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Abstract: Unmanned Aerial Vehicles (UAVs) have recently received notable attention because of their
wide range of applications in urban civilian use and in warfare. With air traffic densities increasing,
it is more and more important for UAVs to be able to predict and avoid collisions. The main goal
of this research effort is to adjust real-time trajectories for cooperative UAVs to avoid collisions in
three-dimensional airspace. To explore potential collisions, predictive state space is utilized to present
the waypoints of UAVs in the upcoming situations, which makes the proposed method generate the
initial collision-free trajectories satisfying the necessary constraints in a short time. Further, a rolling
optimization algorithm (ROA) can improve the initial waypoints, minimizing its total distance.
Several scenarios are illustrated to verify the proposed algorithm, and the results show that our
algorithm can generate initial collision-free trajectories more efficiently than other methods in the
common airspace.

Keywords: unmanned aerial vehicles; collision prediction; collision avoidance; rolling optimization
algorithm; predictive state space

1. Introduction

Because of their low-cost, high-autonomy, super-flexibility, and especially absence of human risk,
unmanned aerial vehicles (UAVs) have the potential to offer various capabilities for military and civilian
applications. Recently, with the advances of dynamics [1,2], navigation [3,4], and sensors [5,6], more
civilian applications have been realized for UAVs, such as surveillance [7,8], aerial photography [9,10],
search and rescue [11,12], and others. For all of these applications with multiple UAVs, one critical
technical problem is that the UAVs may collide with each other in the increasingly dense airspace.
Although UAV collision does not cause the loss of human life, it still causes economic loss and seriously
affects the task that UAVs are undertaking. Besides, with the occupancy of the airspace being denser,
the ground station-based air traffic control cannot be sufficient to track every aircraft. As a result,
it is essential to have an automatic UAV collision avoidance strategy to prevent unnecessary loss and
guarantee the success rate of missions.

Generally, for conventional flight, Traffic Alert and Collision Avoidance System (TCAS) or Global
Positioning System (GPS)-based traffic display system is facilitated in manned aircraft to detect and
alert possible collision in the near future. When two aircrafts are predicted to reach a certain distance,
the system would alert the pilots to maneuver to avoid the collision. In terms of UAVs, relevant
research is growing at a fantastic speed to realize the purpose of “free flight” [13], which has been
the main issue for UAV mission implementation. Normally, assumptions that cooperative UAVs can
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communicate their positions, speed, heading, waypoints, and proposed trajectories are allowed [14,15].
With the airspace density increasing, centralized methods are more computationally expensive to
solve the UAVs’ collision avoidance problem. Some proposed approaches change the UAVs’ speed in
a centralized way to avoid the predicted collision [16,17]. However, the velocity amendment of the
UAV is usually limited. Therefore, UAVs may still collide with each other if only velocity is adjusted.
Based on the consideration above, some researchers adjust the heading direction of UAVs and keep
a constant velocity to avoid collision [15,18]. UAV collision avoidance methods are proposed by
varying heading, velocity, or both [14,19,20]. However, the method sets the UAVs at constant altitude,
which limits the practical use of the method.

When it comes to methodology, many laws in other fields have been applied to avoid collision
among UAVs. Methods based on potential field have been widely proposed [21,22], while the idea
of genetic methods [18,19] is also popular to avoid collision. The proportional navigation guidance law
is used to solve the problem [23], which is one of the most-used strategies for missile engagement
scenarios. Other strategies solving the problem are based on optimization algorithms, such as dynamic
programming [24], Lyapunov Method [20], Markov Decision Process [25], radio signal strengths [26],
rapidly-exploring random tree [27], and so on.

In this paper, a 3D conflict avoidance problem for cooperative multiple UAVs sharing airspace
is proposed. In the particular local airspace, it is assumed that the initial trajectory (a sequence
of waypoints), real-time position, heading, and velocity of each UAV are shared as the sensors in
the UAVs scan the environment at a fixed interval. Considering that conflict avoidance problem
among UAVs is non-deterministic polynomial-time hard (NP-hard) [28], we transfer it to be discrete
by sampling, which has been proven to have better performance in solving NP-hard problems [29].
We also consider the heading and position of each UAV at the next interval as the state condition.
The rolling optimization algorithm (ROA) we propose predicts whether a collision may occur. If there
are no potential collisions, UAVs continue flying as planned; otherwise, the algorithm provides the
maneuver to avoid collision and updates the trajectory. The goal of this proposed algorithm is to
minimize flying distance when collisions are avoided. It detects and avoids collisions with each sensor
scan, which is the main reason we call the process of optimization “rolling”.

This paper is organized as follows. First, the problem formulation and modeling are stated. Later,
the proposed rolling optimization algorithm (ROA) is introduced. Therein, collision prediction and
avoidance maneuvers are described in detail. This is followed by various collision scenarios, which are
carried out and demonstrated to verify the effectiveness of the proposed algorithm. Finally, a brief
summary of the research is presented.

2. Problem Formulation and Modeling

In this section, we introduce the formulation of the problem. Based on some valid assumptions,
the mathematical modeling of the problem is constructed.

2.1. Problem Formulation and Presentation

The general scenario is that several UAVs are flying from different bases to their respective
destinations. However, collisions may occur if all of them choose the shortest path. For safety reasons,
any pair of UAVs should keep the minimum separation, which is usually greater than a constant
(safe distance). To minimize the cost of the total flight distance, the solution only considers the
intermediate waypoints, which are added in the initial trajectory because of collision avoidance. Thus,
after a potential collision is detected, trajectories (waypoints) of UAVs should be adjusted so that their
trajectories satisfy the collision-free requirement.
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A typical scenario is presented in Figure 1. In the shared airspace, there are six cooperative UAVs
performing their tasks. The protected area is represented by the sphere outside the UAVs. The radius
of the sphere is slightly greater than the safety distance, which means UAVs would collide when their
protected spheres interlace. It is worth noting that the volume of the protected area is relevant to the
size of the aircraft.

As a result, the information needed to solve the problem includes the planned trajectories of
UAVs with their initial locations and goal destinations.

Figure 1. A collision case. UAV: unmanned aerial vehicle.

2.2. Grid Model and State Space

In this paper, towards the aim of discretization, the common airspace is divided into cubic cells
called the grid model. The reason we use cubic cells rather than other shapes is that it is simpler to
locate the position and calculate the distance between UAVs.

This is not the first use of the grid model in this field. In [30], a trajectory is parametrized by
the number of cells that the UAV passes through with entrance and departure time. The size of
cells is a parameter. Collision is defined as being when two UAVs lay in the same cell at the same
time. Alejo et al. improved the collision model, considering the UAVs in the neighboring cells [31].
These models set the size of cubic cells as a large value, which is much greater than the radius of the
protected area of the UAVs. However, waypoints of each UAV are recorded roughly in this way. In
this paper, we consider a small value as the size of cubic cells, which makes the results more accurate.
Then, the waypoints of UAVs can be represented as points in the coordinate.

The top view of the encoded airspace is presented in Figure 2, and a 2D example of state space is
illustrated. State space describes all the possible future states in the next intervals. When a UAV flies
horizontally, the degree it can turn is limited in the fixed interval. In this paper, we set the degree as no
more than 45 degrees. Therefore, on the right side of Figure 2, red points are not allowed for UAVs
to reach, while only green points are possible waypoints in the next interval for UAVs. Thus, in 2D
airspace, one UAV has three choices for the next move, and N UAVs would have 3N viable states in
the next interval, which has formed a state space. In this paper, 3D state space of multiple UAVs is
considered, which is much more complicated than the 2D state space.
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Figure 2. The top view of the cubic cells and representation of 2D state space. Therein, red points are
not allowed for UAVs to reach, while only green points are possible waypoints in the next interval
for UAVs.

3. Rolling Optimization Algorithm

In this section, we introduce the ROA based on state space. The conceptual model is shown in
Figure 3. The algorithm predicts possible collisions when the planned trajectories of all the UAVs are
shared. If there are no collisions detected in the planned trajectories, the UAVs would fly as planned;
on the other hand, the algorithm would provide a collision avoidance maneuver and update the
UAV trajectories.

Figure 3. Conceptual model of the rolling optimization algorithm (ROA).

3.1. Objective Function

For the i-th UAV, the position at time t + 1 is shown as in Equation (1). In the equation, pt
i denotes

the position of the i-th UAV at time t, while vt
i describes its velocity. The sampling interval is4t.

pt+1
i = pt

i + vt
i ∗ 4t (1)

Because we used a grid model for discretization, the position p and velocity v are represented by
column vectors, as shown in Equation (2). Furthermore, items in the vt

i is limited to be −1, 0, or 1 to
guarantee that UAVs stay in the crossing points of the grid model.

pt
i = [xt

i , yt
i , zt

i ]
T

vt
i = [vxt

i , vyt
i , vzt

i ]
T (2)

The best trajectories of multiple UAVs have the shortest flying distance, satisfying the collision-free
constraint. In this paper, the total flying distance of all the UAVs is considered as the objective function.
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The mathematical expression is shown in Equation (3). Therein, Ti denotes the number of intervals
that the i-th UAV spends from the base to the destination, while N is the number of UAVs.

D =
N

∑
i=1

Ti−1

∑
t=1

dist(pt+1
i − pt

i) (3)

3.2. Constraints

For the aim of UAVs performing tasks without collision, we introduce three constraints for the
trajectories of UAVs in the sector.

First, the UAVs have to satisfy the rule made in the state space; i.e., the absolute value of degree
between adjacent heading directions is no more than 45 degrees. The mathematical expression is shown
in Equation (4). In practice, this constraint can be adapted according to the mechanical properties
of UAVs.

(pt+1
i − pt

i) ∗ (pt
i − pt−1

i )

‖pt+1
i − pt

i‖ ∗ ‖pt
i − pt−1

i ‖
∈ [

√
2

2
, 1] (4)

The second constraint is that the absolute value of degrees between UAV heading and the
direction from the current position to the destination is no more than 90 degrees, as Equation (5) shows.
The constraint guarantees that UAVs always head to the destination. In the equation, gi denotes the
goal destination of the i-th UAV.

(pt+1
i − pt

i) ∗ (gi − pt
i)

‖pt+1
i − pt

i‖ ∗ ‖gi − pt
i‖
∈ [0, 1] (5)

The last constraint requires that the distance between any two UAVs is no more than the radius of
the protected sphere, as shown in Equation (6). The constraint ensures that collisions are avoided in
the proposed trajectories. In the equation, R stands for the radius of the protected sphere of UAVs.

∀i, j, t dist(pt
i , pt

j) < R (6)

3.3. Trajectory Generation

During UAV flight, the algorithm generates a real-time collision-free trajectory for the next several
intervals by predicting and avoiding possible collisions. The 3D state space is utilized, which makes
the situation more complicated than that in 2D. One scenario is presented in Figure 4. In the figure,
the UAV with solid lines represents the UAV’s current position, while the UAV with dashed lines
shows the last position. The gray triangle is forbidden for UAVs because it violates the turn degree
limitation, which is that in this paper the degree between adjacent heading directions is no more than
45 degrees. On the contrary, the black rectangle represents the allowed position of the UAV in the
subsequent move. Therefore, N UAVs would have 26N possible states in the ensuing interval if the
limitation of heading direction change degree is not considered. In this paper, the state space has
removed a large number of possible waypoints, and lowered the computation complexity greatly.
For the possible feasible waypoints, we set a weight for each position, which is relevant to three factors.

The first factor is the distance between the upcoming possible position and the destination point.
The farther the distance is, the lower the weight of the candidate point would be. The factor is
calculated as shown in Equation (7). Therein, the numerator K1 is considered to adjust the weight of
the factor. dist(a, b) calculate the Euclidean distance between vectors a and b.

f (D) =
K1

1 + dist(gi, pt+1
i )

(7)
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Figure 4. Representation of 3D state space for a UAV.

The second factor is the angle between the possible heading direction and direction from the
possible point to the destination point. The degree describes the level of deviation of the UAV from the
shortest distance path. It is shown in Equation (8). The 0.1 in the denominator is set in case the angle 0
would make the factor infinite.

f (A) =
K2

0.1 + arccos(
(pt+1

i − pt
i) ∗ (gi − pt+1

i )

‖pt+1
i − pt

i‖ ∗ ‖gi − pt+1
i ‖

)

(8)

The last factor is the eigenvalue of the crossing points in the grid model. The initial eigenvalue of
each crossing point is set to be 1. Eigenvalues of points would change with the generation of UAVs’
trajectories. Eigenvalue is the key information in ROA, and will be introduced later.

Based on the three factors above, the weight for each candidate point is determined as in
Equation (9). The weight of each point depends on not only the distance, but also the angle by which
the UAV has deviated from the planned path. f (P) stands for the information of the crossing points.

W = f (D) ∗ f (A) ∗ f (P) (9)

According to the weights for each candidate position, the roulette method is used to determine the
position of the UAV in the next interval. The reason we use the roulette method is that although it is
more likely for the greatest value position to be the next waypoint, it still can be other points. It would
help the algorithm solve the problem of getting into the local optimization solution to some extent.

3.4. Collision Prediction and Avoidance Maneuver

After UAVs use the roulette method to determine their positions in the next interval, the algorithm
automatically detects whether the next state would cause collisions. That is, to detect whether the
distance of any two UAVs is no more than the radius of the protected sphere. If the state satisfies the
collision-free condition, the algorithm continues. Otherwise the chosen state would cause collisions,
and the algorithm would set the weight of each waypoint in the collision state as 0. Then, the state in
the next interval is reselected until the state can avoid collisions. If all the states in the state space cannot
avoid collisions. The algorithm would return to the last state and reselect the current UAV positions.

The process of collision prediction and avoidance maneuver is illustrated in Figure 5. The green
rectangle represents the waypoints that would not cause any collisions, and the red rectangle represents
waypoints which cannot avoid collisions. The blue rectangle trajectory has not been tested. At the
interval of t, state 1 is not collision-free. Therefore, state 2 is selected to be the waypoints at interval
t. However, the collision prediction process finds that all the states in the state space expanded by
state 2 at t would cause collisions. As a result, the collision avoidance maneuver would force the
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state 2 at t to be discarded, and select state 3 at t as the waypoints. The process above loops as the
algorithm continues.

Figure 5. The process of collision prediction and avoidance maneuver.

3.5. Rolling Optimization

The two sections above have introduced how collision-free trajectories are generated. In this
section, we introduce the rolling optimization method to generate shorter trajectories with the condition
of being collision-free.

The key of the rolling optimization is the third factor (eigenvalue) influencing the weight for
each candidate waypoint in the next move for UAVs. In the grid model, each crossing point has
an eigenvalue. If a crossing point is selected as a waypoint in a trajectory, its eigenvalue should be
updated in two ways. The local update represents that the eigenvalue of the point should be decreased
after it is chosen to be one waypoint in the trajectory of the UAV. For the aim of global search, the local
update indirectly increases the probability of other candidate positions. The mathematical expression
of the nth iteration is shown in Equation (10). Therein, Pijk denotes the eigenvalue of the location
(i, j, k), while λ represents the decreasing coefficient.

P′ijk(n) = Pijk(n) ∗ (1− λ) (10)

A global update would happen when several searched trajectories are determined in an iteration.
The shortest path in the searched trajectories is selected, and all the waypoints are updated in the
shortest trajectory. Equation (11) calculates the update process of the eigenvalue at location (i, j, k)
after the nth iteration. Therein, ρ denotes the update coefficient. 4Pijk describes the update value,
and the mathematical expression is shown in Equation (12). In the equation, min_length denotes the
distance of the shortest trajectory, and K3 is a coefficient adjusting the update value.

Pijk(n + 1) = (1− ρ) ∗ P′ijk(n) + ρ ∗ 4Pijk(n) (11)

4 Pijk(n) =
K3

min_length
(12)

The update of candidate waypoint eigenvalues makes the short distance waypoints have more
probability to be selected. What is more, it helps the algorithm get rid of local optimal values.

3.6. Programming Steps

The pseudo-code of the proposed algorithm is shown in Algorithm 1. Therein, the collision
prediction process and avoidance maneuver are in bold. In the beginning, the algorithm searches the
candidate points randomly. With the iteration number increasing, the eigenvalues tend to be stable.
Shorter trajectories of UAVs are assigned to more probability. That is how the ROA works.
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Algorithm 1: Pseudo-code of ROA
Input: start position, destination position, the number of UAVs, the number of random

searches in one iteration SN, the number of iteration IN, the expected time t
Output: best trajectory T, distance of the best trajectory D
for in = 1 : IN do

for sn = 1 : SN do
while time = 1 : t do

Calculate the state space for the next move;
Remove the states disobeying the constraints;
Calculate weight (relevant to distance, angle, eigenvalue) for each state;
Select state as the next positions pt+1 with roulette method;
Collision Prediction:
while collision do

calculate the state space pt+2;
if one state is collision-free;
then

break;
else

Collision Avoidance Maneuver:
Set the weight of selected state pt+1 as 0;
Select another state pt+1 with roulette method;

Local update of eigenvalue of waypoints in each trajectory;
Calculate the distance for each trajectory;
Global update of eigenvalue of waypoints for the shortest distance;
if the shortest distance is shorter than D then

D = the shortest distance;
T = the shortest trajectory;

return D,T;

4. Simulation and Results

This section describes the results obtained from the proposed ROA. Simulation of all the following
scenarios has been accomplished with known UAV start positions and destination positions. What is
more, UAVs are assumed to be heading to the destination along a straight line from their start points
in the grid model. According to [32], the minimum distance is 5 nmi (about 9.26 km). Considering the
deviation and fine tuning of UAVs in reality, we set the radius of the protected sphere to be greater
(10 km). Table 1 shows some variable values applied in the following scenarios. Therein, R denotes the
safety distance of UAVs, which is a fixed value for a certain UAV; K1, K2, K3 are three variables affecting
the weight for candidate points for the UAV in the next move, explained, respectively, in Equations (7),
(8), and (12); λ is the decreasing coefficient of eigenvalue, listed in Equation (10), and the aim is to
decrease the eigenvalue in the current best path so that the algorithm can get rid of local optimal
value; ρ is the update coefficient of eigenvalue, listed in Equation (11), which is expected to adjust
the affection of the current best path. After numerical experiments, we find that the choices of the
variables depend on the specific task, and only affect the flying distance and computation duration,
but do not lead to collisions. To clearly describe the performance of the ROA, the choice of variable
values is just a random case.



Appl. Sci. 2017, 7, 329 9 of 15

Table 1. The value of variables in the algorithm for the following scenarios.

Variables R K1 K2 λ ρ K3
Values 10 50 100 0.5 0.2 100

4.1. Scenario 1: Pairwise Case

For the pairwise case, the initial position and the destination are shown in Table 2. All the results
are illustrated in Figure 6.

Table 2. The initial and destination position of UAVs in Scenario 1.

UAV Number Initial Position Destination Position

1 0, 0, 0 200, 200, 200
2 200, 200, 0 0, 0, 200

(a) (b)

(c) (d)

Figure 6. The situation and results in Scenario 1. (a) The initial collision-free trajectory and total
distance in Scenario 1; (b) The 5000th collision-free trajectory and total distance in Scenario 1; (c) The
distance changes with iteration number increasing in Scenario 1; (d) The relative distance of the best
trajectory in Scenario 1.

We set the number of random searches in one iteration SN as 10, and the number of iterations IN
as 5000. The expected time to detect collisions is 24t. Therein,4t denotes the time it takes for a UAV
to fly across a cubic cell. That is, the experiment can detect collisions two steps ahead. The initial
collision-free trajectory and the 5000th collision-free trajectory are shown in Figure 6a,b. The total
distance is 894.77 and 759.56, respectively.
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Figure 6c demonstrates the change of total distance with the iteration number. We find that the
proposed algorithm can get effectively rid of the local optimization point. The total distance tends to
be stable after 3000 iterations.

Relative distance in the best result with fixed intervals is illustrated in Figure 6d. As expected,
the shortest distance between two UAVs is larger than the radius of the protected sphere, which is 10
in the scenario.

4.2. Scenario 2: Six-UAVs Case

To validate the efficacy of our proposed algorithm for a more complicated scenario, six UAVs in
a common airspace implementing tasks are simulated. The initial position and the destination are
shown in Table 3. All the results are presented in Figure 7.

Table 3. The initial and destination position of UAVs in Scenario 2.

UAV Number Initial Position Destination Position

1 0, 0, 100 200, 200, 100
2 0, 0, 0 200, 200, 200
3 200, 0, 0 0, 200, 200
4 0, 0, 200 200, 200, 0
5 0, 200, 0 200, 0, 200
6 200, 0, 100 0, 200, 100

(a) (b)

(c) (d)

Figure 7. The situation and results in Scenario 2. (a) The initial collision-free trajectory and total
distance in Scenario 2; (b) The 5000th collision-free trajectory and total distance in Scenario 2; (c) The
distance changes with iteration number increasing in Scenario 2; (d) The relative distance of the best
trajectory in Scenario 2.
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We set the number of random searches in one iteration SN as 10, and the number of iterations IN
as 5000. The expected time to detect a collision is 24t. The initial collision-free trajectory and the 5000th
collision-free trajectory are shown in Figure 7a,b. The total distance is 2553.89 and 2215.71, respectively.

Figure 7c demonstrates the change of total distance with the iteration number. We can find that
the proposed algorithm can get rid of local optimization point effectively. The total distance tends to
be stable after 4500 iterations.

Relative distance in the best result with fixed intervals is illustrated in Figure 7d. As expected,
the shortest distance between two UAVs is larger than the radius of the protected sphere, which is 10
in the scenario.

4.3. More Scenarios

We also conduct more experiments to verify the flexibility and efficiency of the ROA. Based on
Scenario 2, we set the same six UAVs having fixed start points and destination points in this experiment.
We also add other UAVs having random start points and destination points in the section. Other
variables are the same as the scenarios above. We conduct the experiments with the number of
UAVs ranging from 7 to 20. The algorithm could generate the collision-free trajectories for all cases.
Table 4 lists all the cases and time spent during ten iterations. From the table, we can find that the
computational cost of the ROA is acceptable.

Table 4. Run duration of cases with 7 to 20 UAVs in the first 10 iterations.

The Number of UAVs Run Duration in 10 Iterations (s)

7 35.72
8 62.08
9 72.44

10 84.51
11 98.46
12 90.79
13 123.62
14 148.21
15 223.41
16 265.83
17 293.84
18 295.52
19 304.33
20 387.68

4.4. Comparison with Other Methods

In this section, an index is set to evaluate different collision avoidance algorithms. In most cases,
relevant methods can efficiently avoid the potential collision in UAV trajectories [23,27]. Generally,
run duration depends not only on the efficiency of the algorithms, but also on the size of the map
and velocity in the simulated scenarios. As a consequence, the index should remove the effects of the
artificial settings and focus on the computation complexity of the methods. The index evaluating run
duration of collision avoidance systems is shown in Equation 13. Therein, Ti denotes the run duration
of the ith collision avoidance algorithm; Di represents the total distance of UAVs in the simulated
scenario of the ith method, while vi describes the average velocity of UAVs in the scenario of the
ith system.

Rdi =
Ti

Di/vi
(13)
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The results of the evaluation index are shown in Table 5. The comprised methods are the
algorithms which are currently widely used and effective. “ROA1” is the result of one iteration with
six UAVs, which can generate collision-free trajectories, though the total distance is longer. “ROA5000”
shows the result of 5000 iterations. The result generates the collision-free waypoints with the shortest
total distance. The evaluating indices of proportional navigation method and rapidly-exploring
random tree method are between those of “ROA1” and “ROA5000”. Therefore, it is validated that our
proposed algorithm can generate trajectories for multiple UAVs without any collisions, and can obtain
optimized waypoints by rolling process.

Table 5. Results of evaluation index comprised of other methods. PN: proportional navigation; RRT:
rapidly-exploring random tree.

Methods Total Distance of UAVs (m) Average Velocity (m/s) Run Duration (s) Rd

PN Method [23] 20,000 176 119.66 1.0530
RRT Method [27] 6000 40 148.70 0.9913

ROA1 2200 2.5 2.38 0.0027045
ROA5000 2200 2.5 11900 13.523

5. Conclusions

In this paper, an efficient method of collision prediction and avoidance maneuvering is represented
with a rolling optimization algorithm based on predictive state space. A team of cooperative and
homogeneous UAVs is considered to fly in the common airspace, which is described by grid model, and
the UAV waypoints are limited to be the crossing points among cubes. Under some restrictions, optimal
trajectories with the shortest total trajectories of the UAVs involved are generated. The simulation
results have validated the effectiveness of the proposed method.

The main contributions of this paper include:

• A novel and effective collision avoidance maneuver is presented, and the scenarios have validated
the effectiveness of the proposed algorithm. The collision-free trajectories can be obtained in
a short time, and performance of the better results depends on the run duration of the algorithm.

• The variables in the ROA can adjust freely according to the specific tasks.
• Predictive state space is used to reduce the dimension of the waypoints of UAVs in the next

move, which has decreased the computation complexity greatly and improved the efficiency of
the proposed algorithm.

• The rolling optimization algorithm makes good performance by getting rid of local optimal value
of the objective function, obtaining better results as the algorithm continues.

The main future work will consider the problem that real UAVs may make fine tuning adjustments
when following the generated trajectories to cause potential collisions. A diagrammatic sketch is shown
in Figure 8. In the figure, the blue solid line is the trajectories generated by ROA, and the red dashed
line denotes the real trajectories of UAVs. The collision (distance shorter than the safe distance) might
happen when the UAVs do not fly as planned. In the future work, we will research what the real
trajectory of UAVs would be after the generated trajectory is received. What is more, we will research
a trajectory smoothing algorithm to produce more robust trajectories for UAVs.
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Figure 8. The potential collision in the real fight of UAVs.
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