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Abstract: This paper explores Liquid Film Flow of Williamson Fluid over an Unstable Stretching
Surface in a Porous Space . The Brownian motion and Thermophoresis effect of the liquid film flow on
a stretching sheet have been observed. This research include, to focus on the variation in the thickness
of the liquid film in a porous space. The self-similarity variables have been applied to convert
the modelled equations into a set of non-linear coupled differential equations. These non-linear
differential equations have been treated through an analytical technique known as Homotopy
Analysis Method (HAM). The effect of physical non-dimensional parameters like, Eckert Number,
Prandtl Number, Porosity Parameter, Brownian Motion Parameter, Unsteadiness Parameter, Schmidt
Number, Thermophoresis Parameter, Dimensionless Film Thickness, and Williamson Fluid Constant
on the liquid film size are investigated and conferred in this endeavor. The obtained results through
HAM are authenticated, from its comparison with numerical (ND-Solve Method). The graphical
comparison of these two methods is elaborated. The numerical comparison with absolute errors are
also been shown in the tables. The physical and numerical results using h curves for the residuals of
the velocity, temperature and concentration profiles are obtained.

Keywords: Thermophoretic effect and Brownian motion, thin film, porous medium, Williamson
fluid, unsteady stretching sheet, HAM, ND-solve methods

1. Introduction

In the existing literature most of the study is related to Newtonian Fluids and very little
attention is paid to the Non-newtonian fluids. Therefore Williamson Fluid has been selected from
the class of non-newtonian shear thickening and shear thinning fluids, which has many uses in
the field of industry and engineering. The flow of Pseudoplastic Fluids experimentally describe by
Williamson [1] with verified results. The analytical study of Williamson Fluid can be found in the
investigation of Dapra and Scarpi [2]. Thermophoresis (also Thermomigration, Thermodiffusion,
the Soret Effect, or the Ludwig-Soret Effect) is a phenomenon observed in mixtures of mobile particles
where the different particle types exhibit different responses, to the force of a temperature gradient.
The term Thermophoresis most often applies to aerosol mixtures, but may also commonly refer to the
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phenomenon in all forms of matter. The term Soret Effect normally applies to liquid mixtures, which
behave in different, less well-understood mechanisms than gaseous mixtures. Thermophoresis may
not apply to thermomigration in solids, especially multi-phase alloys. The phenomenon is observed
at the scale of one millimeter or less. An example that may be observed by the naked eye with good
lighting is when the hot rod of an electric heater is surrounded by tobacco smoke, the smoke goes
away from the immediate vicinity of the hot rod. As the small particles of air nearest the hot rod are
heated, they create a fast flow away from the rod, down the temperature gradient. They have acquired
higher kinetic energy with their higher temperature. When they collide with the large, slower-moving
particles of the tobacco smoke they push the latter away from the rod. The force that has pushed the
smoke particles away from the rod is an example of a Thermophoretic Force. Brownian motion or
Pedesis is the random motion of particles suspended in a fluid (a liquid or a gas) resulting from their
collision with the fast-moving atoms or molecules in the gas or liquid. Transfer of heat energy play an
important role in almost all of the industrial processes. It is used to save energy and reduce processing
time in industrial processes. It is also used to raise the thermal rating and increase the working
life of equipment. The Liquid Film Flow of Williamson Fluid in a Porous Space over an Unstable
Stretching Surface has focused the interest of several researchers because of its many uses in the fields
of engineering and industries. The hydrodynamics of a thin liquid film over an unsteady stretching
sheet is studied by Wang et al. [3] and Cramer et al. [4] for the first time. The effect of surface mass
transfer mixed convection flow is explored by Selim et al. [5]. Das [6] analyzed the impact of thermal
radiation on MHD slip flow over a flat plate with variable fluid properties. The effects of radiation
and heat transfer on MHD flow of Viscoelastic Liquid and heat transfer over a stretching sheet is
studied by Siddeshwar et al. [7]. Nadeem and Hussain [8] solved the problem of flow and heat transfer
analysis of Williamson Nanofluid . Hassanien et al. [9] worked on Variable viscosity and thermal
conductivity effects on heat transfer by natural convection from a cone and a wedge in porous media.
Aziz et al. [10] considered thin film flow and heat transfer on an unsteady stretching sheet with internal
heating. Qasim et al. [11] used Buongiorno’s model to investigate heat and mass transfer in Nanofluid.
Mahesh et al. [12] studied Heat and Mass Transfer in Nanofuid over an unsteady stretching surface.

Ellahi et al. studied Nanofluid over different phenomena mentioned in [13–17]. A detailed
data on thin film Williamson Nanofluid Flow with Varying Viscosity and Thermal Conductivity on
a Time-Dependent Stretching Sheet is given by Khan et al. [18]. The present research is the study of
liquid film flow of Williamson Fluid in a porous medium over an unsteady stretching sheet with the
combined effect of Thermophoresis and Brownian motion. The self-similarity variables has been used
to convert the modelled equations into a set of non-linear coupled differential equations. The flow
of fluid in a porous medium has also a significant role in the field of engineering and especially in
Bio-engineering. The purification of liquids through filtration, human lungs, blood filtration are the
application of porous media. The flow of fluid in a porous medium on a stretching sheet can be seen
in [19,20]. These non-linear differential equations has been tackled through a powerful analytical
method known as Homotopy Analysis Method (HAM) [21–28]. The relevant work can also be found
in [29–35]. The effect of physical non-dimensional parameters like Porosity Parameter, Unsteadiness
Parameter, Prandtl Number, Schmidt Number, and Dimensionless Film thickness on the liquid film
size has been investigated and discussed. The results achieved by the HAM and numerical ND-Solve
method are compared and presented in the form of figures and tables with absolute error to make
understandable for readers.

2. Mathematical Formulation of Model

Suppose a two dimensional incompressible Liaquid Film Flow of Williamson Fluid on a Porous
Unsteady Stretching Sheet with thermal radiation, where heat and mass are transferred simultaneously.
The coordinate axes are chosen in such away that the x-axis is parallel to the plate while the y-axis
is perpendicular to it. The stretching velocity of the sheet is in the direction of the x-axis which
have magnitude Uw = αx

1−γt , in which α > 0 is the stretching velocity constraint and γ ∈ [0, 1].



Appl. Sci. 2017, 7, 404 3 of 21

The temperature Tw(x, t) = T0 − Tre f (
αx2

2ν )(1− γt)−1.5, where T0 elaborates the temperature at the

surface and Tre f depicts the reference temperature. Similarly, Cw(x, t) = C0 − Cre f (
αx2

2ν )(1− γt)−1.5

is the volume concentration, where C0 illustrates the concentration at the surface and Cre f shows

the reference concentration. The time dependent term αx2

ν(1−γt) , indicates the local Reynold number
which reliant on the stretching velocity Uw(x, t). Initially the sheet is fixed with the origin and then
an external force is applied to stretch the surface in the positive x-axis at the rate α

(1−γt) in time t with
velocity Uw(x, t), where γ ∈ [0, 1]. Now use the above conditions, to get the following equations as:

Continuity Equation,

∂u
∂x

+
∂v
∂y

= 0, (1)

Momentum Equation,

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 + 20.5Γν

∂2u
∂y2

∂u
∂y
− νφ

K
u, (2)

Energy Equation,

∂T
∂t + u ∂T

∂x + v ∂T
∂y = α ∂2T

∂y2 + τ[DB(
∂C
∂y

∂T
∂y ) +

DT
T∞

( ∂T
∂y )

2] + ν
Cp
[( ∂u

∂y )
2 + 20.5Γ( ∂u

∂y )
3], (3)

Concentration Equation,

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

(
∂2T
∂y2 ), (4)

along with the BCs,

u = Uw, T = Tw, v = 0, C = Cw, y = 0,

∂ u
∂ y

=
∂ C
∂ y

=
∂ T
∂ y

= 0, v =
dh
dt

= 0, y = h(t).
(5)

u and v are the flow velocities along x and y axis respectively, the Specific heat at constant pressure
is represented by Cp, the Thermal diffusivity of the base fluid is indicated by α = k

(ρc)p , Γ > 0 is the

Time constant, the Fluid density is represented by ρc, τ = (ρc)p
(ρc) f and the local nanoparticle Volume

fraction is denoted by C . Also the Thermophoretic diffusion coefficient is indicated by DT , ρ is the
Density, while the Brownian diffusion coefficient is shown by DB. T is the local Temperature and the
Film thickness is denoted by h(t).

Now define the following similarity transformations as:

ξ = (
α

ν(1− γt)
)0.5y,

ψ(x, y, t) = (
να

1− γt
)0.5x f (ξ),

T(x, y, t) = T0 − Tre f (
αx2

2ν
)(1− γt)−1.5θ(ξ),

C(x, y, t) = C0 − Cre f (
αx2

2ν
)(1− γt)−1.5φ(ξ).

(6)

ψ(x, y) is the Stream function which is defined as: u = ∂ ψ
∂ y , v = − ∂ ψ

∂ x . β is Non-dimensional film

thickness and is described as β = ( α
ν(1−γt) )

0.5(h(t)) [29,30].
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Also dh
dt = − γ

2 β( ν
α )

0.5(1− γt)−0.5. Now put the values in the above equations we get a system of
nonlinear coupled boundary value problems as:

d3 f (ξ)
dξ3 + λ

d2 f (ξ)
dξ2

d3 f (ξ)
dξ3 + f (ξ) d2 f (ξ)

dξ2 − ( d f (ξ)
dξ )2 − S( d f (ξ)

dξ + ξ
2

d2 f (ξ)
dξ2 )− Kr

d f (ξ)
dξ = 0,

d2θ(ξ)
dξ2 + Pr f (ξ) dθ(ξ)

dξ − 2Pr d f (ξ)
dξ θ(ξ)− Pr( S

2 (3θ(ξ) + ξ
dθ(ξ)

dξ )) +

PrNb dφ(ξ)
dξ

dθ(ξ)
dξ ) + PrNt( dθ(ξ)

dξ )2 + PrEc((
d2 f (ξ)

dξ2 )2 + λ( d2 f (ξ)
dξ2 )3) = 0,

d2φ(ξ)
dξ2 + Sc( dφ(ξ)

dξ f (ξ)− 2 d f (ξ)
dξ φ(ξ)− S

2 (3φ(ξ) + ξ
dφ(ξ)

dξ ) + Nt
Nb

d2θ(ξ)
dξ2 = 0, (7)

along with transformed boundary conditions,

d2 f (β)

dξ2 = 0,
d f (0)

dξ
= 1, f (0) = 0, f (β) =

Sβ

2
,

dθ(β)

dξ
= 0, θ(0) = 1,

dφ(β)

dξ
= 0, φ(0) = 1. (8)

where

λ = ΓUw(
2α

ν(1−γt) )
0.5, Kr =

ν2φ(1−γt)
αK ,

S = γ
α , Pr = νρCp

k , Ec =
U2

w
Cp(Tw−T0)

,

Sc = ν
DB

, Nb = τDB(Cw − C∞), Nt = τDT(Tw−T∞)
νT∞

. (9)

3. Materials and Methods

In this section high accuracy of the applied method is applied to system of nonlinear boundary
value problems obtained from the new modeled phenomenon. As a result, we see that this method
gives best approximation and takes very less time to produce good results.

Solution of Problem

For the solution of system (7) an analytical technique, called Homotopy Analysis Method (HAM)
is used. To apply this method we first find the initial guesses f0(ξ), θ0(ξ), φ0(ξ) from the following as:
Zeroth order problem:

d3 f0(ξ)
dξ3 = 0, f0(0) = 0, d f0(0)

dξ = 1, d2 f0(β)
dξ2 = 0,

d2θ0(ξ)
dξ2 = 0, θ0(0) = 1, dθ0(β)

dη = 0,

d2φ0(ξ)
dξ2 = 0, φ0(0) = 1, dφ0(β)

dξ = 0, (10)

which gives the solution as

f0(ξ) = ξ, θ0(ξ) = 1, φ0(ξ) = 1. (11)

The linear operators are chosen as ψ f = d3 f (ξ)
dξ3 , ψθ = d2θ(ξ)

dξ2 and ψφ = d2φ(ξ)
dξ2 with the

following properties

ψ f (C1 + C2ξ + C3ξ2) = 0, ψθ(C4 + C5ξ) = 0, ψφ(C6 + C7ξ) = 0, (12)

where Ci, i = 1− 7 are constants. The resultant non-linear operators ℵ f , ℵθ and ℵφ are chosen as:

ℵ f (ξ;℘) = d3 f (ξ)
dξ3 + f (ξ) d2 f (ξ)

dξ2 + λ
d2 f (ξ)

dξ2
d3 f (ξ)

dξ3 − ( d f (ξ)
dξ )2 − S( d f (ξ)

dξ + ξ
2

d2 f (ξ)
dξ2 )− Kr

d f (ξ)
dξ , (13)
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ℵθ [ f (ξ;℘), θ(ξ;℘), φ(ξ;℘)] = d2θ(ξ)
dξ2 + Pr f (ξ) dθ(ξ)

dξ − 2Pr d f (ξ)
dξ θ(ξ)− Pr( S

2 (3θ(ξ) + ξ
dθ(ξ)

dξ )) +

PrNb dφ(ξ)
dξ

dθ(ξ)
dξ ) + PrNt( dθ(ξ)

dξ )2 + Ec((
d2 f (ξ)

dξ2 )2 + λ( d2 f (ξ)
dξ2 )3), (14)

ℵφ[ f (ξ;℘), θ(ξ;℘), φ(ξ;℘)] = d2φ(ξ)
dξ2 + Sc( dφ(ξ)

dξ f (η)− 2 d f (ξ)
dξ φ(ξ)−

S
2 (3φ(ξ) + ξ

dφ(ξ)
dξ )) + Nt

Nb
d2θ(ξ)

dξ2 . (15)

The basic idea of HAM is described in [21–28],
Zeroth-order problems:

(1− ℘)ψ f [ f (ξ;℘)− f0(ξ)] = ℘h̄ fℵ f [ f (ξ;℘)], (16)

(1− ℘)ψθ [θ(ξ;℘)− θ0(ξ)] = ℘h̄ℵθ [ f (ξ;℘), θ(ξ;℘), θ(ξ;℘)], (17)

(1− ℘)ψφ [φ(ξ;℘)− φ0(ξ)] = ℘h̄φℵφ[ f (ξ;℘), θ(ξ; p), φ(ξ;℘)]. (18)

The equivalent BCs are:

f (0;℘) = 0, d f (0;℘)
dξ = 1, d2 f (ξ;℘)

dξ2 = 0,

θ(0;℘) = 1, dθ(0;℘)
dξ = 0, φ(0;℘) = 1, dφ(β;℘)

dξ = 0. (19)

where ℘ ∈ [0, 1] is the imbedding parameter, h̄ f , h̄θ and h̄φ are used to control the convergence of the
solution. When ℘ = 0 and ℘ = 1, then:

f (ξ; 1) = f (ξ), θ(ξ; 1) = θ(ξ) , φ(ξ; 1) = φ(ξ). (20)

Expanding f (ξ;℘), θ(ξ;℘) and φ(ξ;℘) in Taylor’s series about ℘ = 0 as:

f (ξ) = f0(ξ) + ∑m=∞
m=0 fm(ξ)℘m,

θ(ξ) = θ0(ξ) + ∑m=∞
m=0 θm(ξ)℘m,

φ(ξ) = φ0(ξ) + ∑m=∞
m=0 φm(ξ)℘m. (21)

where

fm(ξ) =
1

m!
dm f (ξ;℘)

dξm

∣∣∣
℘=0

,

θm(ξ) =
1

m!
dmθ(ξ;℘)

dξm

∣∣∣
℘=0

,

φm(ξ) =
1

m!
dmφ(ξ;℘)

dξm

∣∣∣
℘=0

. (22)

The secondary constraints h̄ f , h̄θ and h̄φ are selected in such away that the series (21) converges at
℘ = 1. Use ℘ = 1 in (21) to get:

f (ξ) = f0(ξ) + ∑m=∞
m=0 fm(ξ),

θ(ξ) = θ0(ξ) + ∑m=∞
m=0 θm(ξ),

φ(ξ) = φ0(ξ) + ∑m=∞
m=0 φm(ξ). (23)
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The mth -order problem satisfies the following:

ψ f [ fm(ξ)− χm fm−1(ξ)] = h̄ f R f
m(ξ),

ψθ [θm(ξ)− χmθm−1(ξ)] = h̄θ Rθ
m(ξ),

ψφ [ϕm(ξ)− χmφm−1(ξ)] = h̄φRφ
m(ξ). (24)

The boundary conditions for this problem are:

d2 fm(β)
dξ2 = 0, d fm(0)

dξ = 1, fm(0) = 0, fm(β) = Sβ
2 , dθm(β)

dξ = 0, θm(0) = 1,

dφm(β)
dξ = 0, φm(0) = 1. (25)

Here

R f
m(ξ) =

d3 fm−1
dξ3 + λ ∑m−1

k=0
d2 fm−1−k

dξ2
d3 fk
dξ3 +

[
fm−1

d2 fm−1
dξ2 −∑m−1

k=0
d fm−1−k

dξ
d fk
dξ − S

(
d fm−1

dξ + ξ
2

d2 fm−1
dξ2

)]
−

Kr d fm−1
dξ ,

(26)

Rθ
m(ξ) =

d2θm−1
dξ2 + Pr

[
− S

2

(
3θm−1 + ξ

dθm−1
dξ

)
− 2 ∑m−1

k=0 θm−1−k
d fk
dξ + ∑m−1

k=0 fm−1−k
dθk
dξ

]
+

Ec

[
∑m−1

k=0
d2 fm−1−k

dξ2
d2 fk
dξ2 + λ ∑m−1

k=0
d2 fm−1−k

dξ2 ∑k
`=0

d2 fk−1
dξ2

d2 f`
dξ2

]
+ Nt ∑m−1

k=0
dθm−1−k

dξ
dθk
dξ

+Nb( dθm−1
dξ

dφm−1
dξ ), (27)

Rφ
m(ξ) =

d2φm−1
dξ2 + Sc

[
∑m−1

k=0 fm−1−k
dφj
dξ − 2 ∑m−1

k=0
d fm−1−k

dξ φk − S
2

(
3φm−1 + ξ

dφm−1
dξ

)]
+ Nt

Nb
d2θm−1

dξ2 , (28)

where

χm =
0, i f ℘ ≤ 1
1, i f ℘ > 1.

(29)

4. Representation of Achieved Results in the Form of Figures and Tables

In this section the results achieved by HAM are shown in the form of figures and tables.
The convergence of the series given in (21), f (η), θ(η) and φ(η) entirely depend upon the auxiliary
parameters h̄ f , h̄θ and h̄φ which are called h̄-curves. It is selected in such a way that it controls
and converges the series solution. The probable selection of h̄ can be found by plotting h̄-curves
of f ′′(0), θ′(0), φ′(0). The valid region of h̄ is −1.5 < h̄ f < −0.5, −1.5 < h̄θ < −0.5 and
−1.5 < h̄φ < −0.5. Here η = ξ is chosen.

5. Results and Discussion

In this paper the Liquid Film Flow of Non-newtonian Williamson Fluid over an Unstable
Stretching Surface in a Porous Space has been investigated. Thermophoresis and Brownian Motion
Effect has been countered to the liquid film flow. The governing equations have been transformed
through suitable similarity variables into nonlinear coupled differential equations with physical
conditions. The solution of the coupled problem has been obtained by using an analytical approach
called, HAM. The solution of the coupled problem and fast convergence of this method is mainly
focused. This paper has examined the consequences of governing parameters on the transient velocity,
temperature, and concentration profiles. Figure 1 illustrates the geometry of model used. Comparisons
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are carried out between the obtained results and the results achieved by numerical N-Desolve method
for velocity, temperature, and concentration profiles (shown in Figures 2–4). The effects of physical
parameters appear in the problem, are shown graphically and discussed. Figures 5–7, elaborate the
behavior of the non-dimensional unsteady parameter S for velocity, temperature and concentration
field during fluid motion in a porous medium past over a Unsteady Stretching Sheet. The unsteady
parameter S is inversely related to the stretching constant of the velocity field, where as it is directly
related to the stretching constants of the temperature and concentration fields. Therefore, when
the values of S are increasing the values of the velocity field are decreasing while the values of the
temperature and concentration fields increase. Physically, unsteadiness S produce buoyancy forces in
the way of the flow field. These forces resist the fluid flow and therefore, the velocity field falls and the
temperature distribution as well as the concentration profile is boosted. The effect of the Williamson
Fluid constant λ on the velocity field is illustrated in Figure 8. The velocity is found to reduce when λ

is augmented. Because rise in relaxation time causes higher resistance to the fluid flow and as a result
reduces the velocity field. Also increase in λ increase the temperature due to increase in resistance
to the fluid flow as shown in Figure 9. Non-dimensional porosity parameter Kr have direct relation
to viscosity parameters. So a rise in non-dimensional porosity parameter reduces fluid motion as
explained in Figure 10. Physically, larger values of Kr generate larger open space and create hurdle to
flow and as a result the flow field is retarded. The resistance force produces larger values of Kr which
increase the temperature and concentration profiles shown in Figures 11 and 12.

Figure 1. Illustrates the physical geometry of the used model.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Η

fHΗ
L

Numerical

HAM

Figure 2. The comparison between HAM and numerical solutions for velocity profile f (η), when
h = −0.25, λ = 0.9, kr = 0.9, Pr = 0.5, Ec = 0.5, Nb = 0.5, Nt = 0.6, β = 1 and Sc = 0.6.
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0.6
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0.8

0.9

1.0

Η

Θ
HΗ

L

Numerical

HAM

Figure 3. The comparison between HAM and numerical solutions for temperature profile θ(η), when
h =−0.47, λ = 0.2, S = 0.2, kr = 0.2, Pr = 1, Ec = 0.6, Nb = 0.4, Nt = 0.5, β = 1, Sc = 0.5.

0.0 0.2 0.4 0.6 0.8 1.0

0.75

0.80

0.85

0.90

0.95

1.00

Η

Φ
HΗ

L

Numerical

HAM

Figure 4. The comparison between HAM and numerical solutions for concentration profile φ(η), when
h = −0.6, λ = 0.2, S = 0.2, kr = 0.2, Pr = 1, Ec = 0.6, Nb = 1, Nt = 0.1, β = 1 and Sc = 0.5.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Η

fHΗ
L

S = 0.9

S = 0.7

S = 0.5

S = 0.3

S = 0.1

Figure 5. Variations in the Velocity field f (η) for various values of S, when h = −0.25, λ = 0.9, kr = 0.9,
Pr = 0.5, Ec = 0.5, Nb = 0.5, Nt = 0.6, β = 1, Sc = 0.6.
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0.0 0.2 0.4 0.6 0.8 1.0
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Figure 6. Variations in the Temperature gradient θ(η) for different values of S, when h = −0.8, λ = 0.1,
kr = 0.5, Pr = 0.5, Ec = 0.5, Nb = 0.5, Nt = 0.6, β = 1, Sc = 0.6.
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Figure 7. Variations in the Concentration field φ(η) for different values of S, when h = −0.6, λ = 0.5,
kr = 0.5, Pr = 0.5, Ec = 0.5, Nb = 0.5, Nt = 0.6, β = 1, Sc = 0.6.
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Figure 8. The effect of λ on f ′(η), when h = −0.25, kr = 0.7, Pr = 0.5, Ec = 0.5, Nb = 0.5, Nt = 0.6,
β = 1, Sc = 0.6.
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Figure 9. The effect of λ on θ(η), when h = −0.6, S = 0.5, kr = 0.5, Pr = 0.5, Ec = 0.5, Nb = 0.5,
Nt = 0.6, β = 1, Sc = 0.6.
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Figure 10. Indicates the effect of Kr on f (η) for h = −0.25, S = 0.5, Pr = 0.5, λ = 1, Ec = 0.5,
Nb = 0.5, Nt = 0.6, β = 1, Sc = 0.6.
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Figure 11. Shows the effect of β on θ(η) for h = −0.7, λ = 1, S = 0.5, kr = 0.5, Pr = 0.5, Ec = 0.5,
Nb = 0.5, Nt = 0.6, and Sc = 0.6.
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Figure 12. Shows the effect of Kr on θ(η) for h = −0.25, λ = 0.1, S = 0.1, Pr = 0.5, Ec = 0.5, Nb = 0.5,
Nt = 0.6 and Sc = 0.6.

The effect of Prandtl number Pr has been shown in the Figure 13, describing that for larger
values of Pr decreases the temperature θ(η). The increase in Prandtl number reduces the thermal
boundary layer due to which the temperature decreases.The influence of the Schmidt number Sc is
depicted in Figures 14 and 15, showing that temperature and concentration fields decrease when
the parameter Sc increases because Schmidt number Sc is reciprocal to the molecular diffusivity.
It indicates that as the values of of the Eckert number Ec increase the fluid temperature also increases
while its converse effect has been observed in the solute concentration illustrated in Figures 16 and 17.
Physically, Ec is connected with the viscous dissipation term in the equation of energy, therefore,
larger values of Ec should lead to increase the quantity of heat being produced by the shear forces
in the fluid and as a result raises the fluid temperature. Figures 18 and 19, illustrate the effects
of Brownian motion parameter Nb on the dimensionless temperature and concentration profiles.
The fluid temperature increases as the value of increase of Brownian motion parameter increase while
converse effect on the solute concentration. The increase in the value of thermophoresis parameter,
increase both temperature and concentration as illustrated in Figures 20 and 21. The fluid flow is
also falling when the thickness of film is increased. Larger values of thickness β generate the friction
force and as a result the flow motion falls down. Increase in the film thickness deliver more fluid
in the boundary layer region and cooling effect is produced, which absorbs the heat transfer from
the sheet to the fluid and temperature profile drops down. Concentration has vital application in
thermal conductivity and chemical reactions. The concentration profile φ(ξ) is reliant on film size β

and increases with larger values of β indicated in Figures 22–24. The h-curves of f ′′(0), θ′(0), and φ′(0)
for the 4th-order HAM approximated solution are elaborated in Figures 25–27. Figures 28–31 indicate
h curves of the residuals for velocity, temperature and concentration profiles respectively. Table 1
illustrates the symbols used in the manuscript. In Tables 2–4 the results are compared, which are
achieved by HAM and Numerical(ND-Solve method) for velocity, temperature and concentration
profiles. The residuals gained by HAM are also depicted in Table 5.
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Figure 13. The effect of Kr on φ(η) for h = −0.9, λ = 0.5, S = 0.7, Pr = 0.5, Ec = 0.5, Nb = 0.7,
Nt = 0.1, β = 1 and Sc = 0.5.
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Figure 14. Shows the effect of Pr on θ(η) for h = −0.7, λ = 0.7, S = 0.7, kr = 0.1, Ec = 0.5, Nb = 0.5,
Nt = 0.2, β = 1 and Sc = 0.2.

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Η

Θ
HΗ

L Sc = 0.9

Sc = 0.7

Sc = 0.5

Sc = 0.3

Sc = 0.1

Figure 15. Shows the effect of Sc on θ(η) for h = −0.9, λ = 0.7, S = 0.7, kr = 0.7, Pr = 30, Ec = 0.7,
Nb = 0.5, Nt = 0.7, β = 1 and Sc = 0.1.
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Figure 16. Shows the effect of Sc on φ(η), for h = −0.6, λ = 0.5, S = 0.5, kr = 0.5, Pr = 0.5, Ec = 0.5,
Nb = 0.5, Nt = 0.5, β = 1 and Sc = 0.6.
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Figure 17. Shows the effect of Ec on θ(η), for h = −0.6, λ = 0.1, S = 0.1, kr = 0.9, Pr = 15, Nb = 0.5,
Nt = 0.6, β = 1 and Sc = 0.1.
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Figure 18. presents the effect of Ec on φ(η) for h = −0.7, λ = 0.5, S = 0.7, kr = 0.2, Pr = 10, Nb = 0.7,
Nt = 0.1, β = 1 and Sc = 0.5.
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Figure 19. Illustrates the effect of Nb on θ(η), when h = −0.5, λ = 0.7, S = 0.7, kr = 0.7, Pr = 30,
Ec = 0.7, Nt = 0.5, β = 1 and Sc = 0.7.
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Figure 20. Indicates the effect of Nb on φ(η), for h = −0.9, λ = 0.5, S = 0.7, kr = 0.5, Pr = 0.5,
Ec = 0.5, Nt = 0.7, β = 1 and Sc = 0.5.
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Figure 21. The effect of Nt on θ(η), when h = −0.5, λ = 0.7, S = 0.7, kr = 0.7, Pr = 30, Ec = 0.7,
Nb = 0.5, β = 1, and Sc = 0.7.
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Figure 22. The effect of Nt on φ(η), for h = −0.9, λ = 0.5, S = 0.7, kr = 0.5, Pr = 0.5, Ec = 0.5,
Nb = 0.7, β = 1 and Sc = 0.5.
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Figure 23. Shows the effect of β on f (η), for h = −0.7, λ = 1, kr = 0.5, Pr = 0.5, Ec = 0.5, Nb = 0.5,
Nt = 0.6, β = 0.1 and Sc = 0.6.
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Figure 24. The effect of β on θ(η), for h = −0.7, λ = 1, S = 0.5, kr = 0.5, Ec = 0.5, Nb = 0.5, Nt = 0.6
and Sc = 0.6.



Appl. Sci. 2017, 7, 404 16 of 21

0.0 0.2 0.4 0.6 0.8 1.0

0.90

0.95

1.00

1.05

1.10

Η

Φ
HΗ

L Β = 0.9

Β = 0.7

Β = 0.5

Β = 0.3

Β = 0.1

Figure 25. Illustrates the effect of β on φ(η) for h = −0.25, λ = 0.5, S = 0.1, kr = 0.5, Ec = 0.5,
Nb = 0.5, Nt = 0.6 and Sc = 0.6.
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Figure 26. Depicts h curves of f ′′(0), when λ = 0.9, kr = 0.9, Pr = 0.5, Ec = 0.5, Nb = 0.5, Nt = 0.6,
β = 1 and Sc = 0.6.
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Figure 27. Shows h curves of θ′(0), for λ = 0.2, S = 0.2, kr = 0.2, Pr = 1, Ec = 0.6, Nb = 1, Nt = 0.1,
β = 1 and Sc = 0.5.
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Figure 28. Elaborates h curves of φ′(0), when λ = 0.2, S = 0.2, kr = 0.2, Pr = 1, Ec = 0.6, Nb = 0.4,
Nt = 0.5, β = 1, Sc = 0.5.
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Figure 29. Illustrates h curves of the residuals for the velocity profile f (η), when λ = 0.6, S = 0.6, Kr =
0.4, Pr = 1, Ec = 0.4, Nb = 0.6, Nt = 0.5, Sc = 0.5, β = 1.
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Figure 30. Indicates h curves of the residuals for the temperature profile θ(η), when λ = 0.6, S = 0.6,
Kr = 0.4, Pr = 1, Ec = 0.4, Nb = 0.6, Nt = 0.5, Sc = 0.5, β = 1.
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Figure 31. Shows h curves of the residuals for the concentration profile φ(η), when λ = 0.6, s = 0.6;
Kr = 0.4, Pr = 1, Ec = 0.4, Nb = 0.6, Nt = 0.5, sc = 0.5, β = 1.

Table 1. Shows the Nomenclature.

Alphabet Defined as Alphabet Defined as

x horizontal coordinate (m) Tr Reference temperature
y vertical coordinate (m) T0 initial temperature of the fluid (K)
u horizontal velocity component (m/s) T temperature (K)
v vertical velocity component (m/s) Uw Velocity of the stretching sheet
S Unsteadiness parameter T1 final temperature of the fluid (K)

Tw Temperature at the sheet T temperature (K)
K thermal diffusivity (m2) t time (s)
S Unsteadiness parameter f Dimensionless Velocity
b stretching parameter(constant) k

′
permeability coefficient of the porosity

f (ξ) nondimensional variable for velocity Cw Nanoparticle volume fraction at sheet
Pr Prandtl number Ec Eckert number
Kr nondimensional porosity parameter Sc Schmidt number
Nb Brownian motion parameter DB Brownian diffusion coefficient
Cp specific heat at constant pressure (kJ kg−1 K−1) Nt Thermophoresis parameter

Greek symbols Defined as Greek Symbols Defined as

φ Dimensionless nanoparticle volume fraction ξ Similarity variable
ν kinematic viscosity of the fluid ρ f Density of base fluid
ρ density (kg m−3) (ρc)p Heat capacity of the nanoparticle material
Γ Time constant α Thermal diffusivity of the base fluid
ρp Nanoparticle mass density (ρc) f Heat capacity of the base fluid
ν Kinematic viscosity of the base fluid λ Williamson fluid constant
β non-dimensional film thickness θ Dimensionless temperature
ψ non-dimensional stream function (′) differentiation w. r. t. ξ

Table 2. HAM, Numerical Solution and their absolute Error are shown for f (η), when h = −0.47,
λ = 0.2, kr = 0.2, Pr = 1, Ec = 0.6, Nb = 0.4, Nt = 0.5, S = 0.2, β = 1 and Sc = 0.5.

η
Numerical Solution for HAM Solution for Absolute Errorf (η) f (η)

0 0 0 0
0.1 0.0952761 0.0955184 2.4× 10−4

0.2 0.182152 0.182958 8.1× 10−4

0.3 0.262045 0.263561 1.5× 10−3

0.4 0.336198 0.338462 2.3× 10−3

0.5 0.405709 0.408698 2.9× 10−3

0.6 0.471556 0.47522 3.6× 10−3

0.7 0.534618 0.5389 4.3× 10−3

0.8 0.595686 0.600535 4.6× 10−3

0.9 0.655482 0.660862 5.4× 10−3

1 0.714666 0.720558 5.8× 10−3
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Table 3. HAM, Numerical Solution and their absolute Error are elobarated for θ(η), when h = −0.5,
λ = 0.2, kr = 0.2, Pr = 0.5, Ec = 0.6, Nb = 0.4, Nt = 0.5, S = 0.2, β = 1 and Sc = 0.7.

η
Numerical Solution for HAM Solution for Absolute Error

θ(η) θ(η)

0 1 1 1.4× 10−8

0.1 0.907342 0.90737 2.8× 10−5

0.2 0.82775 0.827596 1.5× 10−4

0.3 0.759861 0.759482 3.8× 10−4

0.4 0.702621 0.702067 5.5× 10−4

0.5 0.655233 0.654586 6.5× 10−4

0.6 0.617098 0.616438 6.7× 10−4

0.7 0.587786 0.587169 6.2× 10−4

0.8 0.567002 0.566451 5.5× 10−4

0.9 0.554573 0.554078 4.9× 10−4

1 0.550428 0.549956 4.7× 10−4

Table 4. HAM, Numerical Solution and their absolute Error are depicted for φ(η), when h = −0.6,
λ = 0.2, kr = 0.2, Pr = 1, Ec = 0.6, Nb = 1, Nt = 0.1, S = 0.2, β = 1, and Sc = 0.5.

η
Numerical Solution for HAM Solution for Absolute Error

φ(η) φ(η)

0 1 1 2.9× 10−9

0.1 0.940581 0.941167 5.9× 10−4

0.2 0.890316 0.8912 8.8× 10−4

0.3 0.848224 0.849209 9.8× 10−4

0.4 0.813465 0.81443 9.6× 10−4

0.5 0.785325 0.786207 8.8× 10−4

0.6 0.763201 0.76398 7.8× 10−4

0.7 0.74659 0.747277 6.9× 10−4

0.8 0.735082 0.735705 6.2× 10−4

0.9 0.728352 0.728942 5.9× 10−4

1 0.726151 0.726734 5.8× 10−4

Table 5. Illustrates the residuals achieved by HAM for system of coupled differential equations forming
in velocity, temperature and concentration profiles.

η
Residuals for Residuals for Residuals for

f (η) θ(η) φ(η)

0 −2.0× 10−1 −3.7× 10−1 5.1× 10−2

0.1 −1.2× 10−1 −7.9× 10−2 2.4× 10−2

0.2 −4.9× 10−2 3.2× 10−3 2.2× 10−2

0.3 −4.9× 10−4 2.5× 10−2 2.9× 10−2

0.4 3.3× 10−2 2.9× 10−2 3.2× 10−2

0.5 5.2× 10−2 2.1× 10−2 2.3× 10−2

0.6 6.1× 10−2 5.9× 10−3 2.2× 10−3

0.7 5.9× 10−2 −1.3× 10−2 −2.6× 10−2

0.8 4.9× 10−2 −3.3× 10−2 −5.5× 10−2

0.9 3.3× 10−2 −4.6× 10−2 −7.3× 10−2

1 9.9× 10−3 −4.9× 10−2 −8.7× 10−2

6. Conclusions

The main conclusion of this endeavor is the study of liquid film in a porous medium considering
non-Newtonian Williamson fluid on an unstable stretching surface. The effect of Thermophoresis
and Brownian motion has been countered to the liquid film flow. The solutions of the problems have
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been achieved by using analytical technique, HAM for velocity, temperature and concentration fields
respectively. The influences of all parameters included in the problem have been described and the
solutions are displayed in the diagrams for checking their effects on velocity, temperature as well as
concentration fields. The coupled problem has been solved by using an analytical method HAM. The
h curves for the residuals of velocity, temperature and concentration have been sketched.
The main concluded points are derived as,

(1) Increasing thickness parameter β produce the friction force and as a result velocity of the fluid
film falls down.

(2) The larger values of β transport more fluid in the boundary layer region and cooling effect is
produced which absorbed the heat transfer from the sheet and as a result the temperature reduces.

(3) The Eckert number Ec is allied with the viscous dissipation term and lead to incrrease the quantity
of heat being produced by the shear forces in the fluid. Therefore, larger values of Ec raises the
temperature field.

(4) The larger values of Prandtl number Pr reduces the thermal boundary layer due to which the
temperature field reduces.

(5) Higher values of Porosity parameter Kr generate larger open space and create hurdle to flow and
as a result the flow field reduces.
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