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Abstract: The damage identification of a reticulated shell is a challenging task, facing various
difficulties, such as the large number of degrees of freedom (DOFs), the phenomenon of modal
localization and transition, and low modeling accuracy. Based on structural vibration responses, the
damage identification of a reticulated shell was studied. At first, the auto-regressive (AR) time series
model was established based on the acceleration responses of the reticulated shell. According to the
changes in the coefficients of the AR model between the damaged conditions and the undamaged
condition, the damage of the reticulated shell can be detected. In addition, the damage sensitive
factors were determined based on the coefficients of the AR model. With the damage sensitive factors
as the inputs and the damage positions as the outputs, back-propagation neural networks (BPNNs)
were then established and were trained using the Levenberg–Marquardt algorithm (L–M algorithm).
The locations of the damages can be predicted by the back-propagation neural networks. At last,
according to the experimental scheme of single-point excitation and multi-point responses, the impact
experiments on a K6 shell model with a scale of 1/10 were conducted. The experimental results
verified the efficiency of the proposed damage identification method based on the AR time series
model and back-propagation neural networks. The proposed damage identification method can
ensure the safety of the practical engineering to some extent.

Keywords: reticulated shell; damage detection; time series modeling; Levenberg–Marquardt
algorithm; impact experiment; neural networks

1. Introduction

Long-span spatial structures are widely used in stadiums, theaters, exhibition centers, airport
terminals, and many other large scale structures. Any one of these structures can simultaneously
house a large number of occupants. As a result, guaranteeing the integrity of these structures is of
great importance. Structural health monitoring (SHM) systems should be established for important
buildings. For important buildings undergoing construction, a long-term health monitoring system
should also be set up to monitor the health condition of the buildings during the construction and
service stages. It is essential to monitor structural conditions and detect damage in real-time for future
construction projects [1]. For structural health monitoring projects, one of the core approaches used is
damage identification.

The study of SHM has attracted numerous interests in different fields of application. By using SHM
technologies, the real-time damage detection of various structures, including concrete structures [2–6],
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pipeline structures [7–12], and steel structures [13–19], can be investigated in order to provide early
warning and hopefully to avoid accidents. In the aerospace industry, several application areas have
garnered significant interests. Rapid inspection of satellite structures for pre-launch verification has
been achieved using the SHM technologies [20–22].

Currently, damage identification based on the variation of modal parameters, such as resonant
frequencies [23–25], mode shapes [26,27], mode shape curvatures [28,29], and modal strain energy [30–32],
have been widely adopted. Most reticulated shell structure damage detection methods are also
based on a variation of the modal parameters [33–37]. The methods based on modal parameters
usually rely heavily on fast Fourier transform, which will cause bias errors. These errors will reduce
the detection accuracy of the modal parameters. Since we can only acquire an incomplete set of
modal parameters by experiments, we had to resort to methods of model reduction or modal shape
expansion. These methods will lead to the loss of physical meaning of the damage factors. The damage
identification of a reticulated shell has a number of associated difficulties due a large number of
degrees of freedom (DOFs), the phenomenon of modal localization and transition, and low modeling
accuracy. These characteristics will cause a problem in that the model parameters are not in the same
order between the damaged conditions and the undamaged condition, which will further reduce the
accuracy of the damage identification based on the variation of the modal parameters. In order to
overcome the above difficulties, a damage identification method based on the vibration response of
the structure can be adopted [38–40].

In this paper, a novel application of a damage detection method based on the time series model
and back-propagation neural networks (BPNNs) using acceleration responses is developed. Firstly,
the damage was identified by the auto-regressive (AR) time series model based on the changes in
model coefficients. Secondly, the damage location was determined by the back-propagation neural
networks in which the damage sensitive factors were used as inputs and the damage positions were
used as outputs. Lastly, in order to verify the validity of this method, impact experiments of a K6 shell
model with a 1/10 scale was conducted by using the scheme of single-point excitation and multi-point
responses. Experimental results demonstrated the effectiveness of the proposed method in the damage
identification of reticulated shell.

2. Methodologies

2.1. The Auto-Regressive Time Series Model

In a health monitoring system, a series of original acceleration data can be obtained from sensors
placed on various locations of a structure with a certain sampling frequency. These data constitute
the time series. The initial acceleration data should be pre-processed to remove the mean and the
trend. After pre-processing, the acceleration time histories are compared to those time histories from
different loading states (i.e., sizes, directions, and positions of loads) and different environmental cases.
Assuming the signals before and after the damage are linear stationary, the AR model is established
as follows:

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p + at (1)

where Xt is the pre-processed acceleration signal, ϕi is the ith AR coefficients, p is the order of the AR
model, and at is the residual term [38].

In Equation (1), the optimal model order is determined using the Akaike information criteria
(AIC) and the AR coefficients are determined using the least squares method. Structural damages
can cause changes to the acceleration responses, based on which the identification of damage can
be achieved using the difference in AR model coefficients between the damage and the undamaged
states of the structure. Using the first four AR coefficients, a damage-sensitive feature, DSi is defined
as follows:

DSi = ϕi f − ϕid (2)
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where DSi is the ith damage-sensitive feature, ϕi f and ϕid are the ith AR coefficients for damage and
undamaged state, respectively. If the value of DSi is zero, the structure is in the undamaged state. If
not, the structure is in the damaged state.

2.2. Back-Propagation Neural Network

A neural network is a powerful tool of pattern classification and is suitable for the identification of
the inherent characteristics before and after damage [41–44]. The traditional back-propagation neural
network is a multi-layer feed-forward neural network, which consists of one input layer, one hidden
layer, and one output layer, as shown in Figure 1.
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If Nh is the numbers of nodes in the hidden layer, it can be calculated by the Formula (3) [45].

Nh ≤ 4
√

Ni(No + 3) + 1 (3)

where Ni is the number of nodes in the input layers and No is the number of nodes in the output layers.
The traditional back-propagation neural network employing the gradient descent algorithm

can easily slow down the training process and fall into a local minimum. Here, we use the
Levenberg–Marquardt algorithm (L–M algorithm), which is an improved training algorithm. It is a
global optimization algorithm which computes and adjusts the connection weights according to the
information from all samples. The L–M algorithm originated from the Newton optimization algorithm
while integrating the gradient descent method, in order to reduce the computational complexity and
accelerate the training rate of the network. The L–M algorithm is very suitable for solving the problems
related to damage identification of spatial structures with large numbers of joints and bars.

2.3. Damage Detection Flowchart

Figure 2 illustrates the procedure of the proposed damage detection method, which is described
as follows:

(1) Measure the acceleration responses of the reticulated shell structure before and after damage
under the excitation condition.

(2) Obtain the stationary random acceleration signals by using the data pre-processed method
introduced in Section 2.1.

(3) Establish the auto-regressive time series model (AR model) by using the modeling method
introduced in Section 2.1.

(4) Detect the damage of the reticulated shell according to the changes in the coefficients of the AR
model before and after damage.

(5) Obtain the damage sensitive factors by using Equation (2).
(6) Train the back-propagation neural networks (BPNNs) by using the method introduced in

Section 2.2, with the damage sensitive factors as the inputs and the damage positions as
the outputs.
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(7) Find the locations of the damages by testing the trained BPNNs.

This paper develops the novel application of a damage detection method based on the time series
AR model and BPNNs using acceleration responses of the reticulated shell. This method has the
advantages of relaxing the requirement of prior knowledge about the excitation input and the modal
parameters. It effectively eliminates the method’s dependency on modeling accuracy and improves
the damage detection accuracy for a reticulated shell.
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3. Experimental Setup

Impact experiments on a K6 shell model with a scale of 1/10 were conducted in order to verify
the efficiency of this damage identification method based on the time series model and the improved
BPNNs. The proposed damage identification method can serve as a reference for practical engineering.

3.1. Experiment Model

As shown in Figure 3, a K6 single-layer spherical shell (span × height: 3 m × 0.5 m) with a scale
of 1/10 was constructed. The shell was composed of 90 seamless steel tubes (Φ13 × 2). We simulated
the roof load by attaching solid steel balls. These solid steel balls were all the same size, each with the
diameter of 150 mm and the weight of 13.2 kg. There were 19 steel balls in total. The material properties
of the experimental model are shown in Table 1 and the lengths of the bar elements are shown in
Table 2. According to the principle of equivalent stiffness, we simulated the structural damage by
replacing certain bar elements with smaller sized elements. The cross-section of the replacement
elements and their corresponding damage degrees are shown in Table 3. The replacement elements
and the model were bolted through the end plate, as shown in Figure 4. The model base was composed
of 18 welded square steel tubes (100 mm × 200 mm × 4 mm) and 18 ball joints at the outer ring of
the reticulated shell were connected to the base. The base was firmly connected to the ground by the
anchor bolt.
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Table 1. Material characteristics of experimental model.

Grade of Steel Elastic Modulus E (N/m2) Steel Density (kg/m3) Poisson’s Ratio

Q235 2.07 × 1011 7800 0.3

Table 2. The lengths of the bar elements (mm).

Main Rib
Elements

First Ring
Elements

Second Radial
Elements

Second Ring
Elements

Third Radial
Elements-1

Third Radial
Elements-2

Third Ring
Elements

35.2 532.1 659.4 538.3 577.8 688.9 520.9

Table 3. The cross-section of the replacement elements and their corresponding damage degrees.

Damaged Degree 0 40% 50% 60% 70% 80%

Cross-section Φ13 × 2 Φ10 × 3 Φ10 × 2 Φ9 × 2 Φ8 × 2 Φ7 × 2

3.2. Experimental Scheme

Based on the experimental scheme for single-point excitation and multi-point responses, a single
vertical downward point excitation on the top joint of the lattice shell model was excited by an impact
hammer in order to get the acceleration response. The top joint of the lattice shell model had the largest
vibration amplitude during the testing. Thus, the acceleration signal from the top joint had the best
signal to noise ratio.

Since the number of sensors is limited in practical health monitoring projects and the number of
shell nodes is large, we placed the sensors based on the particle swarm optimization algorithm (PSO) in
this experiment. Particle swarm optimization was inspired by the simulation of a simplified social mode
for a group of birds, firstly proposed by Kennedy in 1995 [46]. The method has characteristics of ease
of implementation, high quality of solutions, computational efficiency, and speed of convergence [47].
For the optimization of the sensors, the fitness function can be defined based on bending deformation
energy. Minimization values calculated based on the fitness function were desired in the optimization



Appl. Sci. 2017, 7, 362 6 of 12

procession. Though comparing the evaluation of a particle’s previous best value and the group’s
previous best, the velocities and positions of particles were updated until the optimal positions were
found. The optimal sensor positions, as shown in Figure 5, can be obtained for a given sensor number.
The effects of the number and locations of the sensors were studied by the authors to some extent
in [48]. Under the condition of a given sensor’s location, the damage detection accuracy can be
improved with an increase in the number of sensors.
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The accelerometers were attached to the model firmly using strong magnets. The accelerometer
used was the ICP accelerometer (model INV9822, China Orient Institute of Noise & Vibration, Beijing,
China), which was manufactured by Beijing Orient Institute of Noise & Vibration. The hammer used
was an MSC-3 impact hammer and the data acquisition instrument was a 24-bit high precision USB
data acquisition instrument (model INV3018A). The instrumentation of the impact experiments is
shown in Figure 6.
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As a reticulated shell has a large number of degrees of freedom (DOFs), smaller damage levels
of the elements can only affect the structural stiffness matrix slightly. Thus, smaller damage levels to
an individual element have a relatively-low effect on the whole structure bearing capacity. On the
other hand, due to various inevitable errors in the experiment, slight variations of test signals caused
by the smaller damage levels of an individual element may be hidden by different kinds of random
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errors, such as model errors and measurement errors. Therefore, we set damage levels between 40%
and 80% in the experiment, as shown in Table 4. A higher level of damage to an individual element
will increase the nonlinear influence on the structural vibration, which will cause instability failure
more quickly. Instability failure is one of the most important causes for a reticulated shell to collapse.

Table 4. The damage and undamaged conditions.

Condition Damage Element Number and Damage Degree Specifications of Replacements

Undamaged condition GK1 No damage Φ13 × 2 (undamaged)

Double component
damage training

condition

GK2 No. 8 and 38: 50% damage Φ10 × 2
GK3 No. 8 and 67: 50% damage Φ10 × 2
GK4 No. 22 and 38: 50% damage Φ10 × 2
GK5 No. 22 and 67: 50% damage Φ10 × 2
GK6 No. 38 and 67: 50% damage Φ10 × 2

Double component
damage experiment

condition

GK7 No. 8 and 67: 40% damage Φ10 × 3
GK8 No. 22 and 38: 60% damage Φ9 × 2
GK9 No. 22 and 67: 70% damage Φ8 × 2
GK10 No. 38 and 67: 80% damage Φ7 × 2

The codes of the bar elements are shown in Figure 7. We can obtain acceleration responses of the
six optimal node locations for the damaged conditions and undamaged condition. Take Node 9 as an
example, the acceleration response of Node 9 for GK9 condition is shown in Figure 8.
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4. Experimental Results

From the impact experiments on the single layer shell model, we obtained the acceleration
responses of six nodes under different damage conditions. The sampling frequency was 500 Hz and
the recording duration was 20 s. The 10,000 data points from the 5th second to the 25th second were
chosen. In order to check the robustness of the method, 3% noise was added to the acceleration signal
to build the AR model. Taking GK7, GK8, GK9, and GK10 as examples, a comparison of the first four
coefficients of the constructed AR model between the undamaged condition and damaged condition
is shown in Table 5. As we can see from Table 5, compared with the undamaged condition GK1, the
AR model coefficients ϕi were changed under the damaged condition of GK7, GK8, GK9, and GK10,
which indicates that damage has occurred.

Table 5. A comparison of auto-regressive (AR) model coefficients between the undamaged condition
and damaged condition.

Number of the Nodes
Undamaged Condition Damaged Condition

GK1 GK7 GK8 GK9 GK10

Node 9

ϕ1 −3.08 −3.165 −3.496 −3.708 −3.209
ϕ2 5.627 5.403 6.802 7.637 5.378
ϕ3 −9.294 −7.658 −11.09 −13.14 −7.433
ϕ4 13.99 10.25 16.61 20.9 9.613

Node 11

ϕ1 −3.074 −3.403 −3.174 −3.21 −3.391
ϕ2 5.509 6.362 5.772 6.006 6.323
ϕ3 −8.796 −9.887 −9.19 −9.806 −9.857
ϕ4 13.18 14.35 13.78 15.15 14.45

Node 13

ϕ1 −3.191 −3.627 −3.168 −3.456 −3.038
ϕ2 6.135 7.446 5.186 6.485 4.658
ϕ3 −10.76 −12.9 −7.004 −10.11 −6.053
ϕ4 17.28 20.78 9.16 14.99 8.029

Node 15

ϕ1 −3.05 −3.384 −2.986 −2.927 −2.992
ϕ2 5.534 6.198 4.536 4.618 4.745
ϕ3 −8.938 −9.564 −5.832 −6.559 −6.477
ϕ4 13.35 13.87 7.439 9.219 8.446

Node 17

ϕ1 −3.37 −3.296 −3.077 −2.928 −3.154
ϕ2 6.882 6 5.252 5.029 5.507
ϕ3 −11.91 −9.375 −7.925 −7.84 −8.37
ϕ4 18.52 13.65 11.41 11.29 11.99

Node 19

ϕ1 −2.939 −3.336 −3.517 −3.587 −2.883
ϕ2 5.223 6.047 7.164 7.271 4.454
ϕ3 −8.489 −9.355 −12.67 −12.58 −6.095
ϕ4 12.83 13.64 20.85 20.3 8.032

Damage factors DSi for the damaged conditions and the undamaged condition damage were
calculated according to Equation (2). Based on the training conditions in Table 4, the network sample
database was constructed. The structure of the BPNNs was set as 24 input nodes, 70 hidden nodes,
and 5 output nodes. The maximum training times was 500. The training accuracy was 10−10, and the
learning factor was η = 0.01. The momentum coefficient was α = 0.9 and the transfer function was
the logarithmic sigmoid function. The neural networks were able to be established based on the L–M
algorithm. After training, the neural networks were able to map any nonlinear relationships between
the inputs and the outputs [49]. Then the experimental results were inputted into the BNPP model
to identify the damage locations. The training conditions and experiment conditions are shown in
Table 4. The network training process is shown in Figure 8 and the results of the network experiment
are shown in Table 6. From Table 6, we can conclude that the damage identification method based on
the time series model and L–M algorithm for a long-span spatial shell structure can accurately identify
the damage locations. It can be proven that this method is accurate, feasible, and has a certain degree
of anti-noise ability.
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In Figure 9, we can conclude that the network training process based on L–M algorithm
realizes convergence very quickly. To further illustrate the effectiveness of the L–M algorithm, the
training process based on traditional training algorithm is shown in Figure 10, which shows that the
convergence speed of the network training process based on the traditional algorithm is very slow.
The damage conditions for the two different training algorithms are the same. These results further
verify the effectiveness of the proposed damage identification method.

Table 6. The prediction result of networks when two elements are damaged (the target result of
networks in the parenthesis).

Element Number GK7 GK8 GK9 GK10

No. 8 and 38 6.51 × 10−15 (0) 1.93 × 10−7 (0) 3.54 × 10−8 (0) 6.67 × 10−10 (0)
No. 8 and 67 1(1) 2.25 × 10−8 (0) 4.04 × 10−8 (0) 3.54 × 10−8 (0)

No. 22 and 38 3.4 × 10−9 (0) 1(1) 2.96 × 10−4 (0) 8.55 × 10−4 (0)
No. 22 and 67 2.45 × 10−6 (0) 2.64 × 10−7 (0) 1(1) 1.1 × 10−7 (0)
No. 38 and 67 7.21 × 10−8 (0) 1.59 × 10−7 (0) 4.77 × 10−8 (0) 1(1)

results true true true true
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5. Conclusions

For the damage identification of a reticulated structure, the proposed damage identification
method based on the AR model and the L–M algorithm was verified by experiments on a model
structure. The major conclusions of the study are summarized as follows:

(1) The AR model was established based directly on the acceleration responses of the nodes. Using
the coefficients of the AR model, the damage sensitive features were defined. Taking the
damage sensitive features as the inputs and the damage locations as the outputs, an improved
back-propagation neural network was established based on the L–M algorithm. The trained
network can be used to detect the damage location of a reticulated shell. The proposed damage
detection method does not require modal parameter identification and excitation information.
It improves the accuracy of damage identification to some extent.

(2) According to the principle of equivalent stiffness, we simulated the structural damage by
replacing cross-sectional elements with smaller sized elements. The experiment scheme of
single-point excitation and multi-point responses was adopted. Then, we conducted impact
experiments on a K6 single-layer spherical shell with a scale of 1/10. The experimental results
showed that the damage detection method based on the AR model and the L–M algorithm
improved back-propagation neural network accurately identified the damage and the location of
the damage that occurred in the reticulated shell.

(3) Accuracy of the damage identification method is influenced by some factors, such as the sensor
placement, neural network structure, and training algorithm of the neural network. In this paper,
the sensor placement was optimized based on the particle swarm optimization algorithm.

(4) The L–M algorithm was used to train the back-propagation neural network, which has the
characteristics of faster training speed and better local searching ability. In addition, the accuracy
of damage identification is effectively improved.
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