figure 9d, an irradiation
drop or temperature increase could also lead the FLC to make wrong decisions again.
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Figure 9. Unexpected problems.

The problems shown in Figure 9 can be solved by adding a slope-detection mechanism into
the rule base of FLC. A minimum perturbation is mandatorily fulfilled after the FLC implements its
previous reasoning decision. The minimum perturbation can help the FLC to detect the changes of the
P-V curve with the minimum trade-off. If a rapidly incremental change in PV power can be detected by
fulfilling the minimum perturbation in PV voltage, environmental changes can be inferred. If so, the
FLC will abandon previous reasoning, and reconsider the status of the operation point and updated
P-V curve. Including the self-calibration mechanism, the rule-base of the proposed FLC is shown in
Table 1.

Table 1. Rule base of the proposed FLC.

dV
dP/dV

NB NS NZ PZ PS PB

NB NZ NZ NZ PZ PZ PZ
NS NZ NZ NZ PZ PZ PZ
NZ NB NS NZ PZ PZ PZ
PZ NZ NZ NZ PZ PS PB
PS NZ NZ NZ PZ PZ PZ
PB NZ NZ NZ PZ PZ PZ
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4. Results

4.1. Simulations

To validate theoretical advantages of the proposed fuzzy logic controller, the following
MATLAB/SIMULINK simulations present the performance of the conventional P and O algorithm
with a fixed perturbation intensity 0.1 V/trial and proposed FLC with adaptive perturbation intensities.
The configuration of the simulation is shown in Table 2.

Table 2. Configuration of the simulation.

Parameters of the Simulated Solar Panel @ STC

Short circuit current, Isc 4.75 A
Open circuit voltage, Voc 27.03 V
Maximum power, Pmpp 98.23 W

Configuration Settings

Initial operation point (V,P) 0 V, 0 W
Perturbation offset of P and O 0.1 V

Perturbation interval 100 ms
Temperature condition, T 25 ◦C

To test the performance of the improved MPPT algorithm using FLC, several irradiation changes
are added into the simulation so that the fast and smooth power transitions (caused by the changes
of P-V characteristics of the simulated PV cells) conducted by the proposed FLC can be observed.
The MATLAB/Simulink block fulfilling the functionalities of the FLC is shown in Figure 10.
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The membership functions of the FLC can be tuned for achieving better performances in terms
of initial tracking time and transition responses, according to practical characteristics of solar panels.
Based on the parameters given by Table 2, the output surface of the FLC is decided as is shown in
Figure 11. Irradiation variations are represented by the changes in PV short-circuit current shown in
Figure 12. To track the initial MPP, the proposed algorithm uses 0.2 s, while the conventional P and
O algorithm uses 2.2 s in Figure 13. The initial tracking time is shown in Figures 13 and 14. The first
and second transition periods of the two simulated algorithms are demonstrated by Figures 15 and 16.
As seen in these two figures, the theoretical advantages of the proposed algorithm using FLC can
be confirmed.
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4.2. Experimental Results

To validate the practical performance of the proposed algorithm in terms of tracking velocity of
MPPT and MPPT efficiency, a small scale PV system is built. In the PV system, DSP controlled boost
DC-DC converter is implemented for the voltage regulation of the PV system and this boost converter
can transfer the PV power to a 26 V DC-link voltage which is connected to two 13 V lead acid batteries.
The sunlight is simulated by two generic 50 W electrical light bulbs. Under the test conditions given by
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Table 3, the Boulder 15 W can maximally generate 3.1 W of power. The practical MPPT efficiency [29]
can be calculated by the Equation (4)

ηMPPT =
average power conducted by algorithm

the potential MPP
(4)

DC-DC Boost Converter

The objective of the boost DC-DC converter is to force the PV voltage to converge the reference
value which is provided by the MPPT algorithm. Perturbing the duty ratio of the PWM signal, which
is fed into the converter, can rebuild the steady-state proportion between the input voltage and output
voltage. The transient response of the input terminal may not be always satisfied due to the nonlinear
characteristics of the switching-mode circuit and to unknown dynamics. Hence, a voltage controller
is normally added into the inner control loop of a photovoltaic system in order to fulfill the voltage
regulation of PVs and to improve the transient responses.

The topology of the photovoltaic boost DC-DC converter is shown in Figure 17. Parameters of
the photovoltaic system are listed in Table 3. Characteristics of the Boulder 15 W operating under test
conditions are summarized in Table 4.
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Table 3. Parameters of the PV system.

Components Parameters

Solar Panel Boulder 15 W
Cin 35 V/210 uF

RCin 0.8 Ω
L 12 mH

RL 0.2 Ω
Cout 100 V/1000 uF

MOSFET IRFP460 A
Diode HFA50PA60C

DC bus 26

Table 4. Characterstics of the Boulder 15 W solar panel.

Electrical Characteristics Parameters

Open circuit voltage 17.5–21.4 V
Short circuit current 0.18–0.22 A

Nominal Vmpp 12–17 V
Nominal Impp 0.166–0.176 A

Maximum power 2.0–3.1 W

The voltage controller is designed by referring to the small signal model of the input terminal of
the photovoltaic system [30–36]. The equivalent circuit of the input terminal is shown in Figure 18.
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Ṽpv

⌉
+


−Vbat

L
RcRpvVbat

LC(1−Rpv)

 d̃
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Based on the linear approximation of Equation (5), a PI controller is designed as the voltage
controller. The digitalized transfer function of the PI controller [37] is given by Equation (6).

GPI(z) = 0.1 +
0.05

1− z−1 (6)

The partial embedded code related to the digital PI controller is generated by using
MATLAB/Simulink Embedded Coder Toolbox. The Simulink diagram for the embedded coder
is shown in Figure 19. A 0.5 V step response of the inner control loop of the photovoltaic system is
illustrated by Figure 20.Appl. Sci. 2017, 7, 326  14 of 17 
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The experimental setup of the designed photovoltaic system is shown in Figure 21. The practical
performance of the improved P and O algorithm using FLC is demonstrated by Figure 22, while that
of the conventional P and O algorithm with 0.5 V perturbation offset is shown in Figure 23.

Appl. Sci. 2017, 7, 326  14 of 17 

 

Figure 19. MATLAB/Simulink diagram of the PI controller. 

 

Figure 20. The step response of the inner control loop of the PV system. 

The experimental setup of the designed photovoltaic system is shown in Figure 21. The practical 

performance of the improved P and O algorithm using FLC is demonstrated by Figure 22, while that 

of the conventional P and O algorithm with 0.5 V perturbation offset is shown in Figure 23. 

 

Figure 21. The experimental setup of the photovoltaic system. Figure 21. The experimental setup of the photovoltaic system.

The initialized photovoltaic voltage of the Boulder 15 W is set to 6.0 V. The control interval of
outer control loop is set to 200 ms for successfully covering the settling time of the current sensing
circuits. The peak-peak voltage of the circuit noise is controlled around 100 mV. Thus, the minimum
perturbation offset is set to 200 mV for enhancing the identification of every PV voltage perturbation.
To evaluate the system, the fixed perturbation offset of the conventional P and O algorithm is set
to 500 mV. The conventional P and O algorithm can extract an average of 2.5 watts power from the
solar panel, while the tracking time is 4.32 s in Figure 22. As seen in Figure 23, the tracking time
of the proposed algorithm is 1.81 s, and the extracted PV power is about 3.0 watts. Given Equation
(3), the MPPT efficiency of the improved P and O algorithm using FLC is 96.78%, while that of the
conventional P and O algorithm is only 80.64%.
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5. Conclusions

In this paper, an improved P and O algorithm using FLC has been proposed by referring to the
mechanisms of the conventional P and O algorithm and nonlinear characteristics of photovoltaics.
The strategy to create adaptive perturbation offsets for accelerating the MPPT velocity and improving
the MPPT efficiency were validated by the simulation and experimental results. As mentioned in this
paper, the tracking range and perturbation offset determine the overall performance of the MPPT
control strategies. In practice, although the P-V characteristics of PVs could frequently vary due
to the temperature, shading, and irradiation conditions, especially on a cloudy day, a self-checking
mechanism that is embedded into the proposed fuzzy rule base can be easily activated under changes
of temperature, shading, and irradiation conditions.
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