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Abstract: Tool fault diagnosis in numerical control (NC) machines plays a significant role in ensuring
manufacturing quality. However, current methods of tool fault diagnosis lack accuracy. Therefore,
in the present paper, a fault diagnosis method was proposed based on stationary subspace analysis
(SSA) and least squares support vector machine (LS-SVM) using only a single sensor. First, SSA was
used to extract stationary and non-stationary sources from multi-dimensional signals without the need
for independency and without prior information of the source signals, after the dimensionality of the
vibration signal observed by a single sensor was expanded by phase space reconstruction technique.
Subsequently, 10 dimensionless parameters in the time-frequency domain for non-stationary sources
were calculated to generate samples to train the LS-SVM. Finally, the measured vibration signals
from tools of an unknown state and their non-stationary sources were separated by SSA to serve as
test samples for the trained SVM. The experimental validation demonstrated that the proposed
method has better diagnosis accuracy than three previous methods based on LS-SVM alone,
Principal component analysis and LS-SVM or on SSA and Linear discriminant analysis.

Keywords: stationary subspace analysis; least squares support vector machine; NC machine;
tool fault diagnosis

1. Introduction

Rapid technological development has brought automated and intelligent production processes to
manufacturing. Numerical control (NC) machines are flexible, high-performance automated machines
that can solve complex and sophisticated processing problems. NC machines play an important role in
industries that rely on high precision, high productivity and strong adaptability. However, in practice,
owing to tool damage or failure, NC machine processing performance degrades, even leading to
scraping of the workpiece. According to our statistics, tool faults account for about 20% of machine
failures. Therefore, monitoring and identifying NC machine tool faults in a timely and accurate manner
has attracted considerable interest. However, it is a challenge to develop and adopt effective signal
processing techniques that can discover the crucial damage information from responsive signals [1].

Owing to the high-speed friction between the tool and the workpiece, the tool is prone to faults
such as surface damage or deformation that can lead to a decline in processing quality. The most
common resolution is detection of faults by processing and analyzing signals measured by sensors.
Traditional signal processing techniques in fault diagnosis include time-domain analysis [2,3] and
frequency-domain analysis [4,5].

The main disadvantage of the above two techniques is that only single-domain information
is utilized. Although this information may be enough in some simple systems, it is too little
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for many complex systems. The time–frequency analysis method was proposed to overcome the
disadvantages of the above two methods by characterizing the signal in both time and frequency
domains. Time–frequency analysis provides a solution to separate physical signals (such as vibrations,
acoustic emissions, or cutting forces) in the frequency domain or in the time domain [6,7]. The wavelet
analysis method, which can be viewed as an extension of the conventional spectral technique, has
been widely used in machinery fault diagnostics, including for rotators, bearings and gears [8–11].
Wavelet analysis is a local transform of time and frequency. It can effectively extract the information
from the signal, and multi-scale analysis can be performed on a signal using expansion and translation
operators through a wavelet basis function. However, selection of the wavelet basis function does not
yet have unified theoretical criteria [12]. A suitable wavelet basis function can achieve good results,
but an improper wavelet basis function could get bad results. The selection of wavelet basis function is
subjective and informal in many studies for machine fault diagnosis.

Recently, hybrid intelligent methods have attracted considerable interest for tool fault diagnosis,
e.g., Wavelet packet transform (WPT), Artificial neural networks (ANN), and support vector machine
(SVM), because they can overcome deficiencies in time-domain or frequency-domain analyses and
wavelet transforms. Young-Sun Hong et al. [13] proposed a hybrid tool-wear monitoring method
for determining the state of a micro-end mill using wavelet packet transforms and Fisher’s linear
discriminant. Xiang et al. [14] developed a personalized machine fault diagnosis method using
finite element method, wavelet packet transform and SVM. Guofeng Wang et al. [15] proposed
a hybrid-learning-based Gaussian ARTMAP (GAM) network to realize online monitoring of the tool
condition. Nagaraj et al. [16] integrated Fisher discriminant ratio and support vector machine (SVM)
techniques to classify tool wear states. Amin Jahromi et al. [17] used fuzzy c-means clustering and
wavelet analysis to diagnosis tool faults in a high-speed milling process.

These hybrid intelligent methods typically outperform conventional methods; however,
they require the signal analyzed to satisfy certain conditions. Such conditions, including a large
number of samples for training diagnosis model, independent and identical distribution, white
Gaussian noise, or prior information of data, are difficult to meet in practical situation [18,19], especially
in time-varying and non-stationary nature of NC machine complex cutting process. Moreover, there is
few prior knowledge can be available to detect and diagnose tool faults in NC machine currently [20].
The study of time-varying and non-stationary processes with less prior information is therefore well
motivated. In the present paper, a novel fault diagnosis method based on stationary subspace analysis
(SSA) and least squares (LS)-SVM is proposed to improve the accuracy of tool fault diagnosis. SSA is
a blind source separation algorithm without the need for independency and without prior information
of the source signals. It only assumes that the observed signals are a linear superposition of two groups
of latent sources (stationary and non-stationary) and the non-stationaries alter the first two moments
(mean and covariance matrix) [21]. SSA has been applied successfully to Video Classification [22],
electroencephalographic (EEG) [23], Change-point detection [24]. The main goal of this paper is
to utilize SSA into tool fault diagnosis of NC Machine, which has been not reported in published
researches so far. However, SSA is a multi-dimensional feature exaction method that cannot diagnose
tool’ faults directly. LS-SVM and phase space reconstruction technique are introduced in this paper
to solve certain requirements of tool fault diagnosis with a single sensor for monitoring cost and
processing environment.

The remainder of this paper is organized as follows. Section 2 details the SSA and LS-SVM
algorithms. Section 3 provides the architecture of the proposed method. Section 4 describes the
experimental design. Section 5 presents the results of the experiment and tests the advantage of the
proposed method through a comparative study.
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2. Brief Introductions to SSA and LS-SVM

2.1. SSA

Stationary Subspace Analysis (SSA) is a blind source separation algorithm which factorizes
a multivariate time series into stationary and non-stationary sources by Paul et al. [21]. In the SSA model,
it is assumed that the observed multidimensional time series X(t) ∈ RD is a linear superimposition
of two types of sources: stationary sources and non-stationary sources. Its mathematical expression is
as follows:

X(t) = AS(t) = (As An)

(
Ss(t)
Sn(t)

)
(1)

where A is an unknown but time-independent matrix, and is linearly superimposed by coefficient
matrix As of the stationary sources and coefficient matrix An of the non-stationary sources; S(t) is the
underlying intrinsic data of X(t), and is linearly superimposed by the stationary sources Ss(t) ∈ Rd

and the non-stationary sources Sn(t) ∈ RD−d. The aim of the SSA is to estimate the inverse matrix
Â−1 separating the stationary sources from non-stationary sources in X(t). That is, we want to find

a demixing matrix, Â−1 =

[
Bs

Bn

]
with Bs ∈ Rd×D and Bn ∈ R(D−d)×D that consists of the matrixes Bs

and Bn for the stationary and non-stationary directions, respectively. Thus, if we apply such an ideal
demixing Â−1 to the observed data X(t),[

Ŝs
t

Ŝn
t

]
= Â−1X(t) = Â−1A

[
Ss

t
Sn

t

]
=

[
Bs As Bs An

Bn As Bn An

][
Ss

t
Sn

t

]
(2)

The SSA algorithm uses the optimal stationary signal recognition criteria, only the stationary
source signal Ss

t and n-space can be uniquely determined, and the non-stationary source signal Sn
t can

only get its estimate Ŝn
t by maximizing the non-stationary. Among them, the stationary judgment is

based on the weak stationary condition, that is, a time series is stationary if its first two moments are
constant over time [25].

SSA needs multi-dimensional observed data that some situations cannot satisfy, owing to working
conditions and experimental cost. In NC machine tool fault diagnosis, only one sensor can be used
in some situations due to monitoring cost and processing environment, and the observed data are
one-dimensional. To use SSA to extract stationary source and non-stationary source signals, the
one-dimensional observed data should be expanded into multi-dimensional data. To accomplish
this, phase space reconstruction (PSR) is introduced in this paper. PSR is a reconstructing space
technology in Chaos theory according to the delay coordinate method [26]. PSR can be used to
expand the dimensionality of a system for studying the characteristics of the system without prior
knowledge about the structure and parameters of the system. The idea of PSR is that the evolution of
any component in a system is determined by its interaction with other components. The time series
implies the development process of each component. Considering a single component, PSR takes some
measurement processing in fixed time delay point as a new dimension, the value of delay is considered
as a new coordinate. By repeating this process at different time points, many of these points generate
a new space.

For one-dimensional time series X(t), different time delays 0, t, 2t, ..., (m− 1)t are used to construct
a m-dimensional phase space vector:

Xi(t) = {x(t + i), x(t + i + τ), x(t + i + 2τ), . . . , x(t + i + (m− 1)τ)}, i = 0, 1, . . . , m− 1

where τ is the time delay and m is the embedding dimension.
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P =


x1 x2 . . . xN−(m−1)τ

x1+τ x2+τ . . . xN−(m−2)τ
...

...
...

...
x1+(m−1)τ x2+(m−1)τ . . . xN


Values of m and τ can be obtained using the autocorrelation function method and false nearest

neighbor method [27,28].
The process of SSA is described as Algorithm 1.

Algorithm 1. Finding non-stationary subspaces by SSA and PSR

Given observed signal x(t), number of time periods N(N ≥ (D− d)/2 + 2)

Step 1: Calculate parameters m and τ using the autocorrelation function method and false nearest
neighbor method.

Step 2: Reconstruct x(t) to multi-dimensional signal X(t) using PSR.
Step 3: Divide X(t) into N continuous time periods, and calculate the mean xi and covariance Σ̂i of

each time period, for an arbitrary choice of Bs, get the estimated mean xs,i = Bsxi and
covariance matrix Σ̂s,i = BsΣ̂i in each time period.

Step 4: Measure the difference between the estimated stationary signal distribution and normal
distribution in each time period usingKullback-Leibler (KL) divergence. Sum all period KL
divergences, and construct the objective function L(Bs) with independent variable Bs.
Minimizing the objective function L(Bs) using gradient descent based algorithm described
in [25], obtain the optimal stationary projection B̂s, and estimate the stationary source signal

Ŝs
t L
(

B̂s) = minL(Bs) = min
n
∑

i=1
DKL

[
Norm

(
xs,i, Σ̂s,i

)
||Norm(0, I)

]
according to Equation (2).

Step 5: Construct the objective function G(Bn) with steps (1) and (2) above. Maximizing the
objective function G(Bn) using the optimization algorithm in Step 4, obtain the optimal
non-stationary projection B̂n, and according to Equation (2) estimate the non-stationary

source signal Ŝn
t G
(

B̂n) = maxG(Bn) = max
n
∑

i=1
DKL

[
Norm

(
xn,i, Σ̂n,i

)
||Norm(0, I)

]
.

2.2. Least Squares SVM

The support vector machine (SVM) is a powerful nonlinear classification method for overcoming
the drawback of traditional linear classification methods. SVM is a kernel-based method. It maps the
low-dimension nonlinear structures of signals to a high-dimensional (possibly infinite) linear feature
space using the kernel trick. Least squares (LS)-SVM [29], as with the artificial neural network method,
does not need training with large data sets to estimate corresponding parameters; it is numerically
inexpensive and less overfitting in the training process [30].

Given a training data set {(x(t), y(t)), t = 1, 2, . . . , N}, x(t) ∈ Rm is the input data, y(t) ∈ R is
the output corresponding to x(t), and N is the training samples number. In LS-SVM, The estimation
model is yt = wT ϕ(xt) + b + et, where ϕ( ) is a nonlinear transformation that maps x(t) to the
high-dimensional feature space, w is weight vector, b is intercept, and et is the error term that is
assumed to be independent and identically distributed with zero mean and finite variance [31].
The unknowns w and b can be determined from a convex optimization problem as follows:

minJ(w, e) =
1
2
(wTw + c

N

∑
t=1

e2
t ) (3)

Such that yt = wT ϕ(xt) + b + et, t = 1, 2, . . . , N.
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According to [29,30], the LS-SVM model can be expressed in dual form as ŷ(z) = ∑N
t=1 αtK(z, xt)+ b.

Note that the unknown items w and ϕ( ) are not included in the dual model; the mapping
transformation operations are achieved implicitly through the use of kernel function K(, ). That is, it is
necessary to find the expression of mapping function ϕ( ). For the kernel function K(, ), a function
satisfying the Mercer theorem can be used. There are several choices presently, including the linear
kernel, the perceptron kernel, the spline kernel, or the RBF (Radial Basis Function) kernel.

In the LS-SVM model, it is required to optimize the parameter c in Equation (3) and
the kernel parameter according to the kernel function selected, e.g., σ in Gaussian RBF kernel

(K
(

xp, xq
)
= exp (− ‖xp−xq‖2

2σ2 )). A fast leave-one-out cross validation optimization [32] can be used for
optimizing these parameters.

However, LS-SVM cannot deal with time series directly. To generate the fault features training
samples, some time- and frequency-domain indexes are selected from the non-stationary signals by
SSA, and are taken as inputs to train the LS-SVM classifier model. In this paper, 10 dimensionless
statistical indexes in time and frequency domains are chosen [33,34]. A brief mathematical description
of these indexes is summarized in Table 1.

Table 1. Ten time domain and frequency domain dimensionless statistical parameters 1.

Domain Indexes Formula

Time

Shape factor Tsf Ts f = xrms/(∑n
i=1|xi|/n)

Crest factor Tcf Tc f = max{xi}/xrms

Kurtosis Tk Tku = ∑n
i=1(xi−x)4

nS4 − 3

Skewness Tsk Tsk = ∑n
i=1(xi−x)3

nS3

Kurtosis factor Tkf Tk f = Tk/xrms

Frequency

Stabilization ratio Fsr Fsr = (∑
n
2
i=1 f 2

i Pi)/
√

∑n/2
i=1
(

f 4
i Pi
)

∑n/2
i=1 Pi

Wave-height ratio Fwr Fwr = max{Pi}/
√

2
n ∑n/2

i=1 P2
i

Average Frequency Faf Fa f =
√

∑n/2
i=1 ( fiPi)/

√
∑n/2

i=1 Pi

Frequency high-low ratio Ffhr Ff hr =
(

∑
n
2
i= n

4
Pi

)
/
(

∑
n
4
i=1 Pi

)
Modified equivalent bandwidth Fmeb Fmeb =

√
∑n/2

i=1

((
fi − f

)2
Pi

)
/
√

∑n/2
i=1 Pi

1 xi is a signal series for i = 1, 2, . . . , n, n is the number of data points, x and S are the mean and the standard deviation

of xi, xrms =
√

∑n
i=1 x2

i /n; fi is the frequency signal with xi by FFT, Pi is the power spectrum of fi, f =
√

∑n
i=1 fi/n.

The process of LS-SVM classifier according to [32] is described as Algorithm 2.

Algorithm 2. Training LS-SVM classifier by leave-one-out cross validation

Given data (NTi, Yi), i = 1, . . . , n, NTi is the feature indexes of the i-th signal and Yi is the class
corresponding to the i-th sample.

Step 1: Calculate 10 dimensionless time–frequency indexes of each NTi, as inputs of LS-SVM
for classification.

Step 2: Standardize the input data, and select a kernel function. Find the optimal parameter c by
solving the optimization problem (3).

Step 3: Set candidate tuning sets for kernel parameter, perform fast leave-one-out test for each
candidate with the optimal parameter c obtained in Step 2, and take the result that obtains
the highest test accuracy as the optimal kernel parameter.

Step 4: With the optimal kernel parameter obtained in Step 3, go back to Step 2 to refine
parameter c.
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3. Damage Diagnosis Approach Based on Hybrid SSA and LS-SVM

The damage diagnosis approach for NC machine tools proposed in this paper includes two
phases. The first phase focuses on model training and obtains sample feature parameters for different
tool states. First, reconstructed multi-dimensional signals are transformed by PSR and the stationary
and non-stationary parts are extracted using SSA. Subsequently, some dimensionless time–frequency
parameters in the non-stationary component are calculated, to be used as sample data for LS-SVM
classification. The second phase is damage detection for tools whose state is unknown. The specific
procedure is constructed through the main steps shown in Figure 1.
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Figure 1. Damage diagnosis procedure based on hybrid Stationary subspace analysis, SSA: stationary
subspace analysis, LS-SVM: least squares support vector machine.

The process of the proposed SSA + LS-SVM method is described as Algorithm 3.

Algorithm 3. Damage diagnosis approach based on SSA + LS-SVM

Step 1: Model training

• Measure vibration time signals of NC machine in three damage classes (normal, mild wear and
severe wear) n times each.

• For each signal, find the stationary and non-stationary sources using Algorithm 1.
• Train the LS-SVM classifier model using Algorithm 2 and the Gaussian RBF kernel function.

Step 2: Damage detection

• Periodically collect vibration time-domain signals from the NC machine under operating
condition while the state of the tool is unknown and to identify its class.

• Find the unknown tool’s stationary and non-stationary signal sources using Algorithm 1,
using the reconstructed parameters from Step 1.

• Calculate 10 dimensionless time–frequency indexes for the non-stationary signal source and
identify the class of the unknown signal using the trained LS-SVM classifier.

4. Experimental Design

The experimental setup for tool fault detection under operating conditions is illustrated in
Figure 2. The GSVM714A NC milling machine (Deusi Numerical Control Technologies Co., Ltd.,
Nanjing, China) is used for the experimental test. The tools used in this test are carbide cutting
tools (#RPMW1003#) and a face milling cutter with four teeth (#EMR 5R160-40-8T#). Owing to their
effectiveness and convenience [35,36], vibration signals were collected indirectly in operation states
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using a laser vibrometer from Polytec Inc. (shown in Figure 3). These vibration signals were sent to
a data acquisition instrument (MI-7016 Avant, Econ Technologies Co., Ltd., Hangzhou, China) and
stored on a personal computer.Appl. Sci. 2017, 7, 346 7 of 12 
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Figure 3. Measuring vibration signal by a laser vibrometer.

Tools in this experiment are considered to be in one of three states: (1) normal; (2) mild wear;
or (3) severe wear (as shown in Figure 4). Aluminum alloy samples #7075-T351# (150 mm × 100 mm
× 500 mm) were fixed on the machining center. Cutting speed was set to 1000 rpm and cutting depth
to 1 mm.
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It was assumed that all investigated tools have the same damage mechanism. Vibration signals in
three tool fault classes are measured and total 180 samples were taken, out of which 60 samples from
each condition of the tool for a time interval of 1s at sampling frequency of 48 kHz. 60 samples of
each tool condition divided into two parts: 40 samples as training set and 20 samples as testing set.
The training set is used to train the LS-SVM model in MATLAB 2012R.

5. Result and Discussion

In the first phase model training, values for time delay (τ = 10) and embedding dimension (m = 4)
are obtained using the autocorrelation function method and false nearest neighbor method [27,28].
These are chosen as inputs for the SSA decomposition, and one non-stationary source and three
stationary sources signals are extracted. There are two reasons for setting one non-stationary source
signal: (1) non-stationary source contains more fault feature information to distinguish different
fault classes than stationary source; (2) one source signal is convenient to calculate time- and
frequency-domain indexes for follow-up process in the proposed approach. SSA training data for
three damage classes are shown in Figures 5–7. Ten dimensionless time–frequency parameters were
chosen from the non-stationary source of each class, and these were used as the input data for LS-SVM.

The Gaussian RBF kernel (K
(

xp, xq
)
= exp (− ‖xp−xq‖2

2σ2 )) was selected, and the kernel parameter σ is
optimized usinga fast leave-one-out cross validation optimization proposed in [32].
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Figure 7. SSA results of severe wear tool sample.

The classification results of the proposed SSA + LS-SVM method are shown in Tables 2 and 3.
Table 2 presents the classification results with training set, all normal tools can be correctly identified;
however, the accuracy of the mild wear and severe wear tools is 87.5% and 92.5%, respectively.
Five mild wear tools were identified wrongly as severe wear tools, and three severe wear tool were
identified as mild wear tools. Table 3 shows the classification results with testing set, all normal tools
can be correctly identified; however, the accuracy of the mild wear and severe wear tools is 80% and
85%, respectively. Four mild wear tools were identified as severe wear tools, and three severe wear
tool were identified as mild wear tools. Fortunately, as shown in Tables 2 and 3, the proposed method
can significantly distinguish between normal tools and wear tools (included mild and severe wears)
both in training sets and testing sets.

Table 2. Result of stationary subspace analysis (SSA) + least squares support vector machine (LS-SVM),
original LS-SVM, Principal Component Analysis (PCA) + LS-SVM and SSA + linear discriminant
analysis (LDA) with training set.

Methods Training Classes
Training Result Classification

AccuracyNormal Tool Mild Wear Tool Severe Wear Tool

SSA + LS-SVM
proposed

normal tool 40 0 0 100%
mild wear tool 0 35 5 87.5%

severe wear tool 0 3 37 92.5%

Original
LS-SVM

normal tool 37 3 0 92.5%
mild wear tool 4 29 7 72.5%

severe wear tool 0 8 32 80%

PCA + LS-SVM
normal tool 38 2 0 95%

mild wear tool 5 30 5 75%
severe wear tool 2 6 32 80%

SSA + LDA
normal tool 31 9 0 77.5%

mild wear tool 6 26 8 65%
severe wear tool 0 11 29 72.5%
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Table 3. Result of SSA + LS-SVM, original LS-SVM, PCA + LS-SVM and SSA + LDA with testing sets.

Methods Testing Classes
Testing Result

Classification Accuracy
Normal Tool Mild Wear Tool Severe Wear Tool

SSA + LS-SVM proposed
normal tool 20 0 0 100%

mild wear tool 0 16 4 80%
severe wear tool 0 3 17 85%

Original LS-SVM
normal tool 18 2 0 90%

mild wear tool 4 13 3 65%
severe wear tool 0 5 15 75%

PCA + LS-SVM
normal tool 19 1 0 95%

mild wear tool 5 e 1 70%
severe wear tool 1 4 15 75%

SSA + LDA
normal tool 14 6 0 70%

mild wear tool 7 10 3 50%
severe wear tool 2 5 13 65%

The proposed SSA + LS-SVM method was compared with the original LS-SVM, PCA
(Principal Component Analysis) + LS-SVM, and with SSA + LDA (linear discriminant analysis).
The original LS-SVM method means that the original vibration signals measured in experiment are the
input of LS-SVM, in which do not extract signals by SSA and PSR. Its algorithm calculates 10 dimensionless
time–frequency indexes (described in Table 1) from the original vibration signals and be used as inputs for
training the LS-SVM classifier model. The PCA + LS-SVM method substitute SSA for PCA in Algorithm
3, that is to say, PCA is used to feature extraction. PCA is a popular and powerful blind source separation
algorithm. It constructs a low-dimensional representation of the data that describes the variance in the
data as much as possible. It is achieved by finding a linear basis of reduced dimensionality for the
data, in which the amount of variance in the data is maximal [37]. To implement the PCA + LS-SVM
method, 10 dimensionless time–frequency indexes (described in Table 1) of each signal are calculated as
the input of PCA, and 10 principal components transformed by PCA are selected as the input of LS-SVM.
The SSA + LDA method substitute LS-SVM for LDA in Algorithm 3, that is to say, LDA is used as the
classifier model. LDA is a linear classifier that uses a generalization of Fisher’s linear discriminant; its aim
is to find a linear combination of features that characterizes classes of objects or events [38].

As shown in Tables 2 and 3, the original LS-SVM, PCA + LS-SVM and SSA + LDA methods are
less accurate than the proposed SSA + LS-SVM method. In the original LS-SVM method, the accuracy
of the normal, mild wear and severe wear groups with training sets was about 80%, and even low to
65% with testing sets, 22 tools in training sets and 14 tools in testing sets were erroneously categorized.
In the PCA + LS-SVM method, the accuracy of the normal, mild wear and severe wear groups with
training sets were higher than original LS-SVM method, 20 tools in training sets and twelve tools in
testing sets were erroneously categorized. However, with the tool failure gradually becoming serious,
its advantage is reduced over original LS-SVM method. In the SSA + LDA method, the accuracy
of mild wear group with training sets and testing sets was 65% and 50%, 34 tools in training sets
and 23 tools in testing sets were erroneously categorized. The three methods could not discriminate
between normal tools and wear tools effectively. The proposed SSA + LS-SVM method in this paper
outperformed the original LS-SVM, PCA + LS-SVM and SSA + LDA methods.

6. Conclusions

The present study proposes a damage diagnosis approach to NC machine tools based on SSA and
LS-SVM. First, the original data are transformed from one-dimensional data into high-dimensional
signals using PSR. The SSA method is applied to extract stationary and non-stationary parts from
multi-dimensional signals without the need for independency and without prior information of the
source signals. Subsequently, the selected non-stationary components were analyzed for classification
using LS-SVM. Ten dimensionless parameters in the time-frequency domain were extracted and used
as inputs for LS-SVM. The proposed SSA + LS-SVM method was applied to NC milling machine
tools. The results show that the proposed SSA + LS-SVM method outperforms the original LS-SVM,
PCA + LS-SVM and SSA + LDA methods. The achieved accuracy of the proposed SSA + LS-SVM
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method was higher than 80%, whereas that of the original LS-SVM, PCA + LS-SVM and SSA + LDA was
as low as 65%, 70% and 50%, respectively. Moreover, the proposed method can significantly distinguish
between normal tools and wear tools, which cannot be realized through the other three methods.
Furthermore, it is possible to apply the proposed method to other fault diagnosis areas, e.g., electric
motors, in which the signals of bars of an induction motor are time varying, and non-stationary [39,40].

However, classification accuracy of the proposed SSA + LS-SVM method for mild wear and severe
wear with testing sets is just 80% and 85%, respectively. Future work will focus on improvement of
this accuracy. The stationary sources extracted by SSA will be utilized in future studies to improve the
accuracy in identifying mild wear tools.
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