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Abstract:



This paper proposes an optimal solution to large-scale Flexible Manufacturing System (FMS) scheduling problems under availability constraints based on Timed Petri Nets ([image: there is no content]). First a decomposition method of [image: there is no content] is proposed, then a mathematical model is derived based on their properties. The mathematical model is built to determine the optimal firing sequence of [image: there is no content] transitions to minimize the total manufacturing time. The resulting firing sequence of [image: there is no content] transitions is used to generate the manufacturing system supervisor operated by [image: there is no content] and digital controllers. Several numerical examples and comparative studies are provided in this paper in order to prove the new approach’s efficiency.
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1. Introduction


Flexible Manufacturing Systems (FMS) are widely used since they are swiftly adjustable to different production constraints, which improves their ability to cover different job types without major influence on the production plan [1,2]. Usually, FMS are subjected to failures caused by their resources’ degradation process, which has a direct impact on the production planning. To satisfy demand, an efficient production plan under the availability constraint has to be established leading to the identification of the optimal processing time or makespan [3,4]. Therefore, despite the risk of increasing deadlocks, both availability and limited resource constraints are considered when FMS scheduling is optimized.



Several methods dealing with FMS scheduling have been proposed [5,6,7,8] where the problem NP-hardness was the major challenge encountered [9]. In FMS scheduling, the most important task is to determine the sequence of production. This is related to the production supervision system for which all scheduling constraints must be considered as stated previously [10,11]. In the literature, several proposed controllers are based on Petri Net (PN) tools [12,13,14,15]. Ghaffari et al. [10] used theory of regions to synthetize the PN controller, which is a set of control places added to the initial [image: there is no content] model. Al-Ahmari et al. [16] applied Generalized Stochastic Petri Nets (GSPN) modules to derive a model for the workstation controller.



For PN analysis, several methods can be founded such as enumerative methods, which are adapted to FMS scheduling [8]. In fact, to solve the scheduling problem using enumerative methods, the reachability graph is entirely or partly explored to retrieve the optimal path [14]. Therefore, the optimal path connecting the initial and final markings corresponds to the optimal firing sequence of PN transitions. Several heuristic methods are developed in order to partly explore the reachability graph and find an optimal or suboptimal production plan. In this perspective, Lee and diCesare [17] present a Timed Petri Net ([image: there is no content]) modeling for scheduling problems and propose a heuristic algorithm A* [18,19,20] as the resolution approach. This approach is based on generating and explorating of a limited part of the reachability graph. These models were recently improved by Li et al. [21]. The authors proposed to use an algorithm for the single and multiple lot size scheduling problem and prove the solving heuristic procedure proposed by Xiong and Zhou [22].



The main inconvenience of enumerative methods is the significant number of reachable markings. Consequently, recent studies introduced new methods such as heuristic search algorithms and artificial intelligence methods in PN modeling for scheduling problems [23,24]. For instance, Chung et al. [25] introduced a genetic algorithm [26,27] to solve the sequencing problems relative to Petri net modeling. However, the latter method is limited to FMS with up to five machines. Saitou et al. [28] came up with a colored Petri net to model the resource allocation and the operation schedule of a special FMS class. The authors combined a genetic algorithm with a specific dispatching rule (the Shortest Imminent Operation time (SIO)) to get simultaneously the suboptimal resource allocation and the event-driven schedule of the colored Petri net. They were able to provide results with three different scenarios with up to ten machines.



The current study is motivated by the complexity of the enumerative methods’ increasing number leading to state explosion issues. Therefore, the main contribution of this paper is to derive a mathematical model based on [image: there is no content] properties to efficiently solve the FMS scheduling. To achieve this, a decomposition methodology of [image: there is no content] is proposed, where the initial model is decomposed into a set of Timed Marked Graphs ([image: there is no content]) considered as a subclass of [image: there is no content]. Several decomposition methods for Petri net variants have been developed [29]. Nishi et al. [30,31] proposed a general [image: there is no content] decomposition method and coordination algorithm in order to optimize the conflict-free routing for an Automated Guided Vehicle (AGV). Ciardo et al. [32] introduced the concepts of near independence and near decomposition where the authors developed an approach for the solution of stochastic Petri net models. The developed approach is applied in the case of a flexible manufacturing system.



The second step of this work, a genetic algorithm, is introduced to solve the mathematical model in the case of larger-scale problems. The last part deals with the implementation of the above proposed solution in order to synthetize a supervisor, coupled with a decomposed [image: there is no content] model.



The paper is organized as follows: Section 2 presents an overview of the timed Petri net and genetic algorithms. Section 3 illustrates the notations and terminology of the different variables used. Section 4 presents the basic assumptions where our FMS modeling is based. Section 5 derives a method to decompose the initial [image: there is no content] into a set of Timed Marked Graphs ([image: there is no content]). Section 6 details the proposed approaches to solve the scheduling framework under availability constraints. The supervisor synthesis method is illustrated in Section 7. Some illustrative examples and comparative studies are shown in Section 8. Finally, Section 9 is dedicated to the perspectives of this work.




2. Background


2.1. Timed Petri Net


Formally, a [image: there is no content] [33] is a five-tuple [image: there is no content] where:







	
	
[image: there is no content]





	: is a non-empty finite set of places;



	
	
[image: there is no content]





	: is a non-empty finite set of transitions;



	
	
[image: there is no content]





	: are the direct arcs from places to transitions [image: there is no content] or from transitions to places [image: there is no content];



	
	
[image: there is no content]





	: is the affectation function of weights to arcs, where [image: there is no content] is the set of non-negative integers;



	
	
[image: there is no content]





	: is the static time linked to [image: there is no content], [image: there is no content].



	
	
[image: there is no content] ([image: there is no content])





	: designs the set of input transitions (respectively output) of place [image: there is no content];



	
	
[image: there is no content]





	: is a marking and the initial marking is denoted by [image: there is no content];



	
	
[image: there is no content]





	: is a place marking;



	
	
[image: there is no content]





	: indicates that transition [image: there is no content] is fired at marking [image: there is no content].








It is important to note that transition [image: there is no content] is enabled by marking [image: there is no content] only if [image: there is no content], [image: there is no content]. An enabled transition satisfying its time condition can be fired. Furthermore, [image: there is no content] and [image: there is no content] where [image: there is no content] designs the empty set. In the literature, several classes could be derived from [image: there is no content] from where the Timed Marked Graph ([image: there is no content]) is our endpoint of interest in this paper.



Definition 1.

The [image: there is no content] is a particular type of [image: there is no content] where every place possesses one input transition and one output transition, i.e., [image: there is no content]. Furthermore, all weights associated to arcs are equal to [image: there is no content], i.e., [image: there is no content].





Figure 1 illustrates a [image: there is no content] model. The place [image: there is no content] is initially marked, and the enabled transition [image: there is no content] can be fired after four time slices ([image: there is no content]). The transition [image: there is no content] is fired if [image: there is no content] is marked with a delay of [image: there is no content].


Figure 1. Timed Marked Graph ([image: there is no content]) example.



[image: Applsci 07 00399 g001]







2.2. Genetic Algorithm


Genetic Algorithms ([image: there is no content]) are recombination-based metaheuristics and belong to the class of evolutionary algorithms. The search procedures introduced by these algorithms are based on the mechanics of natural genetics. They have been widely applied to a variety of different problems and domains. For a detailed description of the use of genetic algorithms in engineering optimization issues, the reader could refer to Goldberg et al. [34].



In this article, we introduce the genetic algorithm method to solve the mathematical model described in the previous section. The choice of the [image: there is no content] is motivated by:

	
Mathematical optimization techniques, such as the branch and bound method and dynamic programming, are limited by the problem dimensionality. These methods are not efficient in the case of large-scale and NP-hard problems, such as our study.



	
The heuristic procedure is convenient for a production scheduling problem of a small scale. However, in the case of processing problems for a large scale, heuristics dealing with an NP-hard scheduling problem with a makespan objective have several drawbacks, such as the lack of comprehensiveness [35], and the accuracy of the solution needs to be improved [36].



	
The genetic algorithm is convenient for production scheduling problems in view of its solving performance characteristics, such as near optimization and high resolution speed. GA efficiency was proven and discussed in solving scheduling problems having similar characteristics as our present model [37,38].










3. Terminology


In this section are presented the notations used in [image: there is no content] modeling for FMS scheduling and supervisor synthesis.









	
	
[image: there is no content]





	: indexes for jobs ([image: there is no content]);



	
	
[image: there is no content]





	: indexes for machines ([image: there is no content]);



	
	
[image: there is no content](if fired)





	: transition denoting that the job [image: there is no content] leaves the machine [image: there is no content];



	
	
[image: there is no content](if marked)





	: place indicating that the job [image: there is no content] is already being performed by machine [image: there is no content];



	
	
[image: there is no content] ([image: there is no content])





	: designs the set of input transitions (respectively output) of a place [image: there is no content];



	
	
[image: there is no content]





	: is the local-clock linked to [image: there is no content]; in the proposed modeling method, [image: there is no content] defines the processing duration of [image: there is no content] through [image: there is no content];



	
	
[image: there is no content]





	: is the global-clock of transition firing [image: there is no content]; physically, it defines the end time of job [image: there is no content] through machine [image: there is no content];



	
	
[image: there is no content]





	: is a decision variable defining whether the arc from [image: there is no content] to [image: there is no content] exists;



	
	
[image: there is no content]





	: is a decision variable defining whether job [image: there is no content] is performed after the maintenance task on machine [image: there is no content];



	
	
[image: there is no content]





	: is the extra time linked to [image: there is no content] depending on the [image: there is no content] value;



	
	
[image: there is no content]





	: unmarked timed elementary path between two transitions;



	
	
[image: there is no content]





	: duration associated with [image: there is no content];



	
	
[image: there is no content]





	: preventive maintenance period where [image: there is no content] (respectively [image: there is no content]) is the beginning time (respectively ending time).






In our proposed model for FMS using [image: there is no content] tools (Section 5), each [image: there is no content] designs the free-dynamics of job [image: there is no content] through the manufacturing system. Relations between two different timed marked graphs [image: there is no content] and [image: there is no content] ([image: there is no content] and [image: there is no content]) are modeled by timed direct arcs [image: there is no content] from transition [image: there is no content] to transition [image: there is no content]. Physically, an established arc [image: there is no content] is interpreted to mean that the job [image: there is no content] had to be treated on machine [image: there is no content] before that the job [image: there is no content] finishes its treatment on machine [image: there is no content]. [image: there is no content] is analytically expressed as follows:


[image: there is no content]



(1)







Remark 1.

It is obvious that a timed direct arc between two transitions contains [image: there is no content], [image: there is no content], places and [image: there is no content] transitions. In the following, we consider [image: there is no content].





Another important parameter associated with [image: there is no content] is the extra time [image: there is no content] added to local-clock [image: there is no content]. [image: there is no content] corresponds to the job [image: there is no content] position, if it is just after the maintenance action on machine [image: there is no content]. The analytical expression of [image: there is no content] is:


[image: there is no content]



(2)







Indeed, [image: there is no content] is the job [image: there is no content] time delay on machine [image: there is no content] until the availability of machine [image: there is no content]. Figure 2 illustrates all of the explained parameters.


Figure 2. Illustration of Timed Petri Net (TPN) parameters in the production process.
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The main contribution of this paper is to carry out an efficient manufacturing supervisor based on an optimal sequence of transitions determined by a mathematical model. In this perspective, the derived supervisor is assumed to be commissioned by two types of controllers defined as follows.



TPN controller: A [image: there is no content] controller is an unmarked timed elementary path [image: there is no content] between two transitions [image: there is no content] and [image: there is no content] (i.e., see Remark 1).



The principal role of the [image: there is no content] controller is to organize the job processing via the time lag [image: there is no content]. Its computing depends on the [image: there is no content] value, where [image: there is no content] and [image: there is no content].



Digital controller: A digital controller model is based on the [image: there is no content] definition and depends on the decision variable [image: there is no content]. The role of this controller is to compute the extra time of a fully-operated job in machine [image: there is no content] when machine [image: there is no content] is unavailable.




4. Flexible Manufacturing System Description


This paper covers a special class of FMS, where the flexibility designs a machine that can perform different types of jobs. The time that a machine needs to change the operating mode is negligible. The considered FMS is defined as a set of multiple job types where the processing order of all jobs through the machine set is the same.



The following assumptions are considered:

	
[image: there is no content] jobs of different type are initially placed in the initial buffer;



	
[image: there is no content] machines are available; the initial and the final buffer will be modeled respectively by [image: there is no content] and [image: there is no content] as two additional virtual machines;



	
Jobs are executed in the same order as defined in the first machine;



	
Each machine is subject to a preventive maintenance action expressed by an unavailability period; this action is assumed to be preprogrammed;



	
Each machine performs only one job at a time;



	
Processing time depends on the job type;



	
Job preemption is forbidden.








As mentioned, our objective is to determine the optimal sequence of jobs where the total completion time is subject to optimization. In the second part, we focus on the implementation of this optimal solution in order to synthetize the manufacturing system supervisor coupled to the initial timed Petri net.



In studies involving [image: there is no content] models, it is often the case that there are computing risks involved, in the case of an important number of machines, so it is necessary to decompose the entire [image: there is no content]. The main objective is to guarantee an easier solving process.




5. Modeling FMS with the Decomposed TPN to the TMG Set


5.1. Decomposition Methodology


The optimal legal firing sequence problem is impossible to solve when the number of jobs and machines is increased, i.e., scalability issue. Thus, the entire [image: there is no content] explicitly models the physical functioning of FMS decomposed into several timed marked graphs, for the following reasoning. First, the set of transitions [image: there is no content] is considered as a disjoint subset [image: there is no content], which contains the transitions [image: there is no content].


[image: there is no content]



(3)







Place set [image: there is no content] presents disjoint subsets [image: there is no content], which contain the places [image: there is no content] and the set of resource-places [image: there is no content]:


[image: there is no content]



(4)






[image: there is no content]



(5)







Each resource-place [image: there is no content] satisfies Equations (4) and (5):


[image: there is no content]



(6)






[image: there is no content]



(7)







The second stage of the modeling methodology aims to remove the resource places from the entire [image: there is no content]. Indeed, the resulting [image: there is no content] is divided into [image: there is no content] timed marked graphs [image: there is no content], [image: there is no content], which model the free-dynamic of job [image: there is no content]. Hence, the place set [image: there is no content], direct arcs [image: there is no content] and affectation weights [image: there is no content] satisfy the following equations:


[image: there is no content]



(8)






[image: there is no content]



(9)






[image: there is no content]



(10)






[image: there is no content]



(11)






[image: there is no content]



(12)







Therefore, [image: there is no content] represents the free-dynamic of jobs without considering the constraints explained in the above section. This is the reason why new parameters as timed direct arcs and extra times should be considered in the decomposed model (Section 3); parameters are computed using our methodology developed in the following section. Based on the third assumption in Section 4, the [image: there is no content] model parameterization could be concluded through the [image: there is no content] value determination.



Therefore, Algorithm 1 summarizes the decomposition methodology.





	Algorithm 1. The methodology of [image: there is no content] decomposition.



	Step 1. Model the considered system as a set of timed marked graphs taking into account the resource places.



	Step 2. Elimination of resource places. The resulting net is [image: there is no content] in which each [image: there is no content] models separately the free-dynamics of job [image: there is no content].



	Step 3. Add the timed direct arcs between transitions [image: there is no content], which ensure the right sequence of jobs through operators.



	Step 4. Introduce the eventual extra time [image: there is no content] that presents the number of times slice delays of job [image: there is no content] in machine [image: there is no content], when the next machine [image: there is no content] is unavailable.







5.2. Illustrative Example


In order to illustrate the proposed [image: there is no content] decomposition methodology, we consider an [image: there is no content] composed of two machines [image: there is no content] operating two different jobs [image: there is no content]. The processing time of jobs ([image: there is no content]) and the preventive maintenance periods ([image: there is no content]) are respectively illustrated by Table 1 and Table 2.



Table 1. The processing time.







	

	
Machine 1

	
Machine 2






	
Part 1

	
3 [image: there is no content]

	
5 [image: there is no content]




	
Part 2

	
4 [image: there is no content]

	
2 [image: there is no content]










Table 2. The preventive maintenance periods.







	

	
[image: there is no content]

	
[image: there is no content]






	
Machine 1

	
3

	
6




	
Machine 2

	
4

	
8










According to Figure 3, the initial timed Petri net is composed by two timed marked graphs, [image: there is no content] and [image: there is no content], designing respectively the free-dynamics of jobs [image: there is no content] and [image: there is no content]. The initial buffer [image: there is no content] and the final buffer [image: there is no content] are considered as virtual machines. [image: there is no content] and [image: there is no content] are initially in [image: there is no content] corresponding with places [image: there is no content] and [image: there is no content], which are marked. Besides, the resource places [image: there is no content] and [image: there is no content] are designed to satisfy the production capacity constraints of [image: there is no content] and [image: there is no content]. This first modeling step (Algorithm 1), satisfying Equations (12) and (13), represents the partial [image: there is no content] scheduling with respect to the preventive maintenance and processing sequence.


Figure 3. The initial [image: there is no content] model.



[image: Applsci 07 00399 g003]






The decomposed [image: there is no content] is determined as shown in Figure 4. It includes the direct arcs that schedule the possible processing sequences (Step 3). For instance, the timed direct arc [image: there is no content] ensures the processing of [image: there is no content] before [image: there is no content] through the value of [image: there is no content]. Besides, to avoid that the jobs conflict, a waiting time (Step 4) is added to corresponding transitions. For example, [image: there is no content] represents the time delay of [image: there is no content] at machine [image: there is no content] whether [image: there is no content] is unavailable for maintenance.


Figure 4. The decomposed [image: there is no content] model.



[image: Applsci 07 00399 g004]






The final scheduling through the decomposed [image: there is no content] is determined by computing the supervisor parameters, which are the subject of the next sections.





6. Mathematical Model


A mathematical model based on decomposed [image: there is no content] properties is proposed. The model uses the global and local clocks of transition firing (respectively [image: there is no content] and [image: there is no content]) and the variables’ decision [image: there is no content] and [image: there is no content].



6.1. Model Description


A set of machines and jobs is considered. The processing duration of a job [image: there is no content] on a machine [image: there is no content] is given by [image: there is no content]. The formulation is developed to be in good agreement with the defined parameters of [image: there is no content] modeling. In addition, a preventive maintenance scheduling constraint will be integrated to get a jointly optimal production and maintenance plan.



The objective function is defined as follows:


[image: there is no content]



(13)




subject to:


[image: there is no content]



(14)






[image: there is no content]



(15)






[image: there is no content]



(16)






[image: there is no content]



(17)






[image: there is no content]



(18)






[image: there is no content]



(19)






[image: there is no content]



(20)






[image: there is no content]



(21)







The objective function (13) aims to minimize the firing global clock of last transitions corresponding to the last machine [image: there is no content]. The constraint (14) states that a job is processed, on each machine at once, without preemption. The constraints, (15) and (16) ensure that only one job can be performed on the machine at a time. In addition, the firing sequence of transitions (production sequence) has to respect the preventive maintenance period [image: there is no content] modeled with (17) and (18). Constraint (19) ensures that the order of jobs remains the same on all machines. Constraints (20) and (21) define the restrictions for the decision variables.



The linear programming (13)–(21) is a Mixed-Integer Linear Programming (MILP) because the decision variables are constrained to be binary.



Remark 2.

In the current study, the end point of interest is the determination of [image: there is no content], [image: there is no content]; our proposed [image: there is no content] model assumes that the order of jobs on the machines is the same as the order defined in the first one (Section 4 assumptions).





As mentioned, our contribution is to provide the optimal firing sequence that will be used to synthetize the scheduling supervisor. Because of large-scale scheduling problems’ NP-hardness [39,40], we propose an efficient metaheuristic approach based on the genetic algorithm model.




6.2. Genetic Algorithm


6.2.1. Encoding


The length of the chromosome is equal to [image: there is no content]. The first [image: there is no content] genes present the jobs’ sequence, and the last [image: there is no content] ones are binary corresponding to the job position in relation to the maintenance period on each machine (just before or after the maintenance task).



Figure 5 shows an example of the solution encoding where a set of two jobs and three machines is considered. The job number [image: there is no content] will be initiated as the first job, followed by the job number [image: there is no content] (two first genes). For the job number [image: there is no content] (three next genes), the gene values indicate that it will be operated just before the maintenance period, in the first and the second machine, and after the maintenance period in the third one.


Figure 5. Example of the encoding solution.



[image: Applsci 07 00399 g005]







6.2.2. Initial Population


An initial population is generated randomly where each chromosome presents a solution for the scheduling problem.




6.2.3. Crossover


There are many ways to apply the crossover operator, which aims to generate new individuals. In this perspective, a uniform crossover with a random binary mask is used. The uniform crossover uses the chromosome to switch between parent’s genes. It is possible that the crossover operator could be applied at any point (Figure 6).


Figure 6. Example of new solution generation via uniform crossover.



[image: Applsci 07 00399 g006]







6.2.4. Mutation


This operator consists of altering gene values. Figure 7 illustrates an example of the mutation mechanism application. In this example, genes subjected to mutation are Bits 1, 2, 4 and 7.


Figure 7. Example of new solution generation via the mutation operator.



[image: Applsci 07 00399 g007]






Remark 3.

Throughout the model resolution, the random gene values are selected as follows:

	
For the [image: there is no content] first genes (designing jobs), the set of random bit values is [image: there is no content];



	
For the [image: there is no content] last genes (job position to maintenance), the set of random bit values is [image: there is no content].











6.2.5. Constraints


When a solution is generated, the constraints cited in Section 3 have to be respected to ensure that an individual is feasible. In addition, a test should be carried out for every new individual after we decide to reject or save it for fitness computation.




6.2.6. Fitness


The fitness function is illustrated by (13).




6.2.7. Stopping Criteria


The progress of reproduction by crossover and mutation operators and fitness continues until a satisfactory result is obtained or a preset maximum number of iterations is reached. After these iterations, the genetic algorithm prints the best chromosome that corresponds to the minimum makespan [image: there is no content].



Algorithm 2 recaps the GA steps. Initialization parameters are: population size ([image: there is no content]), crossover probability value ([image: there is no content]), probability mutation value ([image: there is no content]) and the preset maximum number of iterations ([image: there is no content]).





	Algorithm 2. Determination of the jobs’ sequence.



	Initializing the program and setting the data values: [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]



	Generate randomly a solution



	Repeat

[image: there is no content]



	While [image: there is no content] do

 Select randomly 2 parents of the population (2 solutions);

 Apply the crossover operator;

 Apply the mutation operator.

 k = k + 1

 End while

 Test if a generated solution is feasible;

 Evaluate the obtained and valid new sequences;

 Arrange in ascending order these solutions based on the objective function;

 Delete the worst solutions and record the best ones;

 Record the best solution.

 [image: there is no content]

 Until [image: there is no content]



	Print the optimal solution corresponding to minimum makespan









7. Synthesis Method of Scheduling Supervisor


The main contribution, in this part, is to develop an efficient supervisor synthesis method (Algorithm 3), which tampers with the decomposed [image: there is no content], based on the transitions firing sequence and parameters provided by the mathematical model. The proposed supervisor is managed by two types of controllers: digital controllers and [image: there is no content] controllers (i.e., see Section 3).



● Step 1. Solving the firing sequence:



This step is essential as it determines the firing global-clock of transitions [image: there is no content], the decision variable values [image: there is no content] and [image: there is no content].



● Step 2. Identifying the chronological order of jobs:



Once [image: there is no content] values are determined, one can identify the jobs’ order.



● Step 3. Deleting the inexistent direct arcs:



Direct arcs [image: there is no content] corresponding to [image: there is no content] are removed from the decomposed [image: there is no content] model. Remaining direct arcs ([image: there is no content]) design the selected processing sequence.



● Step 4. Determining the digital controllers:



The digital controller reacts when the treatment of job [image: there is no content] is accomplished through machine [image: there is no content] while [image: there is no content] is unavailable. Therefore, the controller functioning is displayed through [image: there is no content] in which the extra time [image: there is no content] of this controller is computed.



● Step 5. Determining the [image: there is no content] controllers:



The [image: there is no content] controller ship is to ensure a correct order progression of jobs including among each other a time lag [image: there is no content]. The [image: there is no content] controllers operate in coordination with digital controllers, i.e., the determination of time lag [image: there is no content] takes into account the extra time [image: there is no content] of the digital controller. Its value is computed as: [image: there is no content].



● Step 6. Implementing the supervisor:



The controllers calculated in Steps 4 and 5 take places in the decomposed timed Petri net.








	Algorithm 3. Supervisor synthesis based on the generated firing sequence.



	
	1. 

	
Solve the firing sequence using the mathematical model (13)–(21) and genetic algorithm.




	2. 

	
Identify the chronological order of jobs.




	3. 

	
Delete the inexistent direct arcs



 For each [image: there is no content], [image: there is no content]



  Remove the direct arc [image: there is no content] from the decomposed [image: there is no content]




	4. 

	
Determine the digital controllers



 For each [image: there is no content]



  Calculate [image: there is no content]



  For each job [image: there is no content]



   Calculate [image: there is no content]




	5. 

	
Determine the [image: there is no content] controllers



 For each [image: there is no content], [image: there is no content]



  Create the [image: there is no content] controller: [image: there is no content].



  Calculate [image: there is no content].




	6. 

	
Implement the supervisor to decomposed [image: there is no content]












To solve the mathematical model (13)–(21), we used the Xpress optimizer. Xpress is a mathematical programming solver dealing with linear and quadratic problems in continuous and integer variables. For solving Mixed Integer Programs (MIPs), the optimizer provides a powerful branch and bound framework. The Xpress optimizer essentials, components and interfaces are found in many guides and reference manuals, from which we cite [41]. In the literature, many proposals deal with Xpress solver. Guéret [40] illustrates some applications of the optimization solver programs. Algorithms for solving large linear optimization problems are reviewed. Laundy et al. [42] highlights the Xpress solver’s efficiency to optimize mixed linear problems.



To illustrate the supervisor synthesis, we reconsider the decomposed timed Petri net shown in Figure 3 and the preventive maintenance presented in Table 2. The obtained results are shown in Table 3.



Table 3. The optimal solution and decision variables.
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Moreover, as explained in Step 2 of Algorithm 3, the decision variable [image: there is no content] expresses that the job [image: there is no content] is treated before the job [image: there is no content], ([image: there is no content]). Hence, the timed direct arc [image: there is no content] is removed from the decomposed [image: there is no content], i.e., [image: there is no content] (Figure 8).


Figure 8. The remaining arc for supervisor synthesis.
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According to Step 3, the determination of digital controllers is related to [image: there is no content], as follows:


[image: there is no content]











Indeed, the two digital controllers [image: there is no content] and [image: there is no content] require a waiting time respectively for [image: there is no content] and [image: there is no content] at [image: there is no content]. Jobs [image: there is no content] and [image: there is no content] are respectively delayed by [image: there is no content] and [image: there is no content].



Afterward, the [image: there is no content] controller [image: there is no content] permits a good sequence between [image: there is no content] and [image: there is no content]. Its time lag [image: there is no content] is determined as follows:

	➢

	
[image: there is no content]


[image: there is no content]

















Finally, the decomposed [image: there is no content] coupled with the synthetized supervisor, shown in Figure 9, guarantees the optimal manufacturing scheduling; i.e., the optimal sequence firing of transitions is [image: there is no content].


Figure 9. The controlled timed Petri net.
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Figure 10 illustrates the optimal manufacturing scheduling obtained from the controlled [image: there is no content] model.


Figure 10. Optimal manufacturing scheduling.
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8. Numerical Examples


A fully-automated flexible manufacturing system based at the Engineers’ National School of Metz represents the application object of our proposed approaches.



8.1. System Description


The manufacturing system consists of three machines, an initial buffer and a final buffer, which are arranged in series around a central conveyor (Figure 11). Thereby, every machine is designed to realize an operation on a glass part. Each machine function is described as follows:







	
	
[image: there is no content]





	: initial buffer;



	
	
[image: there is no content]





	: engraving of glass part by the laser;
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	: assembly of glass part engraved at a stand;
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	: packaging of the glass part engraved and assembled in a case;
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	: final buffer.







Figure 11. FMS real case environment.
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We consider that the system produces three jobs (glass parts), which are differentiated by their color: blue ([image: there is no content]), red ([image: there is no content]) and green ([image: there is no content]). The processing time of every job is presented in Table 4.



Table 4. Operating time.
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Red glass part
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Blue glass part
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Green glass part
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The maintenance action periods for three machines are illustrated by Table 5.



Table 5. The preventive maintenance periods.
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8.2. Illustrative Example for the Genetic Algorithm


In view of the problem NP-hardness, in the case of more than two machines apart from the initial and final buffer since they do not increase the complexity of the problem (their operating time is zero), we have proposed Algorithm 2 to solve the (13)–(21) model.



We consider the database given by Table 4 and Table 5. The genetic algorithm parameters are used as follows:

	
[image: there is no content];
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[image: there is no content];
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Table 6 illustrates the sub-optimal value for decision variables and firing sequence.



Table 6. The optimal solution of three jobs and three machines.







	
The Optimal Firing Sequence
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The resulting decision variables values
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In the same way as the previous described example, the computational results (Table 3) are used to determine supervisor parameters as shown in Figure 12.


Figure 12. The resulting controlled [image: there is no content] using GA.
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Table 7 illustrates decision variables resulting from the Algorithm 2 resolution for a set of different jobs and machines. In the fourth and fifth column, we have considered new jobs: [image: there is no content] and [image: there is no content], having the same operating time as blue glass [image: there is no content], [image: there is no content] and [image: there is no content] as green glass [image: there is no content].



Table 7. Genetic algorithm results.
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The effectiveness of the genetic algorithm is tested by evaluating the makespan computed with that determined by the mathematical model (through the Xpress optimizer). In order to make the comparison, we have computed the makespan for two machines as a function of the job number (Figure 13).


Figure 13. Makespan evolution as a function of models.
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On the basis of the results shown in Table 7 and Figure 13, the GA yields a good average makespan compared to the optimal solutions given by the mathematic model. The actual computing time for each problem was nearly the same for the two resolutions of the frameworks.




8.3. Comparative Study


In this section, a comparison between the above approaches’ results and those given by the works of [21] is established. We have chosen this study to compare, since the authors deal with the same problem, which is the FMS scheduling problems, where the production process could be modeled by Petri net properties, but in different resolution framework conditions. In order to compare various parameter specifications under the same computational load, model performances are determined through the makespan value.



Li et al. [21] did not consider the availability constraint in their proposal. Results shown in Table 8 illustrate the comparison of their model adding the constraints of availability and our mathematical model. On the basis of makespan ([image: there is no content]) values, it can be concluded that the results given by our approach are in good agreement with those given by Li et al.’s [21] approach. In addition, the efficiency of our approach could also be highlighted by the fact that [21] assume that the order of jobs could differ in machines (more relaxed).



Table 8. Comparison of the two models applied with the availability constraints.







	
Case

	
Size [image: there is no content]

	
Lot Size
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1
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2
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Processing time for Case 1
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Processing time for Case 2
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Maintenance periods for Case 1
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Maintenance periods for Case 2
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9. Conclusions


Reachability marking numbers increase exponentially, which leads to FMS state saturation. Consequently, previously-proposed models in the literature perform poorly. Therefore, in this study, we proposed a mathematical model, based on the decomposed [image: there is no content] property, to solve the scheduling problem and minimize the processing time. In addition, a genetic algorithm is introduced, to provide efficiency solutions in the case of large-scale scheduling problems. Promising results indicate that the new model is efficient compared with similar models.



As perspectives, further studies should be considered to extend the proposed approaches for a parallel machine purpose with several practical constraints, such as limited buffer capacity.
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