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Abstract: Vibration isolators with quasi-zero stiffness (QZS) perform well for low- or
ultra-low-frequency vibration isolation. This paper proposes a novel dual-parallelogram passive
rocking vibration isolator with QZS that could effectively attenuate in-plane disturbances with
low-frequency vibration. First, a kinematic model of the proposed vibration isolator was established
and four linear spring configuration schemes were developed to implement the QZS. Next, an
optimal scheme with good high-static-low-dynamic stiffness (HSLDS) performance was obtained
through comparison and analysis, and used as a focus for the QZS model. Subsequently, a dynamic
model-based Lagrangian equation that considered the spring stiffness and damping and the influence
of the payload gravity center on the vibration isolation system was developed, and an average
approach was used to analyze the vibration transmissibility. Finally, the prototype and test system
were constructed. A comparison of the simulation and experimental results showed that this novel
passive rocking vibration isolator could bolster a heavy payload. Experimentally, the vibration
amplitude decreased by 53% and 86% under harmonic disturbances of 0.08 Hz and 0.35 Hz,
respectively, suggesting the great practical applicability of this presented vibration isolator.

Keywords: quasi-zero stiffness; high-static-low-dynamic stiffness; rocking vibration; passive
vibration isolation

1. Introduction

Low and ultra-low-frequency vibration isolation systems are widely used to attenuate
disturbances that affect device accuracy in the fields of precision/ultra-precision apparatus, navigation,
and aerospace, among others. In general, a passive linear isolator can reduce vibration when the
excitation frequency exceeds

√
2 times the natural frequency of the isolation system, and the smaller

stiffness the better isolation performance, but the weaker to anti-disturbance [1]. To achieve better
vibration isolation, the effective isolation bandwidth can be enlarged using a relatively low stiffness
system at the equilibrium position, or quasi-zero stiffness (QZS). Theoretically, all vibrations could be
eliminated at a system stiffness of zero. However, such a system would readily cause relatively large
system deflections and potential instability. To address this issue, non-linear, high-static-low-dynamic
stiffness (HSLDS) springs could be used to achieve a stiffness of nearly zero and better vibration
isolation effects. Furthermore, the simultaneous increase in system stiffness with increased deflection
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could help the system to quickly recover an equilibrium position, effectively enhancing the system’s
capacities for vibration isolation and stability.

Non-linear passive vibration isolation has been intensively investigated [2]. Typical QZS isolation
systems include the following: parallel positive and negative stiffness, non-linear Euler spring
deflection, and single-pendulum principle-based isolations. The latter includes the use of folded,
inverted, and conical pendulums to achieve high-static-low-dynamic QZS isolation. Additional
options for isolation include a friction-rolling pendulum and viscoelastic materials.

To briefly review this topic, Carrella et al. initially proposed the concept of a QZS isolator and
analyzed the dynamic characteristics [3–5]. Subsequent research on QZS isolation systems developed
rapidly following the demonstration of QZS isolator actualization using parallel positive and negative
stiffness. Under low-frequency harmonic excitation, a QZS vibration isolation seat comprising vertical
positive and negative stiffness linear helical springs was found to reduce the root mean square of
deviation to 67.2% [6]. An experiment was designed in which the load was fixed at the middle of
the two vertical springs, and adjacent magnets with like poles were arranged on both sides of the
springs to form a HSLDS unit. Ahn proposed an integrated design approach of a QZS mechanism [7].
This unit exhibited better performance in response to a small vibration disturbance compared with
a unit comprising linear springs [8]. The law of magnets, in which like poles repel and unlike poles
attract, can be used to explain the similarities of like poles with a negative spring and of unlike
poles with a positive spring. Negative and positive springs with rubber ligaments, among other
elements, comprise the QZS isolation system. An experimental analysis of this model demonstrated
the validity of the system [9,10]. The characterization of a QZS isolation system composed of a Euler
buckled beam as the negative stiffness corrector and a positive stiffness spring was analogous to
the characterization of a soft spring [11]. Compared with a linear spring, the QZS isolation system
performed better at a low frequency, with a decreased carrying capacity [12]. An experimental
analysis of a QZS isolator composed of a cam-roller-spring as the negative stiffness corrector and a
positive linear spring demonstrated an excellent capacity regarding either transmissibility or the initial
isolation frequency, despite discontinuity of stiffness across the entire bandwidth [13]. In addition,
the characteristic critical stability of the Euler column led to an ideal low-frequency vertical vibration
isolation performance while experiencing elastic buckling under interference from mass load-induced
pre-compression [14]. Moreover, according to the Euler bending beam principle, the Euler spring
boundary condition was optimized to achieve QZS with a LaCoste spring linkage [15]. With structural
improvement, the LaCoste spring linkage principle yielded excellent ultra-low frequency vibration
isolation and allowed highly precise gravitational wave measurements [16]. A dual-chamber air spring,
rubber membrane, and viscoelastic materials also played important roles in the field of low-frequency
vibration isolation [17,18].

Single-pendulum principle-based vibration isolators always perform well at low frequencies.
Folded pendulum isolators were first proposed, and here, a reasonable geometric arrangement and
mass distribution could achieve an approximate central stiffness of zero [19]. Outstanding vibration
isolation was observed at low frequencies because an isolator with a compliant structure (e.g., folded
pendulum) could possess a large bandwidth, without influence from revolute joint friction [20].
An inverted pendulum has negative stiffness, and the presence of long rocking rods could decrease
the natural frequency of a pendulum to 30 mHz. Attenuation could be as high as 65 dB under a
disturbance frequency of 1 Hz [21]. A high-performance material and seismic attenuation system were
designed to reduce the size of the inverted pendulum [22]. As Roberts linkage movement does not
have a vertical component when the mechanism is displaced, the load exhibits QZS at the central
position. The experiment demonstrated the strong effect of precision on vibration isolation, as well
as the benefits of reasonably designed precision to ultra-low frequency vibration isolation [23]. For
example, a long-period conical pendulum with Scott–Russel isolation has advantages such as a high
loading capacity. Furthermore, vibration reduction could reach 75 dB within 0.5 Hz [24,25]. A friction
rolling-pendulum is usually applied to the vibration isolation of a specific structure (e.g., earthquake
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isolator) [26]. Here, a ball, or rolling pendulum, moves on a selected three-dimensional (3D) rolling
surface, the center of which changes as the curvature of the rolling surface transforms. When the load
places positive pressure on the ball, friction can be ignored at the equilibrium position, where a QZS
system is constituted. Experimentation revealed that the load could afford low-frequency disturbances
from two directions.

Studies of QZS vibration isolation have focused on translational and vertical vibration. Regarding
non-linear vibration isolation, harmonic response, jump phenomena, chaotic motion, resonance,
and transmissibility have been deeply explored [27–30]. Recently, QZS vibration isolation has
been introduced into the field of torsional vibration isolation through the constitution of a
high-static-low-dynamic torsional stiffness unit. Xu et al. constructed a quasi-zero torsional
stiffness mechanism by distributing four cylindrical cams symmetrically around a shaft [31]. Recently,
Abbasi et al. proposed a HSLDS shaft and deeply studied the influence of stiffness and nonlinear
damping on vibration isolation. The results proved the outstanding capability of this high-static-
low-dynamic isolator [32]. However, reports of vibration isolation during rocking motions are rare,
even though such low frequency vibrations are commonly encountered in situations such as sea
waves and astronaut motion. Still, Xue optimized the parameters of a tuned liquid column damper to
suppress pitching vibration [33], and Wei et al. focused on the influence of an anti-rolling tank on the
rocking motions of ships, finding that the amplitude of rocking could be reduced by using optimized
parameters [34].

This paper describes the design of a novel, dual-parallelogram, passive rocking vibration isolator
with QZS for the attenuation of low-frequency vibration. The scheme of the vibration isolator is
presented in Section 2, and the QZS of the mechanism and four different management approaches
are described in Section 3. Section 4 presents the establishment of a dynamic model and an analysis
of transmissibility. Section 5 demonstrates the capacity of this novel isolator, using simulation and
experimental results. Finally, Section 6 presents the conclusions.

2. Kinematic Analysis of a Dual–Parallelogram Passive Rocking Vibration Isolator

2.1. Description of Mechanism

Figure 1 shows the mechanism of a dual-parallelogram passive rocking vibration isolator.
In Figure 1, two rocking rods (A and B) in a pair of central symmetric parallelograms are fixed
on the basic platform at an angle of 45 degrees to coordinate axis OX. One supporting rod is fixed on
the rocking rod at one end of each parallelogram, and at the other end the supporting rod connects
with the vibration isolation platform through revolute joint C. A spring-damper rod is arranged to
connect the two supporting rods. At the initial position, the spring-damper rod is parallel to the
vibration isolation platform, where load m is fixed.
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The absolute coordinate system of the basic platform (i.e., where it rocks) is o1 − xyz. o2 is the
dynamic coordinate system established at the rotating center of the load mass. When the basic platform
is fixed, the rocking system holds one rotational degree of freedom around o2, and the internal rods of
the system move as angular φ changes. The rocking rods, l1, l2, l3, are the rods in the parallelogram,
the mass center of which hinges on the respective shape. To simplify the calculation, l2 and l3 have
an integrated body that holds one associated center of mass. The length of the vibration isolation
platform is l4. d1 is the distance from o2 to the vibration isolation platform, and l5 is the initial length
of the spring. At the initial position, no tension or pressure is exerted on the spring. d3 is the distance
from the ends of the spring-damper rods to points (C1 and C2) on the ipsilateral vibration isolation
platform. According to the geometric relationship, the relationship of rod lengths with position can be
determined as: 

d1 = l4
2

d3 =
√

2
2 (l5 − l4)

L =
√

2
2 l3 + 2l4 − l2 −

√
2l1

(1)

where L refers to the distance from the double parallel quadrilateral mechanisms (DPQM) to the fixed
points A4 and B4.

2.2. Kinematic Analysis

The kinematic relationship between the rods in a multiple-rod isolation mechanism is relatively
complicated. The basic platform rocks around a turning center O, with angular θ. Meanwhile, the
vibration isolation platform exhibits coupled motion—translation and rotation around o1. φ is the
angle between the local coordinate system o1 − xyz and the absolute coordinate system O− XYZ.
Figure 2 shows the kinematic positions of the rods.
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The mass center (A1 A2, A3 A4, B1B2, B3B4, C1C2) is the respective geometric center of each rod. d2

is the distance from the mass center of each “T”-frame rod (A2 A3C1, B2B3C2) to C1 and C2, respectively.
The load and rod masses are m0, m1....m7. The mass center of each rod is defined as pi = (xi, yi, ϕi),
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i = 1, 2, . . . , 7. θ and φ are generalized coordinates. Symmetry yields the following
kinematic relationship: 

X =
[

x0 x1 x2 x3 x4 x5 x6 x7

]T

Y =
[

y0 y1 y2 y3 y4 y5 y6 y7

]T

ϕ = [ ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ]
T

(2)

where X = AC, Y = BC, ϕ = [ φ θ − φ θ θ − φ φ φ− θ −θ φ− θ ]
T

, and

A =



−R 0 h 0

−H −
√

2
2 l2 − L

2 −
√

2
2 l2

√
2

4 l1 −
√

2
4 l1

−R +
√

2
2 d2 −

√
2

2 d2 d1
l4
2

−H − L
2

√
2

4 l1 −
√

2
4 l1

−R 0 d1 0

−H −
√

2
2 l2 L

2 +
√

2
2 l2

√
2

4 l1
√

2
4 l1

−R +
√

2
2 d2

√
2

2 d2 d1
l4
2

−H L
2

√
2

4 l1
√

2
4 l1


, B =



0 R 0 −h
− L

2 −
√

2
2 l2 H +

√
2

2 l2 −
√

2
4 l1 −

√
2

4 l1
−
√

2
2 d2 R−

√
2

2 d2 − l4
2 −d1

− L
2 H −

√
2

4 l1 −
√

2
4 l1

0 R 0 −d1
L
2 +

√
2

2 l2 H +
√

2
2 l2

√
2

4 l1 −
√

2
4 l1√

2
2 d2 R−

√
2

2 d2
l4
2 −d1

L
2 H

√
2

4 l1 −
√

2
4 l1
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C = [ sin θ cos θ sin φ cos φ ]

T

This kinematic relationship could be used to obtain the kinematic position of the center of mass
and rotation angle of each rod. Table 1 shows the geometrical and mass parameters and moment
of inertia.

Table 1. Mechanistic parameters.

Geometrical Parameters (mm) Mass Parameters (kg) Moment of Inertia (kg·m2)

l1 = 200 m0 = 30.0 Iz0 = 0.3215
l2 = 200 m1 = 0.72 Iz1 = 0.0038

l3 = 242.5 m2 = 2.45 Iz2 = 0.0196
l4 = 282.02 m3 = 0.72 Iz3 = 0.0038
l5 = 299.17 m4 = 1.50 Iz4 = 0.0097

R = 362 m5 = 0.72 Iz5 = 0.0038
L = 200 m6 = 2.45 Iz6 = 0.0196
H = 110 m7 = 0.72 Iz7 = 0.0038

d1 = 141.01 - -
d2 = 159.7 - -

3. QZS Analysis

QZS isolators perform excellently in the field of low-frequency vibration isolation, thus warranting
research into their construction and distribution. Using a stiffness analysis, this section describes
in detail the main parameters that directly influence QZS and the four linear spring configuration
schemes used to build QZS systems.

3.1. Modeling of the QZS System

The stiffness of a vibration isolator system strongly influences its effectiveness, especially at
low- or ultra-low-frequency vibrations. As a reasonably designed HSLDS isolator can reduce most
vibrations, the torsion stiffness should be analyzed during the first stage.

Figure 2 demonstrates that two ends of the linear spring damper (l5) connect with two “T”-frame
rocking rods at points M and N. This spring is horizontal at the initial position, and the rod positions
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within the two parallelograms are symmetric. xM and yM represent the coordinates of M, xN and yN
represent the coordinates of N. From the system structure, the following relationship can be obtained:

xM = −R sin θ + d1 sin φ− l4
2 cos φ− l3

20 cos(π
4 + θ)

yM = R cos θ − d1 cos φ− l4
2 sin φ− l3

20 sin(π
4 + θ)

xN = l4
2 cos φ− R sin θ + d1 sin φ + l3

20 sin(π
4 + θ)

yN = R cos θ − d1 cos φ + l4
2 sin φ− l3

20 sin(π
4 + θ)

(3)

where k is the linear spring stiffness and l5 is the initial spring length. Assuming the length of the
spring will change to l′5 under the action of a force, we can obtain:

fk = k
(
l′5 − l5

)
(4)

where l′5 =
√
(xM − xN)

2 + (yM − yN)
2, l5 = l4 +

√
2

20 l3.
When θ = 0, the static system stiffness can be obtained using the virtual work principle. Assuming

that load m0 rotates around o2 to an angular φ under external torque Mt, the displacements of rods
and elastic potential energy of the spring change simultaneously, and the influence of gravity of
the lightweight spring damper on the system can be ignored. The energy caused by joint friction
is also ignored in this paper. According to the virtual work principle, we can determine the
following relationship:

Mtφ− (m0g∆y0 + m1g∆y1 + ... + m7g∆y7 +
1
2

k∆x2) = 0 (5)

where ∆y0, ∆y1...∆y7 represent the displacement of each respective rod’s center of mass, ∆x = l′5 − l5.
According to the torsional motion, the equivalent torsion stiffness of the system Kt can be

expressed as:

Kt =
dMt

dφ
(6)

Equations (5) and (6) are used to determine the equivalent stiffness. Torsional moment comprises
two components: the torque exerted by the weight of the load and the isolator itself, and equivalent
torque produced by the linear spring at o2. According to the mechanism kinematics, when θ is equal to
zero, the relationship between the equivalent torque, equivalent torsional stiffness, and rotation angle
can be depicted as follows.

Figure 3a demonstrates the strong non-linearity of the relationship between the equivalent torque
and torsional angle at different gravity centers (m0). Note that h = −36.87 is a critical position where
the equivalent torsion is approximately zero. In Figure 3b, the positions of the gravity and rotation
centers of the load are clearly important. When h >−36.87, the equivalent torsional stiffness is negative,
whereas when h < −36.87, the equivalent torsional stiffness is positive. Furthermore, when h = −36.87,
the mechanism is at equilibrium, and the equivalent torsional stiffness is zero. The preceding results
suggest that the load’s gravity center position strongly influences the equivalent torsional stiffness.
Each equivalent non-linear torsional stiffness is associated with an independent linear spring stiffness,
such that when the load is at equilibrium position (φ = 0), Kt is near zero. When QZS is implemented,
stiffness increases the non-linearity associated with load movement. The spring stiffness k, does
not affect the load’s equilibrium position, but rather influences the non-linearity of the QZS isolator.
Moreover, the transmissibility of non-linear stiffness is a key factor in vibration isolation.
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From the Figure 4, the simulation results indicate that the modeling error is within 5% in the 
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Figure 3. (a) The equivalent relationship between the torque and angle at k = 1000 N/m;
(b) Distribution of the equivalent torsional stiffness.

The complexity of the previously derived stiffness model can be expected to present challenges in
subsequent dynamics and transmissibility research. Note that the equivalent torsion and torsional
stiffness are symmetric, and that at the zero point, the stiffness is also zero. For this study, an odd
polynomial was used to develop a torsion-based stiffness model, as shown in Equation (7).

MQZS = λ1φ3 + λ2φ5 + λ3φ7 (7)

The equivalent torsional stiffness can be obtained from the first-order derivative of the equivalent
torsion. The theoretical and fitted curves of the equivalent torsional stiffness and the error distribution
curve at k = 200N/m are given in Figure 4.
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Figure 4. (a) Equivalent stiffness and error curves; (b) Error distribution.

From the Figure 4, the simulation results indicate that the modeling error is within 5% in
the rocking range of [−pi/12, pi/12]. Notably, this error is only 0.2% in the area of [−0.1, 0.1],
and the goodness-of-fit scores R2 = 0.9984, thus verifying the feasibility of this polynomial-based
stiffness model.
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3.2. Comparative Analysis of Four Linear Spring Configuration Schemes to Achieve QZS

The characteristic of QZS isolators suggests that the linear spring stiffness is zero at the equilibrium
position. To meet the demand for vibration isolation at lower frequencies, a lower equivalent torsional
stiffness distribution is needed. Accordingly, four configuration schemes, (a), (b), (c), and (d),
are shown in Figure 5 (a–d, respectively). Here, the same stiffness coefficient and initial length
(k = 200 N/m, l5 = 299.17 mm) were adopted, and in Figure 5c, two springs with symmetric
distribution are used. Equivalent torsional stiffness can be obtained using the method described
in Section 3.1.
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Figure 5. Four linear spring configuration schemes. (a) Spring-damping connects two main branches;
(b) Spring-damping connects two parallelograms; (c) Spring-damping connects parallelogram and
base platform; (d) Spring-damping connects vibration isolation platform and base platform.

In Figure 5a, the spring chain is placed between two symmetric “T”-frame rocking rods, allowing
changes in the equivalent torsional stiffness via changes in the stiffness coefficient of the linear
spring and the distance variable, d3. In Figure 5b, the spring chain connects the adjacent sides
of two parallelograms. θ would change as the spring length increased in response to an input
disturbance. For schemes (a) and (b), if the same k and d3 values were used, scheme (a) would yield
less equivalent torsional stiffness, which would be beneficial to ultra-low-frequency vibration isolation.
The conformations of schemes (c) and (d) depend on the installation method. In Figure 5c, the linear
spring is connected to the basic platform, yielding a symmetric distribution, whereas in Figure 5d, the
linear spring is connected to one rod within the mechanism.

Figure 6 shows the distributions of equivalent torsional stiffness, corresponding to the four
configuration schemes. Here, schemes (c) and (d) perform better when the initial length and stiffness
coefficient are constant, and the rate of change in stiffness is primarily decided by l5 and d1.
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From the preceding analysis, scheme (a) yields a better high-static-low-dynamic performance and
lower total stiffness than the other schemes, indicating the importance of spring stiffness distribution
with regard to ultra-low-frequency vibration isolation. In addition, the linear spring chain configuration
schemes should adhere to the principle of zero equivalent torsional stiffness at the equilibrium position,
as well as of rod symmetry.

4. Dynamic Modeling of the Vibration Isolator

This section describes the deduction of a dynamic equation for the vibration isolator based
on the Lagrangian equation. Here, damping of the rotation joint is analyzed as the difference in
vibration isolation during translation and rotation. Subsequently, dynamic characteristics, including the
amplitude–frequency characteristic and transmissibility, can be obtained using an average approach.

4.1. Dynamic Model Based on a Lagrangian Equation

Although the vibration isolator rotates, rods l2 and l3 in the parallelogram mechanism exhibit
coupled translation and rotation motions. Therefore, a dynamic model can be derived using
the motions of all rods, or simultaneous translation and rotation under the input disturbance.
We established a dynamic model based on the Lagrangian equation, assuming that the input
was harmonic excitation (θ = A sin(ωt)), where A and ω represent the amplitude and frequency,
respectively. The displacement of the mass center of each rod is deduced in Section 2.2 (pi = (xi, yi, φi)).
Accordingly, the corresponding velocity of each can be described as:

.
pi =

(
dxi
dt

,
dyi
dt

,
dϕi
dt

)
i = 1, 2, ..., 7 (8)

Two independent variables θ and φ are chosen as generalized variables of the system, then the
generalized velocity can be expressed as:

.
qi =

( .
θ,

.
φ
)

(9)

According to the Lagrangian equation:

d
dt

(
∂L
∂

.
qi

)
− ∂L

∂qi
+

∂F
∂

.
qi

= Qi, i = 1, 2, . . . ., n (10)
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where L = T −V −Vk, F is energy consumption, Q is external excitation.
The whole-system kinetic energy comprises both the translational and rotational kinetic energy of

the rods. The total kinetic energy can be written as:

T =
1
2

7

∑
i=0

miv2
i +

1
2

7

∑
i=0

Ii
.
ϕ

2, i = 1, 2, . . . , 7 (11)

where vi
2 =

(
dxi
dt

)2
+
(

dyi
dt

)2
is the translational velocity of the center of mass of each rod.

When θ and φ are equal to zero, the system is at the central position, and this static equilibrium
position can be set as the overall system point with zero potential energy. (xi0, yi0, φi0) represents the
generalized coordinates of each rigid body. Therefore, the gravitational potential energy of the whole
system can be expressed as:

V =
7

∑
i=0

mig(yi − yi0) (12)

Note that the initial spring length is l5. When the spring length is changed to l5′, the elastic energy
Vk of the system is:

Vk =
1
2

k
(
l5 − l′5

)2 (13)

Energy is mainly lost because of damping of the spring F1 and friction in the joint F2, which is
proportional to the normal force and frictional coefficient. The symmetry of the system allows the
grouping of pairs and consequent omission of the internal force. F1 and F2 can be described as

F1 = 1
2 cv2

F2 =
i=10
∑

i=1
FNi µβisgn(

.
βi)

(14)

where FNi is the normal force of each joint, βi is the rotational angular of each joint, and c is damping
coefficient, and µ is friction factor, set to µ = 8× 10−4.

Furthermore, v is the generalized velocity, and v2 =
(

dxM−dxN
dt

)2
+
(

dyM−dyN
dt

)2
.

Based on Equations (11)–(14) and the Lagrange equation, we can obtain

d
dt

(
∂L
∂

.
qi

)
− ∂L

∂
.
qi

+
∂F
∂

.
qi

= M (15)

where, M is input disturbance torque . When the system is affected by sinusoidal disturbances,
M = M sin(θ).

Normally, non-linear vibration isolation research involves analytical solutions to non-linear
equations. However, we selected a numerical method to account for the large numbers of rods and
relative complexity of our dynamic model.

4.2. Analysis of Transmissibility

Transmissibility is a key factor affecting the performance of a vibration isolator, and is normally
represented by displacement at low-frequency vibrations. The transmissibility of the vibration isolator
in this study was defined as the ratio of the vibration isolation platform output angle to the basic
platform input angle. Although joint friction is dynamic and position-dependent, the rolling friction
factor is relative small. Therefore, we could ignore the influence from Coulomb’s friction force and
only consider viscous damping when solving transmissibility.

Note that when h = −36.87 as shown in Figure 2, the structural symmetry along center o1 can be
achieved, then we have m0h sin φ + m4d1 sin φ + 2m2d1 sin φ−

√
2m1l1 sin φ ≈ 0, the system is in quasi

zero stiffness state. Assuming the input harmonic excitation of the basic platform is θ = −Θ cos(ωt)
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due to the relationships between the motion state load, rods, and input disturbance torsion, the
nonlinear dynamic differential equation of the whole isolator can be obtained as follows:

I1
..
φ + I2

..
θ + I3(

..
θ −

..
φ) + c(

.
φ−

.
θ) + MQZS(φ− θ) = Iθω2Θ cos(ωt) (16)

where I1, I2 and I3 are the moments of inertia, I1 = Iz0(O) + Iz4(O), I2 = Iz2(O) + Iz6(O), I3 = Iz1(O) +

Iz3(O) + Iz5(O) + Iz7(O); ω is the frequency of input disturbance; c is the viscous damping coefficient; Iθ

is the equivalent moment of inertia for all the rods with a torsion angle of θ.
Note that Iθω2Θ cos(ωt) = I2

..
θ + I3

..
θ, assuming a relative angle of the basic and isolation platforms

of ϑ = φ− θ, we obtain the angular velocity and angular acceleration. The differential equation for ϑ

is written as:
Iφ

..
ϑ + c

.
ϑ + MQZS(ϑ) = IφΘω2 cos(ωt) (17)

where Iφ is the equivalent moment of inertia for all the rods about the torsion angle φ, Iφ = I1 − I3.
This introduces a non-dimensional treatment of the system, and allows the vibration isolation

equation to be obtained as follows:

..
ϑ̂ + 2ζ

.
ϑ̂ + λ1ϑ̂3 + λ2ϑ̂5 + λ3ϑ̂7 = ΘΩ2 cos Ωτ (18)

where ω0 =
√

Kt
Iφ

, ζ = c
2
√

Kt Iφ
, τ = ω0t, Ω = ω

ω0
,

.
ϑ̂ = dϑ/dτ and

..
ϑ̂ = d2ϑ/dτ2.

We assume that ϑ̂(τ) = ρ cos(Ωτ + α), where ρ, α is the function of τ, and the first- and
second-order derivatives, respectively, are:

.
ϑ̂(τ) = −ρ(τ)Ω sin(Ωτ + α(τ))− ρ(τ)

.
α(τ) sin(Ωτ + α(τ)) +

.
ρ(τ) cos(Ωτ + α(τ)) (19)

..
ϑ̂(τ) = −ρ(τ)Ω2 cos(Ωτ + α(τ))− ρ(τ)

.
α(τ)Ω cos(Ωτ + α(τ))

− .
ρ(τ)Ω sin(Ωτ + α(τ))

(20)

By substituting Equations (18) and (19) into Equation (17), we obtain the following:{
ρ′ = − 1

Ω Λ sin(Ωτ + α)

ϑ′ = − 1
ρΩ Λ cos(Ωτ + α)

(21)

where
Λ = ΘΩ2 cos(Ωτ) + ρΩ2 cos(Ωτ + α) + 2ζρΩ sin(Ωτ + α)

−λ1ρ3 cos3(Ωτ + α)− λ2ρ5 cos5(Ωτ + α)− λ7ρ7 cos7(Ωτ + α)
.

Based on the concept of the average method, wherein the average value is computed within a
period, we obtain:  ρ = − Ω

2π

∫ 2π
Ω

0
1
Ω Λ sin(Ωτ + α)dτ

ϑ = − Ω
2π

∫ 2π
Ω

0
1
Ω Λ cos(Ωτ + α)dτ

(22)

For simplicity, the response function of the amplitude and frequency is expressed as follows:

Ω4Θ2 = (∆− ρΩ2)
2
+ 4ζ

2
ρ2Ω2 (23)

where ∆ = 3
4 λ1ρ3 + 5

8 λ2ρ5 + 35
64 λ3ρ7.

Based on Equation (22), the system frequency ratio can be described as follows:

Ω1,2 =

√
N ± H

M
(24)

where M = ρ2 −Θ2, N = ∆ρ− 2ζ
2
ρ2, and H =

√
4ζ

4
ρ4 − 4∆ζ

2
ρ3 + ∆2Θ2.
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When H = 0, the system frequency ratio is expressed as follows:

Ωd =

√
N
M

(25)

Assuming that the amplitude of the real-time response is Z = Θ + ρ, |Z| =
√

Θ2 + ρ2 + 2ϑρ cos α.

TR =

√
Θ2 + ρ2 + 2Θρ cos α

ϑ̂
(26)

where cos α = 3λ1ρ3

4Ω + 5λ2ρ5

8Ω + 35λ3ρ7

64Ω − ρ
Θ .

The characteristics of the vibration isolator are mainly influenced by parameters such as the
stiffness coefficient, damping coefficient, and mass. Here, the basic system parameters were set at
Θ = 0.2, λ1 = 2.2, λ2 = −0.18, and λ3 = 0.08. To demonstrate the advantages of this vibration
isolation system, we set the amplitude to Θ = 0.26. Figure 7 depicts the relationship of transmissibility
with the damping ratio.
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Figure 7. Transmissibility of vibration isolation.

As shown in Figure 7, both the up-jump frequency, Ωu, and down-jump frequency, Ωd, appear
when Ω is <1. Regarding transmissibility, the nonlinear vibration isolation system has a greater capacity
than the linear system. Furthermore, we can easily observe the strong influence of the damping ratio
on the vibration isolation capacity. At an input excitation frequency lower than the up-jump frequency
Ωu, the transmissibility decreases proportionally with the increase of damping ratio. In contrast, if the
input excitation frequency exceeds the down-jump frequency Ωd, performance improves inversely
with the increase of damping ratio. In addition, it can be seen from the figure that the damping rate has
a great influence on the transmissibility in the resonance region, while it is less affected in the vibration
isolation region. This phenomenon shows that the equivalent viscous damping has a great influence
on the resonance region of the system. The damping is a highly-sensitive parameter that consumes
much energy in the resonance region, so we can find in the figure that displacement transmissibility
changes drastically with a slight change of the frequency ratio, and the dynamic characteristics exhibit
good properties. Therefore, the performance of the nonlinear vibration isolation system is not only
related to the damping ratio, but also to the input excitation amplitude. Figure 8 demonstrates the
responses under different input disturbance amplitudes at a set k value of 200 N/m and nearly identical
maximum transmissibility.



Appl. Sci. 2017, 7, 367 13 of 19

Appl. Sci. 2017, 7, 367  13 of 19 

of the nonlinear vibration isolation system is not only related to the damping ratio, but also to the 

input excitation amplitude. Figure 8 demonstrates the responses under different input disturbance 

amplitudes at a set k value of 200 N/m and nearly identical maximum transmissibility.  

10
-2

10
-1

10
0

10
1

-50

-40

-30

-20

-10

0

10

20

 (
d

B
)

R
T

d 2

0.14, 0.086  

0.05, 0.307  

0.26, 0.158  

Linear isolator

 

Figure 8. The influence of input disturbance amplitude on transmissibility. 

Figure 8 demonstrates that transmissibility is affected by the input harmonic disturbance 

amplitude, such that a higher input amplitude is associated with a higher down-jump 

transmissibility frequency. At 0.26  , the down-jump frequency exceeds the linear natural 

frequency of the system (Ω = 1), and the isolator performs relatively poorly. However, if the input 

disturbance amplitude is small (e.g., 0.13 or 0.05  ), the down-jump frequency is less than the 

linear natural frequency. In other words, the capacity of this vibration isolator exceeds that of a 

linear vibration isolator at a low-amplitude vibration. However, if the input disturbance frequency 

exceeds 2  at an amplitude of 0.26  , the transmissibility is approximately −11 dB, and the 

linear isolator would yield a better performance. Regarding the entire range of vibration isolation, 

the capacity of this isolator is superior at low input disturbance amplitudes.  

5. Simulation and Experiment 

5.1. Experimental Design 

Figure 9 shows an experimental prototype system constructed based on the theoretical model. 

This system comprised a vibration isolation platform, input disturbance unit, measurement unit, 

and computer control unit. The base platform was driven by servo motors that linked the crank and 

rocker, which rotated around point O . Accordingly, the displacement, velocity, and acceleration of 

the servo motor could be calculated based on the demand for input disturbance. The measurement 

unit comprised a MEMS tilt sensor, an AD acquisition system, and a computer. The tilt sensor was 

placed above the load and parallel to the vibration isolation platform, allowing simultaneous 

measurement of the angle from the platform to the horizontal line. The changing trajectory of the 

angle could then be observed on the computer screen.  

Figure 8. The influence of input disturbance amplitude on transmissibility.

Figure 8 demonstrates that transmissibility is affected by the input harmonic disturbance
amplitude, such that a higher input amplitude is associated with a higher down-jump transmissibility
frequency. At Θ = 0.26, the down-jump frequency exceeds the linear natural frequency of the system
(Ω = 1), and the isolator performs relatively poorly. However, if the input disturbance amplitude
is small (e.g., Θ = 0.13 or 0.05), the down-jump frequency is less than the linear natural frequency.
In other words, the capacity of this vibration isolator exceeds that of a linear vibration isolator at a
low-amplitude vibration. However, if the input disturbance frequency exceeds

√
2 at an amplitude of

Θ = 0.26, the transmissibility is approximately −11 dB, and the linear isolator would yield a better
performance. Regarding the entire range of vibration isolation, the capacity of this isolator is superior
at low input disturbance amplitudes.

5. Simulation and Experiment

5.1. Experimental Design

Figure 9 shows an experimental prototype system constructed based on the theoretical model.
This system comprised a vibration isolation platform, input disturbance unit, measurement unit, and
computer control unit. The base platform was driven by servo motors that linked the crank and
rocker, which rotated around point O. Accordingly, the displacement, velocity, and acceleration of the
servo motor could be calculated based on the demand for input disturbance. The measurement unit
comprised a MEMS tilt sensor, an AD acquisition system, and a computer. The tilt sensor was placed
above the load and parallel to the vibration isolation platform, allowing simultaneous measurement of
the angle from the platform to the horizontal line. The changing trajectory of the angle could then be
observed on the computer screen.

5.2. Simulation and Analysis

Regarding the dynamic model described in Section 4, Equation (15) could be solved using
MATLAB2015b software (MathWorks™, Natick, MA, USA), and different input parameters yielded
different results.

The simulation and experimental input parameters were set as follows. To mimic the influence of
sea waves, which reportedly induce rocking motion periods of 3–12 s for ships [35], we set period T at
12 s and 3 s and amplitude A at 15◦ and 3◦. The linear spring damp chain parameters k and c are equal
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to 200 N/m and 10 Nm/s, respectively. Figure 10 shows the simulation output and the experimental
output at a disturbance frequency f = 0.0833 and different amplitudes.Appl. Sci. 2017, 7, 367  14 of 19 
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Satisfactory vibration isolation is achieved with various inputted disturbance frequencies.
In Figure 10a, the disturbance amplitude is theoretically expected to decrease by 66% at an input
disturbance of A sin(0.167πt), A = 15◦. However, the experimental results show that the vibration
attenuation is about 53%, which has a deviation of 2◦ from theoretical value. Also, the phase angle
is smaller compared with theoretic calculation. However, the experimental and simulation results
exhibited the same trend. Figure 10b shows good theoretical vibration isolation at a maximum
amplitude of 0.26◦ and an input disturbance of A sin(0.167πt), A = 3◦. The experimental result varied
greatly, with a maximum deviation of 0.62◦. In addition, the experimental results also show that the
amplitude of the isolation is almost the constant over time. However, there exist slight center drifts,
and the periodic characteristics are shown with the time span about 140 s (≈12T), which corresponds
to the results of the theoretical simulation. Overall, the isolation performance is good, despite the small
deviation with the central position around 0◦.

Figure 11 shows the results of a simulation and an experiment conducted at an input disturbance
frequency of 0.3333 Hz and input amplitudes of 15◦ and 3◦.Appl. Sci. 2017, 7, 367  16 of 19 
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At an input disturbance of A sin(0.6667πt), A = 15◦, 88% of the vibration is reduced. According
to the simulation, the excitation amplitude is small when the output frequency fluctuated. The
experimental results in Figure 11a demonstrate that the vibration attenuation is about 82%, and the
actual deviation is quite small (≈0.8◦) compared to the theoretical value. The results show that the
amplitude of the isolation is almost constant during the experiment time. However, there exist slight
center drifts, and the periodic characteristics are shown with the time span of about 25 s (≈8T), which
corresponds to the results of the theoretical simulation. There are two reasons for the results. One is
due to the joint friction caused by vibration isolation output from the center of the balance position;
the other is because of the nonlinear characteristic caused by the inherent low-order harmonics of the
system. At a low amplitude (3◦), the maximum deviation was 0.27◦ (Figure 11b), indicating excellent
theoretical vibration isolation. The experimental results demonstrated that the vibration amplitude
was approximately 0.43◦ around the equilibrium position of 0◦.

The former simulation and experimental results demonstrated that when exerting a disturbance
with a large amplitude, a larger input disturbance frequency was associated with a greater reduction
in vibration isolation, thus agreeing with findings from the linear spring isolator. At the same input
disturbance frequency, a lower disturbance amplitude was associated with more effective isolation, in
accordance with the principle of QZS. In other words, a high-static-low-dynamic isolator was more
suitable for low-amplitude vibration isolation. Nevertheless, the deviations between the simulation
and experimental results were large when low-amplitude vibrations were used. These deviations
were attributed to three possible factors: greater rotation joint damping under actual compared with
theoretic conditions; inaccurate static and dynamic friction coefficients at ultra-low speeds; and a
reduced friction factor for the ball bearing at increased rocking speeds, which had a good influence
on vibration isolation. Therefore, friction damping is a key factor in ultra-low-frequency vibration
isolation that should be avoided as much as possible.

The influence of linear spring damping chain stiffness on isolator performance was also evaluated
experimentally, using harmonic disturbances, T = 12 s, and A = 8◦ as the set inputs. Figure 12 shows
the simulation and experimental outputs.

Figure 12 depicts the influence of linear stiffness on vibration isolator performance. Figure 12a
clearly indicates poor performance with increasing stiffness (k). At very low chain damping coefficient
values, large differences in isolation effectiveness are observed at k = 100 N/m and k = 300 N/m, due to
the influence of damping. However, Figure 12b indicates similar vibration isolation performance under
different stiffness levels, as both friction damping and spring damping interfered with isolation. With
the extension of time, experimental results show that the system is in the steady state and vibration
isolation performance is relatively good. The relatively similar simulation outputs at k = 400 N/m and
k = 300 N/m indicate that linear stiffness was not a key factor affecting vibration isolation in this
analysis. However, the experimental results contrasted with the simulation results, and indicated that
damping, especially friction damping, had a large influence on vibration isolation. In other words, the
influence of damping on ultra-low frequency vibration isolation cannot be ignored. Friction damping,
spring chain damping, and changes in static and dynamic friction coefficients caused by friction
damping warrant further consideration and discussion.
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6. Conclusions

This paper proposes a novel, dual-parallelogram, passive rocking vibration isolator with QZS
and demonstrated good vibration isolation performance via high-static-low-dynamic torsion stiffness.
It discusses the dynamic models of different isolators and demonstrates that, through an analysis of
four linear spring configuration schemes used to obtain HSLDS and QZS at the equilibrium position,
the spring arrangement can be optimized and a dynamic model can be established based on the
dynamic characteristics. Our experimental results verified our simulation results and confirmed the
ability of this novel system to isolate vibrations.

A rocking vibration isolation scheme with a QZS mechanism could feasibly be constructed using
linear spiral springs. A dual-parallelogram passive rocking vibration isolator with QZS has the
advantages of a large bearing capacity, high precision, and good vibration isolation performance.
At harmonic excitations of A sin(0.167πt), A = 15◦ and A sin(0.6667πt), A = 3◦, the experimental
results indicated that vibration could be reduced by 53% and 86%, respectively, confirming the
good capacity of this system of vibration isolation. In a high-static-low-dynamic vibration isolation
system, transmissibility is closely related to the excitation amplitude. At an equilibrium position
of QZS, better vibration isolation performance can be achieved with a low torsion excitation.
Furthermore, the influence of friction damping on ultra-low frequency vibration isolation warrants
thorough investigation.
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Using our dynamic model of a novel, dual-parallelogram, passive rocking vibration isolator
system, we were unable to simplify the mechanism to a single mass rocking around a fixed point,
mainly because for most of the rods the motion comprised both translation and rotation, whereas
others comprised only translation.
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