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Abstract: Flexure-based micro-motion mechanisms activated by piezoelectric actuators have a wide
range of applications in modern precision industry, due to their inherent merits. However, system
performance is negatively affected by model uncertainty, disturbance and uncertain nonlinearity,
such as the cross-coupling effect and the hysteresis of the actuator. This paper presents an integrated
learning-based optimal desired compensation adaptive robust control (LODCARC) methodology for
a flexure-based parallel micro-motion manipulator. The proposed LODCARC optimizes the reference
trajectory used in the desired compensation adaptive robust control (DCARC) by iterative learning
control (ILC), which can greatly compensate for the effect of repetitive disturbance and uncertainty.
The proposed control approach was tested on the flexure-based micro-motion manipulator, with
the comparative results of high-speed tracking experiments verifying that the proposed LODCARC
controller can achieve excellent tracking and contouring performances with parametric adaption
and disturbance robustness. Furthermore, the iterative reference optimization can effectively
accommodate the effects of unmodeled repetitive uncertainty from the micro-motion system. This
study provides a practical and effective technique for the flexure-based micro-motion manipulator to
achieve high-precision motion.

Keywords: flexure-based manipulator; precision micro-motion; desired compensation adaptive
robust control; reference optimization

1. Introduction

There are a wide variety of mechanisms such as compliant mechanism and parallel mechanism
for high-precision positioning and motion technology [1–3]. Flexure-based compliant mechanisms,
which transmit the motions entirely through the deformation of materials, exhibit the advantages
of a typical micro-motion mechanism in terms of no backlash, no wear, and easy manufacturing [4].
Both serial and parallel structures have been adopted in flexure-based mechanisms, although most
flexure-based stages are developed based on a parallel structure. This is due to the fact that parallel
flexure-based stages have advantages of high rigidity and frequency, low inertia and symmetrical
characteristics of each axis [5–7]. A piezoelectric actuator is usually adopted as the actuator of the
flexure-based manipulator due to its merits of high-precision, fast response, high stiffness and large
force [8]. However, some dynamical behaviors of micro-motion system are challenging from the
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perspective of control. In particular, there is inevitable model uncertainty and nonlinearity caused
by cross-axis coupling effects, rigidity variation in addition to the hysteresis and other nonlinearity
of the piezoelectric actuator [9,10], which will obviously deteriorate motion accuracy, especially in
high-speed applications.

Therefore, the controller design plays an important role in achieving great tracking and
contouring performance of flexure-based micro-motion manipulator. For general purposes, a simple
proportional-integral-derivative (PID) controller is always applied in the flexure-based micro-motion
stage [11]. However, due to increasing demands for higher speeds from the micro-motion manipulator,
the PID controller cannot efficiently deal with the model uncertainty and nonlinear effect of the system,
resulting in its limited performance. Subsequently, model-based feedforward controllers have been
developed. In a previous study [12], an inversion-based feedforward controller combined with a PID
feedback controller was utilized to compensate for the nonlinearity of a parallel micro-positioning
stage, with good positioning and tracking performances having been achieved. Furthermore, different
types of mathematical models, such as the Prandtl-Ishlinskii model [13], Presiach model [14] and
Bouc–Wen model [15], have been applied for feedforward control in order to compensate the
hysteresis of piezoelectric actuator. It is noted that, when the micro-motion stage is used for micro
machining, the cutting forces should be considered for achieving smooth motion and high performance
machining [16,17]. However, the dynamics of the system are complicated so the accuracy of the
mathematical model used in feedforward control is always limited. Furthermore, there inevitably
exists model uncertainty and perturbation. For repetitive tracking tasks, iterative learning control
(ILC) [18] can be adopted to compensate for the repetitive uncertainty and disturbance by using
information from previous executions. In a previous study [19], ILC was used to compensate for the
hysteresis of the piezoelectric actuator while too many iteration trials had to be taken in this study to
get the accurate dynamical model of the system and achieve excellent tracking performance, which
is too long for real-world applications. In any case, ILC is sensitive to parametric uncertainty and
uncertain disturbance [18]. One typical method to deal with the model uncertainty and disturbance is
adaptive robust control [20–22], which is widely used in many industrial applications. However, the
velocity measurement noise greatly reduces the performance of adaptive robust control, especially in
flexure-based micro-motion stages with high rigidity where velocity measurement noise is relatively
large. To reduce the effect of measurement noise, a desired compensation adaptive robust control
(DCARC) [23,24] was presented. The DCARC strategy is constructed based on a dynamical model
of the system with prior knowledge of the bounds of the parametric uncertainties and the bounds
of the unmodeled uncertainty and nonlinearity as well as disturbance. The parameters are adjusted
on-line via certain parameter adaptation law to achieve an improved model compensation, while the
model uncertainty and lumped disturbance are handled by certain robust law. Thus, the DCARC
possesses the advantages of both control methods, which has a parametric adaptation ability and
guaranteed performance to the model uncertainty and disturbance. In addition, compared with
conventional adaptive robust control, the adaptive model compensation part of DCARC depends on
the desired reference trajectory instead of actual state measurements, so the effect of measurement
noise is minimized.

However, the effects of unmodeled dynamics of the plant are suppressed by the robust control
term in DCARC, so the final tracking performance is unavoidably conservative. In this paper, an
optimization control method of DCARC, learning-based optimal desired compensation adaptive robust
control (LODCARC) is proposed and implemented for a flexure-based parallel micro-motion stage. The
stage is activated by piezoelectric actuators in X- and Y-axes. It has a decoupled symmetrical structure
so the multi-input multi-output (MIMO) system can be simplified as two single-input single-output
(SISO) sub-systems, with the proposed LODCARC being implemented in each sub-system. The
DCARC term of the LODCARC is designed based on the dynamics of the micro-motion system
under the consideration of parametric uncertainty and uncertain nonlinearity. Furthermore, the
effect of measurement noise is minimized in DCARC by using the desired reference trajectory rather
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than actual state measurements. However, considering the complicated environment, the accurate
dynamical model of flexure-based micro-motion system is difficult to obtain and for micro-scale motion,
many motion tasks are repetitive in a finite time. Therefore, ILC was used to optimize the reference
trajectory used in the DCARC term to compensate for the effects of unmodeled repetitive uncertainty
and nonlinear disturbance. The whole control scheme with the stability analysis is presented and
comparative experimental investigation of high-speed trajectory is carried out, with the experimental
results showing that the tracking and contouring performances of the flexure-based micro-motion
stage are greatly improved by adopting the proposed LODCARC.

2. Description of the Investigated Flexure-Based Manipulator

The parallel flexure-based micro-motion manipulator investigated in this paper is schematically
illustrated in Figure 1a and the manufactured prototype of the manipulator, which is monolithically
milled from a block of Al-7075, is shown in Figure 1b. As shown in Figure 1b, the piezoelectric
actuators (PSt 150/7/40, VS 12, XMT Harbin, China) adopted for the system have a 40 µm range,
while the output displacements of the terminal platform along the X- and Y-axes are measured by
two high precision length gauges (MT-1281, Heidenhain, Bavaria, Germany). To realize high stiffness,
high natural frequency and output decoupling characteristic of the micro-motion manipulator, this
study used a symmetrical parallel structure composed of four identical limbs [25,26]. Each limb is
composed of a parallelogram flexure and a fixed-fixed beam, which are serially connected and acted as
prismatic joints. Therefore, the micro-motion stage has two translational degrees of freedom along
the X- and Y-axes.
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Figure 1. The parallel flexure-based micro-motion manipulator. (a) Schematic diagram;
(b) Manufactured prototype.

Due to the symmetrical structure of the micro-motion stage, it was necessary to study only the
dynamics of the stage along the X-axis. The dynamic model of the mechanical part of the system
is commonly treated as a second-order system according to the characteristics of its mechanical
structure [27] and can be expressed as follows:

me
..
x(t) + ce

.
x(t) + kex(t) = Fp(t) + fd(t) + ∆ (1)

where me, ce, and ke are the moving mass, damping coefficient and stiffness of the stage, respectively;
x is the output displacement of the terminal platform along the X-axis; Fp is the driving force of the
piezoelectric actuator; fd is the external disturbance and ∆ is the lumped uncertain of the system. As
the power amplifier of the piezoelectric actuator has a very high bandwidth, it is reasonable to assume
that the dynamics from the input voltage to the output displacement of the piezoelectric actuator
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can be simplified as a constant gain γ. Thus, we can note that Fp = γkinu, where kin is the input axial
stiffness of the micro-motion stage and u is the control input voltage.

Subsequently, the dynamic model of the whole stage can be derived as a second-order system.

θ1
..
x + θ2

.
x + θ3x = u + θ4 + d (2)

where θ1 = me/(γkin), θ2 = ce/(γkin), θ3 = ke/(γkin), θ4 = fd/(γkin) and d = ∆/(γkin). The unknown
parameter set is defined as θ = [θ1, θ2, θ3, θ4]T, with an open-loop sinusoidal sweeping test subsequently
being carried out to estimate the parameters in Equation (2). The sweeping sinusoidal signals ranging
from 1 Hz to 1500 Hz, with the sampling frequency of 20 kHz, are used as the control input to excite
the system. The system identification tool of Matlab is used to process data and estimate the model by
using the response data from experiments, with the parameter estimates in X- and Y-axes direction
being θx = [6.35 × 10−7, 5.95 × 10−3, 6.23, 0]T and θy = [5.20 × 10−7, 6.10 × 10−3, 6.65, 0]T, respectively.
The following practical assumption can be made.

Assumption 1: The extent of the parametric uncertainties and uncertain nonlinearities are known, namely:

θ ∈ Ωθ , {θ : θmin ≤ θ ≤ θmin} (3)

d ∈ Ωd , {d : |d| ≤ δd} (4)

where θmin = [θ1min, θ2min, θ3min, θ4min]T, θmax = [θ1max, θ2max, θ3max, θ4max]T, and δd are known.

3. Control System Design for the Flexure-Based Manipulator

Figure 2 depicts the whole control structure of LODCARC for flexure-based micro-motion stage
to achieve ultra-high precision motion. The DCARC term is designed based on the system dynamics
that aim to achieve parameter adaption and certain robustness, although in real-world practice with
the complicated environment, there exists unavoidable tracking error, which is defined as e = x – xd.
Furthermore, the unmodeled uncertainty and disturbance affecting the tracking performance of
the micro-motion stage are repetitive, to a large extent. The ILC optimization term is treated as a
trajectory optimization to alter the reference for DCARC. The optimal signal xopt of ILC is based on
previous repetitive control information including tracking error e, which aims to compensate for the
effects of unmolded repetitive uncertainty and disturbance. Thus, with reference optimization by ILC
(Figure 2), the reference trajectory used for DCARC is adjusted as xa = xd + xopt, with the accuracy of
the flexure-based micro-motion stage able to be further improved.
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Figure 2. Structure of the control system for the flexure-based micro-motion manipulator.

3.1. DCARC Design in LODCARC

As mentioned, DCARC has a parametric adaptation ability of adaptive control and having robust
performance to the uncertainty and disturbance of robust control. The design of the DCARC term of
the proposed LODCARC for the flexure-based system is as follows: Define θ̂ as the estimate of θ, then
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the estimation error of θ can be defined as θ̃ = θ̂ − θ. In the DCARC term, the estimate θ̂ of parameter
is updated by using the following discontinuous projection type adaptation law:

.
θ̂ = Projθ̂(Γτ) (5)

where Γ is a diagonal positive definite matrix, which indicates the adaptation rate, and τ is an
adaptation function. The projection mapping Projθ̂(•) = [Projθ̂1

(•1), · · ·, Projθ̂4
(•4)]

T is defined by

Projθ̂i
(•i) =


0, if θ̂i = θimax and •i > 0
0, if θ̂i = θimin and •i < 0
•i, otherwise

(6)

It can be shown [28] that for any adaptation function τ, the projection mapping defined in
Equation (6) guarantees

P1 : θ̂ ∈ Ωθ ,
{

θ̂ : θmin ≤ θ̂ ≤ θmax
}

P2 : θ̃T(Γ−1Projθ̂(Γτ)− τ) ≤ 0, ∀τ
. (7)

After this, define a switching-function-quantity as

p =
.
ea + k1ea =

.
x− xeq, xeq ,

.
xa − k1ea (8)

where ea = x – xa = x – (xd + xopt) is the adjusted tracking error; x, xd and xa are the actual output,
desired reference and adjusted optimized reference, respectively; And k1 is a positive feedback gain.
Differentiating Equation (8) and noting Equation (2), one can obtain

θ1
.
p = u− θ1

.
xeq − θ2

.
x− θ3x + θ4 + d

= u + ϕTθ + d
(9)

where ϕ = [− .
xeq,− .

x,−x, 1]T. Define ϕa = [− ..
xa,− .

xa,−xa, 1]T and the DCARC control law is
proposed as

u = u f + us (10)

where u f = −ϕT
a θ̂ is the adjustable model compensation term for perfect trajectory tracking. It should

be noted here that the adjustable model compensation is decided by adjusted optimized reference
and parameter estimations only, rather than the actual output, which has great velocity measurement
noise. In this way, DCARC can minimize the effect of measurement noise compared with conventional
adaptive robust control. Furthermore, us is the feedback control term, which will be synthesized later.
Substituting Equation (10) into Equation (9) and then simplifying the resulting expression leads to

θ1
.
p = us − ϕa

Tθ̃ + d + (k1θ1 − θ2)
.
ea − θ3ea. (11)

In addition, the feedback control term us in Equation (10) consists of two terms given by

us = us1 + us2 (12)

where us1 = -ks1p is used to stabilize the nominal system and us2 is a robust feedback used to
attenuate the effect of model uncertainties. For traditional adaptive robust control, us1 is just a
simple proportional feedback with ks being the feedback gain to stabilize the nominal system [24],
while in this case for DCARC, ks1 in Equation (12) is required to be large enough such that the matrix
A defined below is positive definite.

A =

[
ks1 − ks − k1θ1 + θ2 − k1θ2−θ3

2

− k1θ2−θ3
2

mek1
3

2

]
. (13)
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Furthermore, us2 as a robust feedback term is designed to attenuate the effect of model
uncertainties of parametric uncertainty and uncertain nonlinearity. As such, us2 should dissipate
naturally so that it does not affect the adaptive function of the adaptive control part uf. Thus, noting
Assumption 1 and part 1 of Equation (7), there is a us2 to satisfy the following constraints:

i p{us2 − ϕa
Tθ̃ + d} ≤ ε

ii pus2 ≤ 0
(14)

where ε is a design parameter, which can be arbitrarily small. Specific form of us2 can be obtained
using the techniques in [20]:

us2 = − 1
4ε

h2 p (15)

where h is any function satisfying
h ≥ ‖θM‖‖ϕd‖+ δd (16)

where θM = θmax – θmin.

Theorem 1: If the adaptation function in Equation (5) is chosen as

τ = ϕa p (17)

then the DCARC control term applied in Equation (5) guarantees the following results.

1. In general, all signals are bounded, and the positive definite function Vs defined by

Vs =
1
2

θ1 p2 +
1
2

θ1k1
2ea

2 (18)

is bounded above by

Vs ≤ exp(−λt)Vs(0) +
ε

λ
[1− exp(−λt)] (19)

where λ = min{2ks/θ1max, k1}.
2. If after a finite time t0, there exists parametric uncertainties only (i.e., d = 0 and ∀t ≥ t0), then zero

final tracking error is also achieved, i.e., ea → 0 and p→ 0 as t→ ∞.

Proof. Differentiating Vs given by Equation (18) with respect to time and applying Equation (11) yields

.
Vs = p{us − ϕa

Tθ̃ + d + (k1θ1 − θ2)
.
ea − θ3ea}+ θ1k1

2ea
.
ea (20)

Noting p =
.
ea + k1ea, we have

.
Vs = p{us2 − ϕa

Tθ̃ + d}+ (k1θ1 − θ2 − ks1)p2 + (k1θ2 − θ3)ea p− θ1k1
3ea

2

= p{us2 − ϕa
Tθ̃ + d} − [p, ea]A[p, ea]

T − ks p2 − 1
2 θ1k1

3ea
2 (21)

As A is positive definite, then we have

.
Vs ≤ p{us2 − ϕa

Tθ̃ + d} − ks p2 − 1
2

θ1k1
3ea

2 (22)

With condition i of Equation (14) and choosing λ as λ = min{2ks/θ1max, k1}, the derivative of Vs becomes

.
Vs ≤ −λVs + ε (23)

Thus, part 1 of Theorem 1 is proved.
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Considering the situation in part 2 of Theorem 1, i.e., d = 0 and ∀t ≥ t0, choose a positive definite
function Vθ as

Vθ = Vs +
1
2

θ̃TΓ−1θ̃ (24)

From Equation (22), the derivative of Vθ satisfies

.
Vθ ≤ p{us2 − ϕa

Tθ̃ + d} − ks p2 − 1
2

θ1k1
3ea

2 + θ̃TΓ−1
.
θ̂ (25)

As d = 0 and ∀t ≥ t0, we have

.
Vθ ≤ pus2 + θ̃T(Γ−1Projθ̂(Γτ)− τ)− ks p2 − 1

2
θ1k1

3ea
2 (26)

From condition ii of Equation (14) and part 2 of Equation (8),
.

Vθ satisfies

.
Vθ ≤ −ks p2 − 1

2
θ1k1

3ea
2 (27)

Let −ks p2 − 1
2 θ1k1

3ea
2 = −M. Therefore, Vθ ∈ L∞ and M ∈ L1. As all signals are bounded, it is easy

to check that
.

M is bounded, thus making M uniformly continuous. By Barbalat’s lemma, M→ 0 as
t→ ∞, resulting in zero final tracking error being achieved.

3.2. Reference Optimization in LODCARC

The proposed DCARC term in Section 3.1 is designed to track xa = xopt + xd as accurately as
possible, which also means if xopt = 0, DCARC term can track the desired reference xd as accurately as
possible. Furthermore, Theorem 1 reveals the stability of the result, even resulting in a zero tracking
error. However, in real-world applications, tracking error is inevitable (i.e., ea = x – xa cannot be
zero) and in practice, there exists residual tracking error of the practical motion control system ea. As
ea = x – (xopt + xd) = e – xopt, we have

e = ea + xopt (28)

Thus, if the optimal input signal xopt could capture the characteristics of –ea (i.e., xopt → ea), the
actual tracking error e could achieve e → 0. Therefore, iterative learning control (ILC), which can
improve tracking performance by using information from previous executions to compensate for the
repetitive uncertainty and perturbation, is used to capture the characteristics of the residual tracking
error. As shown in Figure 2, the ILC term is used to generate the optimal input signal for adjusting the
desired reference of DCARC. Denote the dynamics of the closed-loop of DCARC with the flexure-based
plant as P(s), then the whole control system can be derived as

Xi(s) = P(s)[Xopt,i(s) + Xd(s)] (29)

where subscript i denotes the iteration trial number, while the optimal input signal Xopt,i is generated
by a iterative learning law as

Xopt,i(s) = Q(s)(Xopt,i−1(s) + L(s)Ei−1(s)) (30)

where Ei–1 is the tracking error in the (i – 1)th iterative process, Q is a low-pass Q-filter which is utilized
to enhance the system robustness and suppress the noise in the iterative process, while L is the learning
function. It is noted that a low-pass filter may cause a phase shift, although the phase shift can be
eliminated by filtering the signal back and forth [29]. Many types of learning functions have been
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developed for ILC [18], while PD-type learning function is a typical, simple and tunable ILC learning
function. PD-type learning function was chosen for this paper and it is written as

L(s) = Kp + Kds (31)

Following this, asymptotic stability and monotonic convergence in the iteration domain of the
iterative law can be guaranteed under certain conservative conditions, which are presented in [18] as
the following Lemma.

Lemma 1: The iterative learning law defined in Equations (30) and (31) acting on the system P(s) is
monotonically convergent i.e.,‖E∞(s)− Ei+1(s)‖∞ < α‖E∞(s)− Ei(s)‖∞, where α is the convergence rate, if

‖Q(s)(1− L(s)P(s))‖∞ < α < 1 (32)

Based on Lemma 1, the optimal input signal xopt generated by ILC control can capture the characteristics of
residual tracking errors caused by unmodeled repetitive uncertainty. If the convergence of ILC is guaranteed, the
optimal input signal xopt will be determined and then according to Theorem 1, the stability of the whole control
system can be guaranteed. Furthermore, as mentioned, zero tracking error is achieved if there are only parametric
uncertainties so P(s) can be considered as P(s) = 1 theoretically. After this, the convergence conditions can be
obtained by substituting Equation (31) into Equation (32) to obtain

‖Q(s)(1− Kp + Kds)‖∞ < α < 1 (33)

Obviously, if Kp + Kds = 1 (i.e., Kp = 1 and Kd = 0), then we could obtain α = 0 in theory, which means the ILC
term will reach a converged error value after one iteration.

4. Experimental Verification

4.1. Experiment Setup

To validate the proposed control method, the comparative experiments were carried out on the
flexure-based micro-motion manipulator as depicted in Figure 1, while the whole experimental system
is established as depicted in Figure 3. The two actuators are controlled by a modular piezo-servo
controller (XE500/E50, XMT Harbin, China). A dSPACE processor board DS1007 equipped with a
16-bit ADC card (DS2102) and a 6-channel high resolution incremental encoder interface card (DS3002)
is utilized to output the excitation voltage of the piezo servo controller and capture the real-time data
for the length gauges. Since the piezoelectric actuator is made up of multiple piezoelectric layers
glued together, it is sensitive to the pulling force, which may bring damage to the actuator. Therefore,
preloading forces were applied on the two piezoelectric actuators by tightening the bolts to guarantee
their operational safety.

To show the effectiveness of the proposed LODCARC sufficiently, three more controllers,
namely the PI, ILC and DCARC controllers, were implemented for comparison. A traditional PI
controller, as a typical kind of PID controller, consists of a proportional term and an integral term,
which is simple and widely-used. On the other hand, an individual ILC controller uses the same
learning function in the proposed learning-based optimal DCARC controller as discussed above in
Section 3.2. It was noted that a second order low-pass with the expression of Q(s) = ωn

2

s2+2ζωns+ωn2

is used for the Q-filter in an ILC controller, where ζ is damping ratio and ωn is the crossover
frequency. In this case, ζ = 0.7 and ωn = 5026.55 rad/s. The PD-type learning function of ILC
controller, as mentioned in Equation (31), was chosen as Kp = 4.5 and Kd = 3.0. As for the
DCARC controller, the boundaries for the variation in parameters in the X-axis were chosen as
θxmin = [6.13 × 10−7, 5.90 × 10−3, 6.10, –2]T and θxmax = [6.38 × 10−7, 6.10 × 10−3, 6.55, 2]T,
while the boundaries for the variation in parameters in the Y-axis are chosen as
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θymin = [5.15 × 10−7, 5.90 × 10−3, 6.50, –6]T and θymax = [5.29 × 10−7, 6.20 × 10−3, 6.80, 6]T.
The diagonal positive definite matrix Γ, which indicates the adaptation rate in Equation (5) is chosen
as Γ = diag [1.50 × 10−16,‘5.00 × 10−9, 5.00 × 10−3, 1.75 × 10−1]. It was noted that the DCARC term
of the proposed learning-based optimal DCARC controller and the DCARC controller introduced
above were the same. In addition, to make sure that the comparative experiments were accurate and
fair, the proposed LODCARC controller used the same control parameters as a DCARC controller and
the same filter parameters as an individual ILC controller.
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4.2. Experimental Results

4.2.1. High-Speed Circular Contouring Trajectory

A high-speed circular contouring trajectory with a radius of 5 µm and a frequency of 200 Hz
was chosen to test the effectiveness of the proposed control method first. To get a circular trajectory,
sinusoidal signals were adopted as input signals in the X- and Y-axes with the phase quadrature.
As each axis tracks a sinusoidal trajectory when the micro-motion stage tracks a circular trajectory,
the tracking performance in one direction was considered first. Figure 4 shows the tracking errors
in the X-axis over 0.2 s using four control methods. In addition, two performance indexes, namely
the root mean square value of the tracking error (eRMS) and the maximum value of the tracking error
(eRMS), were introduced to evaluate the performances of different controllers mentioned above, with
the performance indexes of the tracking error in Figure 4 being compared in Table 1.

It can be observed from Figure 4 that the tracking performance of PI controller in the X-axis
is the worst, due to the phase lag problem of PI controller under high-speed motion conditions. In
comparison, the other controllers can achieve good tracking performances. However, the dynamics
of the stage in X- and Y-axes are identical theoretically due to the symmetrical structure of the
micro-motion stage. As a result, the phase lag in two directions is the same for the circular trajectory,
which will lead to a relatively good contouring performance. As for the other three controllers, the eRMS
of the ILC and DCARC controllers were above 0.13 µm, while the eRMS of the proposed LODCARC
controller is around 0.08 µm. It also can be seen from the eM in Table 1 that the proposed LODCARC
controller performs best.

Following this, the contouring performance of the micro-motion stage for tracking circular
trajectory was analyzed. The contour tracking results during one circular motion period are depicted
in Figure 5, with the corresponding contouring errors over 0.2 s being illustrated in Figure 6. The
experimental results in terms of performance indexes are given in Table 2, where εRMS is the root mean
square value of the contouring error and εM is the maximum value of the contouring error.
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Figure 4. Axis tracking errors of circular trajectory in the X-axis.
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Figure 5. Contouring performances of circular trajectory using (a) PI (proportional-integral) controller;
(b) ILC (iterative learning control) controller; (c) DCARC (desired compensation adaptive robust
control) controller; and (d) LODCARC (learning-based optimal desired compensation adaptive robust
control) controller.
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Figure 6. Contouring errors of circular trajectory.

Table 1. Tracking performance indexes of circular trajectory in the X-axis

Controller 1 PI ILC DCARC LODCARC

eRMS (µm) 6.048 0.223 0.139 0.088
eM (µm) 8.499 0.436 0.341 0.217

1 PI: proportional-integral controller; ILC: iterative learning control controller; DCARC: desired compensation
adaptive robust control controller; LODCARC: learning-based optimal desired compensation adaptive robust
control controller.

Table 2. Contouring performance indexes of circular trajectory.

Controller PI ILC DCARC LODCARC

εRMS (µm) 0.230 0.117 0.096 0.066
εM (µm) 0.429 0.265 0.200 0.146

It is clearly demonstrated from Figure 5 that all controllers can achieve good contouring
performance. According to the contouring errors of all four controllers plotted in Figure 6 and
the performance indexes given in Table 2, the contouring error of the PI controller is much larger than
that of the other three controllers, with the εRMS of PI controller being over 0.2 µm. The proposed
LODCARC controller achieved an εRMS of 0.066, which is much smaller than the others. It can be
subsequently obtained that the εRMS of the proposed LODCARC controller is 29% of the εRMS of PI
controller, 56% of the εRMS of ILC controller and 69% of the εRMS of the DCARC controller. Furthermore,
the εM of all four controllers illustrated in Table 2 also shows that the proposed LODCARC controller
outperforms the other controllers with respect to contouring performance.

4.2.2. High-Speed Diamond-Shaped Contouring Trajectory

To validate the performance of the proposed control strategy sufficiently, a diamond-shaped
contouring trajectory with a side length of 5 µm and a frequency of 50 Hz was also tested on the
manipulator. For non-smooth trajectory, velocity planning is needed, and the S-shape curve [30] was
adopted to plan the motion of each side of the diamond-shaped trajectory. Similarly, the contouring
results during one motion period are shown in Figure 7, and the contouring errors over 0.2 s are given
in Figure 8 while the corresponding performance indexes are compared in Table 3.
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Figure 7. Contouring performances of diamond-shaped trajectory using (a) PI controller, (b) ILC 
controller, (c) DCARC controller, and (d) LODCARC controller. 

The results in Figure 7 show that there are significant contouring errors when the PI controller 
and the ILC controller are adopted; the contouring performance of the PI controller is especially 
poor at the corners of the diamond-shaped trajectory. As shown in Figure 8, the contouring errors of 
the DCARC controller and the LODCARC controller are very small, while for LODCARC, the 
reference trajectory optimization compensate the effect of repetitive disturbance and uncertainty, so 
the contouring performance of LODCARC is greatly improved. It is clearly shown in Table 3 that 
both the εRMS and εM of the proposed LODCARC are the smallest, the εRMS of the proposed 
LODCARC controller is 33% of the εRMS of the DCARC controller, and the εM of the proposed 
LODCARC controller is 39% of the εM of DCARC controller, which also verifies the effectiveness of 
the proposed LODCARC control strategy. 
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Figure 7. Contouring performances of diamond-shaped trajectory using (a) PI controller; (b) ILC
controller; (c) DCARC controller; and (d) LODCARC controller.
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Table 3. Contouring performance indexes of diamond-shaped trajectory.

Controller PI ILC DCARC LODCARC

εRMS (µm) 0.143 0.069 0.021 0.007
εM (µm) 0.349 0.157 0.054 0.021

The results in Figure 7 show that there are significant contouring errors when the PI controller
and the ILC controller are adopted; the contouring performance of the PI controller is especially
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poor at the corners of the diamond-shaped trajectory. As shown in Figure 8, the contouring errors
of the DCARC controller and the LODCARC controller are very small, while for LODCARC, the
reference trajectory optimization compensate the effect of repetitive disturbance and uncertainty, so
the contouring performance of LODCARC is greatly improved. It is clearly shown in Table 3 that both
the εRMS and εM of the proposed LODCARC are the smallest, the εRMS of the proposed LODCARC
controller is 33% of the εRMS of the DCARC controller, and the εM of the proposed LODCARC controller
is 39% of the εM of DCARC controller, which also verifies the effectiveness of the proposed LODCARC
control strategy.

5. Conclusions

In this paper, we present a learning-based optimal desired compensation adaptive robust control
(LODCARC) for guaranteeing the performance of a flexure-based micro-motion manipulator. The
dynamics of the flexure-based system were studied first, with proposed control strategy then being
designed based on the dynamics of the system. The proposed LODCARC control algorithm possesses
good parametric adaptation ability and robustness for nonlinear uncertainty, measurement noise and
disturbance. This is especially the case with the help of a reference optimization method based on
ILC, resulting in an effective reduction in the negative effects of repetitive unmodeled uncertainty
and disturbance. Comparative experiments have been conducted on the flexure-based system, with
the experimental results showing that the proposed control strategy can greatly reduce the tracking
and contouring errors. Thus, our study demonstrates that the proposed LODCARC control strategy
can provide a great technology for flexure-based stages to achieve excellent high-speed tracking
and contouring performances.
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