
applied
sciences

Article

A Program Model of Fuzzy Interpreted Petri Net to
Control Discrete Event Systems

Michał Markiewicz * and Lesław Gniewek

Department of Computer and Control Engineering, Rzeszow University of Technology, Rzeszow 35-959, Poland;
lgniewek@prz.edu.pl
* Correspondence: mmarkiewicz@prz.edu.pl; Tel.: +48-178-651-536

Academic Editor: Elli Kartsakli
Received: 20 January 2017; Accepted: 16 April 2017; Published: 22 April 2017

Abstract: Using Petri nets (PNs) to control discrete event systems (DES) has many benefits, because
of their graphical representations, the possibility of parallel process control, and their formal
descriptions. Amongst the different PNs that are applied for this purpose, most have some limitations
for visualization. For many of these PNs, another restriction is the length of time between the creation
of the control algorithm in the form of a graph and its practical implementation. These two issues can
be resolved with one solution called fuzzy interpreted PN (FIPN). This article proposes the use of a
program model based on FIPN to control DES and the method for generation of this model using the
graphical representation of the net. FIPN offers a better visualization in comparison to discrete PNs
and it allows for the quick creation of program code through the application of a simulator called
FIPN-SML. This computer tool implements a method that transforms the graphical form of FIPN into
Structured Text (ST) language supported by the IEC 61131-3.

Keywords: Petri net; Petri net simulation; Petri net modelling; automatic program generation;
programmable logic controller; discrete event systems

1. Introduction

Although a finite state machine and a finitely recursive process can be used to model discrete
event systems (DES) [1,2], researchers began to use Petri nets (PNs). The reasons for this are the
graphical representation of PNs, the possibility of parallel process control, the formal description of
PNs, increasing complexity of DES, and greater expectations for the analysis and the modelling of
DES [3–5]. This led to the creation of many classes of PNs [6]. Additionally, many software programs [7]
that enable the analysis of various net properties were created. These tools can be applied to simulate
the operations of systems based on PNs and to find their properties automatically. They usually permit
the modelling of specific classes of nets. Research on the modelling, simulation, operation, and control
of DES through the application of PNs can be divided into two trends. The first is related to the
development of the formal methods that refer to general models. The second is also associated with
the formal methods, but they refer to the specific programming languages.

Amongst the papers that consider the first trend, some are related to supervisory control that
can be based on structural reasoning [8], applied with the use of the hybrid net [9], and used for
a system with uncontrollable and unobservable transitions [10]. Others are associated with the
validation of DES, which includes: diagnosis of an asynchronous system [11]; detecting and isolating
fault events [12]; fault online detection [13]; fault diagnosis with unobservable transition [14]; model
checking based on user specification [15]; formal verification with the use of structural reasoning and
general unary hypothesis automaton (GUHA) methods [16]. Other research concerns the application
of PNs to specific problems, e.g., to model flexible manufacturing systems (FMS) [17–22] or to model

Appl. Sci. 2017, 7, 422; doi:10.3390/app7040422 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/journal/applsci

Appl. Sci. 2017, 7, 422 2 of 18

an emergency vehicle preemption system [23]. Different models and problems related to DES can be
also found in [4–6,24–26].

The second trend refers mostly to programmable logic controllers (PLCs). For more than two
decades, because of their many undeniable advantages, PLCs have become good platforms for the
implementation of DES based on PNs [27]. One of the first solutions was Grafcet [28], which is currently
available as the international standard IEC 60848:2013 [29]. Next, the Sequential Function Chart (SFC)
was created based on Grafcet in IEC 1131-3:1992 (currently IEC 61131:2013 [30]). Many software
tools of different manufacturers enable the use of Grafcet and SFC. Both nets allow the application of
transitions, to which some two-state conditions can be assigned, which are usually linked to the binary
sensors or the outputs of timers. Some areas of application and ways to use Grafcet and SFC are also
presented in [6,31–33].

For industrial approaches, Ladder Diagram (LD) language is more often applied than the other
languages supported by the IEC 61131-3. This tendency can also be seen in methods that combine
PLC programming with PNs [34–43]. However, languages other than LD are also used. In [34], the
conversion of automation PN into LD using the token passing logic methodology is described. Signal
interpreted PN (SIPN), which can be implemented in LD or Instruction List (IL), is shown in [35–37].
For IL, the PLC program can be generated automatically using a computer tool for the graphical
modelling of SIPN. In [38], the method to generate LD code based on control Petri net (CPN), and the
specification for the creation of DES through the application of this net is presented. A summary of
some solutions combining LD with PNs is presented in [39]. PNs can also be used to validate programs
in LD [40] after some conversions from the LD metamodel to time Petri net. In turn, other methods
that link PNs to function block diagram (FBD), IL, and LD are proposed in [41–43].

An important aspect related to the design of control systems, especially those that are complex, is
performance evaluation. Within this area of science, PNs based on stochastic modelling (stochastic
PNs) can be used. The application of Generalized Stochastic Petri Nets (GSPNs) to distributed systems,
e.g., flexible manufacturing systems, is proposed in [44]. GSPNs enable performance evaluation by
using simulation or numerical methods. A software tool based on GSPN called GreatSPN is presented
in [45,46]. Another tool to model stochastic Petri nets is Mobius Framework [47,48]. This framework
supports multiple modelling formalisms and modularity. It is based on the so-called atomic
model which is composed of state variables, properties, and actions. Another solution supporting
multi-formalism modelling and modularity is SIMTHESys [49], which enables the application of the
product-form solution theory to multi-formalism compositional modelling techniques. Stochastic
Preemptive Time Petri Net (SPTPN) is proposed in [50]. This net is used to validate and conduct a
performance analysis of real-time systems, e.g., a digital control system. The formal model of SPTPN
is constructed using step semantics.

All solutions presented that combine PLC programs with PNs can be very valuable. However,
the discrete PNs are mainly applied. One of the few fuzzy PNs that can be used directly to control
DES is fuzzy interpreted Petri net (FIPN) [51]. This net enables the use of analogue and binary
signals of processes for diagnosis and control of these processes. It also allows quantitative changes
of the resources to be modelled, and the natural interpretation of the fuzzy tokens’ position to be
maintained. In comparison to discrete PNs, which are usually used to create control systems, the
graphic representation of FIPN more precisely shows the dynamics of the net through the possibility of
using analogue sensors. To validate and analyse the properties of the net, e.g., liveness and deadlock,
the coverability graph can be applied [52]. The algebraic representation [51] and the reachability graph
can also be used to investigate the properties. When applying a reachability graph for a net with
analogue sensors, it needs to be considered as a net with binary sensors to avoid a state-explosion
problem. The computer tool called FIPN-SML facilitates the application of FIPN [53]. This simulator
can be used to create a graph of FIPN and to generate program code for PLCs in ST language based on
this graph.

Appl. Sci. 2017, 7, 422 3 of 18

As a continuation of [53], which lacked a formal description of the proposed solution, this article
may be included in the second trend of dealing with DES. The previous work generally outlines the
concept of this solution and gives an example of using it. Thus, this paper proposes a formal description
of the PLC program and the method to create this program based on the graphical representation
of FIPN. The aim is to describe how this program and method works by giving general formalisms
and an illustrative example. The paper is organised as follows. Firstly, comparison to similar works
is presented (Section 2). Secondly, the formal description and the conception of FIPN (Section 3) are
shown. Next, the formal program model based on FIPN (Section 4) and the method which allows its
creation based on the FIPN’s diagram (Section 5.1) are described. Finally, the example of program
generation in ST language through using FIPN-SML (Section 5.2) is discussed and a brief summary of
the results and possible directions of future developments are given (Section 6).

2. Comparison to Related Works

In this section, the authors want to raise the issue related to executable specification [54–60].
A graphical representation based on FIPN created in FIPN-SML allows the presentation of the
control system behaviour, validation of this system before it is implemented, and clarification of
the requirements (that may be initially unclear). This solution enables the automatic construction
of executable code and offers a higher abstraction of the designed system. It also reduces the costs
and the time needed to develop control systems. All of these advantages are analogical to the cited
executable specifications. Moreover, there are some similar approaches to the one proposed in this
work [28–39,41]. Implementation of some of them can also be seen as a programming language.
They all have unquestionable benefits. Nevertheless, the authors believe that their solution can be
characterized by some unique advantages. Based on [51], in literature, fuzzy nets are mainly used to
create expert systems, but few deal with the direct application to control [61–63]. These approaches do
not have software tool support, do not permit modelling of resources using the net structure, nor do
they generate executable code automatically.

When compared to other mentioned solutions [28–39,41], the main advantage of the program
model based on FIPN is the possibility of using analogue sensors for the direct control of DES. Contrary
to Grafcet and SFC [28–33], FIPN allows resources modelling in the structure of a net, because the
weight of arcs and the places capacity can be greater than one, while Grafcet and SFC are based
on binary net. Both Grafcet and SFC have similar features to FIPN. They both enable simulation
of the created system before it is implemented in PLC and automatic executable code generation
based on the simulation model (the graphical representation). However, Grafcet and SFC have some
advantages compared to FIPN. Their main advantage is the use of a modularity/hierarchical structure.
The authors are aware of this limitation of FIPN and their work related to this subject is currently
under consideration by another journal.

Another solution is SIPN [35–37], a binary net, with a formal description. Transformation of the
graphical representation to executable code is informal in the examples (IL and LD). As with FIPN, SIPN
permits automatic generation of executable code. The main advantages in comparison with FIPN are
the automatic investigation of properties through application of the SIPN editor and the possibility of
using modularity. Apart from the three solutions mentioned, which seem complete because of software
tools, there are some others which propose the conversion of PNs to LD [34,38,39,41]. They have many
advantages and they do not take into consideration only binary nets, (e.g., [34]). However, they do not
allow automatic generation of executable code based on the graphical representation of a net using a
software tool.

To conclude this section, it can be observed that there is no other solution that combines PNs
and PLC programming to create control systems and offer the possibility of using analogue sensors,
software tool support, resources modelling by the structure of the net, and automatic generation of
executable code. However, some new functionalities need to be implemented to see FIPN-SML as a
complete solution.

Appl. Sci. 2017, 7, 422 4 of 18

3. The Formal Basis and the Conception of FIPN

Three definitions describe the formal basis of FIPN. The first shows the construction of the net.

Definition 1. The fuzzy interpreted Petri net is the system [51]:

FIPN = (P, T, Ω, Ψ, R, ∆, K, W, Γ, Θ, M0, e),

where: P = P′ ∪ P′′—is a nonempty finite set of places, where: P′ = {p′1, p′2, . . . , p′a′}—is a set of places for
processes modelling, and

P′′ = {p′′ 1, p′′ 2, . . . , p′′ a′′ }—a set of places for resources modelling;
T = {t1, t2, . . . , tb}—is a nonempty finite set of transitions;
Ω= {ω 1,ω2, . . . ,ωa′+a′′ }—is a nonempty finite set of statements;
Ψ = {ψ 1,ψ2, . . . ,ψb}—is a nonempty finite set of conditions;
P, T, Ω, Ψ—where none of these sets have common elements;
R ⊆ (P× T) ∪ (T × P)—is the incidence relation that assigns a place to each transition ti ∈

T(1 ≤ i ≤ b) ,
where there is the place p′ ∈ P′ such that (p′, ti) ∈ R or (ti, p′) ∈ R ;

∆: P→ Ω—is the function that assigns a statement to each place;
K : P′ → 1 and P′′ → ℵ{1}—is the function that assigns a capacity to each place,

where: ℵ = {1, 2, . . . };
Γ: T Ψ—is the function that assigns a condition to each transition;
Θ: T→ [0, 1]—is the function that defines the degree to which the conditions corresponding to the

transitions t are satisfied;
W: R→ ℵ—is the weight function that meets two conditions,

where: W(p, t) ≤ K(p), and
W(t, p) ≤ K(p) (p means p’ or p”);
M0 : P′ → {0, 1} and P′′ → W+—is the initial marking function,

where: M0(p′′ j) = zj/K(p′′ j),
zj ∈ ℵ ∪ {0},
zj ≤ K(p′′ j),
j = 1, 2, . . . , a′′ , and
W+—is a set of non-negative rational numbers;
e—is an event that synchronizes the work of all transitions.

FIPN can be represented as a bipartite graph. An exemplary net is shown in Figure 1. There are
two types of places in the net: p′-type (for processes modelling) and p′ ′-type (for resources modelling).
They are drawn as circles. For both types, the marking is a real number from the range [0, 1] located
inside the circle. However, the marking of p′ ′-type places is presented as a fraction and can store a
number of tokens greater than one. The capacity of these places K (p) > 1 arranged in the denominator
is a normalization coefficient by which the marking value is bounded into the interval [0, 1]. Moreover,
statements can be assigned to p′-type places to set a value of output variables. Transitions are
represented by rectangles, and can be related to binary and analogue sensors. Additionally, some logic
conditions can be assigned to synchronized transitions and the arcs which link places with transitions
are labelled with weighting factors. The conception of using statements, sensors, and logic conditions
is presented at the end of this section and in Section 4.2.

The transfer of markers from input to output places across the transition can begin when the
conditions (1) and (2) of Definition 2 are satisfied and ends when conditions (3) and (4) are fulfilled.

Appl. Sci. 2017, 7, 422 5 of 18

Appl. Sci. 2017, 7, 422 5 of 18

Figure 1. Two different input and output places of the transition t1.

Definition 2. The transition Tt with marking M:P [0,1] is enabled from the moment in which the

degree to fulfil the condition Θ() ,t which is assigned to the transition, is greater than zero and the

following conditions are satisfied [51]:

)(/),()(, pKtpWpMtp
 (1)

and

,)()/(1)(, pKt,pWpMtp (2)

to the moment at which:

0)'(,' pMtp (3)

or

1)'(, ' pMtp , (4)

where: }),({ RtpPpt
 is the set of input places of the transition t, and

}),({ RptPpt
 is the set of its output places.

In FIPN, an analogue signal can be assigned to a transition and its value is normalized into the

range [0,1]. The transfer of a marker across the fired transition is a process whose duration is longer

than one clock cycle that synchronizes the net operation. This duration depends on the increment of

the sensor value. Such work of transitions permits more precise observation of changes in the

controlled system.

The change of the marking for places connected to the enabled transition depends on the

increment of the degree to which the condition corresponding to the transition is satisfied. The

method that calculates the new marking is described by Definition 3. The transition remains active

until the markers are transferred from the input places to the output places of the transition.

Definition 3. Let M be the marking for which the transition Tt is enabled. The degree 0 1() []t , to

which the condition corresponding to the enabled transition is satisfied will be changed by 0 and there

will be an event e which synchronizes the work of all transitions. The new marking of the net M’ is computed by

the following rule [51]:

(,)
() for \ ,

()

(,)
() for \ ,

()' ()

[(,) (,)]
() for ,

()

() for

W p t
M p p t t

K p

W t p
M p p t t

K pM p

W p t W t p
M p p t t

K p

M p p t t

.

(5)

(6)

(7)

(8)

The increment 0 does not introduce any changes in marking of the net.

Figure 1. Two different input and output places of the transition t1.

Definition 2. The transition t ∈ T with marking M:P→ [0, 1] is enabled from the moment in which the degree
to fulfil the condition Θ(t) = ϑ, which is assigned to the transition, is greater than zero and the following
conditions are satisfied [51]:

∀p ∈ •t, M(p) ≥W(p, t)/K(p) (1)

and
∀p ∈ t•, M(p) ≤ 1−W(t, p)/K(p), (2)

to the moment at which:
∃p′ ∈ •t, M

(
p′
)
= 0 (3)

or
∃p′ ∈ t•, M

(
p′
)
= 1, (4)

where: •t = {p ∈ P|(p, t) ∈ R} is the set of input places of the transition t, and
t• = {p ∈ P|(t, p) ∈ R} is the set of its output places.

In FIPN, an analogue signal can be assigned to a transition and its value is normalized into the
range [0, 1]. The transfer of a marker across the fired transition is a process whose duration is longer
than one clock cycle that synchronizes the net operation. This duration depends on the increment
of the sensor value. Such work of transitions permits more precise observation of changes in the
controlled system.

The change of the marking for places connected to the enabled transition depends on the increment
of the degree to which the condition corresponding to the transition is satisfied. The method that
calculates the new marking is described by Definition 3. The transition remains active until the markers
are transferred from the input places to the output places of the transition.

Definition 3. Let M be the marking for which the transition t ∈ T is enabled. The degree Θ(t) = ϑ ∈ [0, 1] to
which the condition corresponding to the enabled transition is satisfied will be changed by ∆ϑ ≥ 0 and there will
be an event e which synchronizes the work of all transitions. The new marking of the net M’ is computed by the
following rule [51]:

Appl. Sci. 2017, 7, 422 5 of 18

Figure 1. Two different input and output places of the transition t1.

Definition 2. The transition Tt∈ with marking M:P → [0,1] is enabled from the moment in which the
degree to fulfil the condition Θ() ,t ϑ= which is assigned to the transition, is greater than zero and the
following conditions are satisfied [51]:

)(/),()(, pKtpWpMtp ≥•∈∀ (1)

and

,)()/(1)(, pKt,pWpMtp −≤∈∀ • (2)

to the moment at which:

0)'(,' =∈∃ • pMtp (3)

or

1)'(,' =∈∃ • pMtp , (4)

where: }),({ RtpPpt ∈∈=• is the set of input places of the transition t, and

}),({ RptPpt ∈∈=• is the set of its output places.

In FIPN, an analogue signal can be assigned to a transition and its value is normalized into the
range [0,1]. The transfer of a marker across the fired transition is a process whose duration is longer
than one clock cycle that synchronizes the net operation. This duration depends on the increment of
the sensor value. Such work of transitions permits more precise observation of changes in the
controlled system.

The change of the marking for places connected to the enabled transition depends on the
increment of the degree to which the condition corresponding to the transition is satisfied. The
method that calculates the new marking is described by Definition 3. The transition remains active
until the markers are transferred from the input places to the output places of the transition.

Definition 3. Let M be the marking for which the transition Tt∈ is enabled. The degree 0 1() []t ,Θ = ϑ∈ to
which the condition corresponding to the enabled transition is satisfied will be changed by 0Δϑ³ and there
will be an event e which synchronizes the work of all transitions. The new marking of the net M’ is computed by
the following rule [51]:

(,)() for \ ,
()

(,)() for \ ,
()' ()

[(,) (,)]() for ,
()

() for

W p t
M p p t t

K p

W t p
M p p t t

K pM p

W p t W t p
M p p t t

K p

M p p t t

Δϑ

Δϑ

Δϑ

· ·

· ·

· ·

· ·

⋅
- Î

⋅
+ Î

=
⋅ -

- Î Ç

Ï È .

ìïïïïïïïïïïíïïïïïïïïïïî

(5)

(6)

(7)

(8)

The increment 0Δ ϑ < does not introduce any changes in marking of the net. The increment ∆ϑ < 0 does not introduce any changes in marking of the net.

Appl. Sci. 2017, 7, 422 6 of 18

Figure 2 shows the exemplary change of the marking for places connected to the active transition
t1. The increment of the degree to which the condition corresponding to the transition t1 is satisfied
has the value of ∆ϑ = 0.2 at the time when the synchronization signal arrives. Such a change of the
marking gives a more precise visualization in comparison to discrete PNs and enables the monitoring
of progress in the movement of tokens between the input and output places across the transition.

Appl. Sci. 2017, 7, 422 6 of 18

Figure 2 shows the exemplary change of the marking for places connected to the active

transition t1. The increment of the degree to which the condition corresponding to the transition t1 is

satisfied has the value of 0.2 at the time when the synchronization signal arrives. Such a

change of the marking gives a more precise visualization in comparison to discrete PNs and enables

the monitoring of progress in the movement of tokens between the input and output places across

the transition.

Figure 2. The change of the marking for the input and output places for 0.2.

At the end of this section, a simple example is shown to clarify the main advantage of FIPN in

comparison to classic Petri nets. In Figure 3a–d, the tank TK1 that can be filled using the valve V1 is

presented, and two different graphs as control systems to fill TK1 are proposed. The first is created

using SFC, and the second is based on FIPN. Different levels of liquid in TK1 and corresponding to

the states of both systems are also shown. In general, the systems operate in a similar manner. First,

the filling of TK1 is started by active step S1/ the place p1 which opens the valve V1 (variable V1 is set to

true). Next, when the tank TK1 is completely filled, active step S2/place p2 closes the valve (variable V1

is set to false). However, both systems differ in one important aspect. While in the system based on

SFC a binary sensor to monitor the level of liquid is used (LLS1), the system based on FIPN allows the

application of an analogue sensor (the same name LLS1 is used to facilitate a comparison of both

systems). First, the filling process of TK1 begins, as shown in Figure 3a. Then, different levels of

liquid in TK1 during filling process are presented in Figure 3b. Finally, TK1 is completely filled (see

Figure 3d). The control system based on SFC enables only the display of two states: if the tank TK1 is

being filled (Figure 3a–c) or is completely filled (Figure 3d), whereas the system based on FIPN

shows the actual level of liquid all the time. In addition, FIPN allows actions to be performed based

on the actual level of liquid (the current marking of places), e.g., while a mixer is being filled with

two liquids stored in tanks, and one of the tanks is being emptied too fast/slow compared to the

other one, the mixing time can be increased. Hence, FIPN offers a more precise visualization and

control of DES than classic Petri nets.

Figure 3. Different levels of liquid in the tank TK1 and corresponding to the states of control systems

based on Sequential Function Chart (SFC) and fuzzy interpreted PN (FIPN).

4. The Program Model of the FIPN

In this section, the program model based on FIPN (called FIPNP) is described. Before it is

discussed, the conception of using this model through FIPN-SML to control DES is shown (Figure 4).

The graph of FIPN can be created in the simulator. Based on this graph, the program in ST language

Figure 2. The change of the marking for the input and output places for ∆ϑ = 0.2.

At the end of this section, a simple example is shown to clarify the main advantage of FIPN in
comparison to classic Petri nets. In Figure 3a–d, the tank TK1 that can be filled using the valve V1 is
presented, and two different graphs as control systems to fill TK1 are proposed. The first is created
using SFC, and the second is based on FIPN. Different levels of liquid in TK1 and corresponding to the
states of both systems are also shown. In general, the systems operate in a similar manner. First, the
filling of TK1 is started by active step S1/ the place p1 which opens the valve V1 (variable V1 is set to
true). Next, when the tank TK1 is completely filled, active step S2/place p2 closes the valve (variable
V1 is set to false). However, both systems differ in one important aspect. While in the system based on
SFC a binary sensor to monitor the level of liquid is used (LLS1), the system based on FIPN allows
the application of an analogue sensor (the same name LLS1 is used to facilitate a comparison of both
systems). First, the filling process of TK1 begins, as shown in Figure 3a. Then, different levels of liquid
in TK1 during filling process are presented in Figure 3b. Finally, TK1 is completely filled (see Figure 3d).
The control system based on SFC enables only the display of two states: if the tank TK1 is being filled
(Figure 3a–c) or is completely filled (Figure 3d), whereas the system based on FIPN shows the actual
level of liquid all the time. In addition, FIPN allows actions to be performed based on the actual level
of liquid (the current marking of places), e.g., while a mixer is being filled with two liquids stored
in tanks, and one of the tanks is being emptied too fast/slow compared to the other one, the mixing
time can be increased. Hence, FIPN offers a more precise visualization and control of DES than classic
Petri nets.

Appl. Sci. 2017, 7, 422 6 of 18

Figure 2 shows the exemplary change of the marking for places connected to the active

transition t1. The increment of the degree to which the condition corresponding to the transition t1 is

satisfied has the value of 0.2 at the time when the synchronization signal arrives. Such a

change of the marking gives a more precise visualization in comparison to discrete PNs and enables

the monitoring of progress in the movement of tokens between the input and output places across

the transition.

Figure 2. The change of the marking for the input and output places for 0.2.

At the end of this section, a simple example is shown to clarify the main advantage of FIPN in

comparison to classic Petri nets. In Figure 3a–d, the tank TK1 that can be filled using the valve V1 is

presented, and two different graphs as control systems to fill TK1 are proposed. The first is created

using SFC, and the second is based on FIPN. Different levels of liquid in TK1 and corresponding to

the states of both systems are also shown. In general, the systems operate in a similar manner. First,

the filling of TK1 is started by active step S1/ the place p1 which opens the valve V1 (variable V1 is set to

true). Next, when the tank TK1 is completely filled, active step S2/place p2 closes the valve (variable V1

is set to false). However, both systems differ in one important aspect. While in the system based on

SFC a binary sensor to monitor the level of liquid is used (LLS1), the system based on FIPN allows the

application of an analogue sensor (the same name LLS1 is used to facilitate a comparison of both

systems). First, the filling process of TK1 begins, as shown in Figure 3a. Then, different levels of

liquid in TK1 during filling process are presented in Figure 3b. Finally, TK1 is completely filled (see

Figure 3d). The control system based on SFC enables only the display of two states: if the tank TK1 is

being filled (Figure 3a–c) or is completely filled (Figure 3d), whereas the system based on FIPN

shows the actual level of liquid all the time. In addition, FIPN allows actions to be performed based

on the actual level of liquid (the current marking of places), e.g., while a mixer is being filled with

two liquids stored in tanks, and one of the tanks is being emptied too fast/slow compared to the

other one, the mixing time can be increased. Hence, FIPN offers a more precise visualization and

control of DES than classic Petri nets.

Figure 3. Different levels of liquid in the tank TK1 and corresponding to the states of control systems

based on Sequential Function Chart (SFC) and fuzzy interpreted PN (FIPN).

4. The Program Model of the FIPN

In this section, the program model based on FIPN (called FIPNP) is described. Before it is

discussed, the conception of using this model through FIPN-SML to control DES is shown (Figure 4).

The graph of FIPN can be created in the simulator. Based on this graph, the program in ST language

Figure 3. Different levels of liquid in the tank TK1 and corresponding to the states of control systems
based on Sequential Function Chart (SFC) and fuzzy interpreted PN (FIPN).

Appl. Sci. 2017, 7, 422 7 of 18

4. The Program Model of the FIPN

In this section, the program model based on FIPN (called FIPNP) is described. Before it is
discussed, the conception of using this model through FIPN-SML to control DES is shown (Figure 4).
The graph of FIPN can be created in the simulator. Based on this graph, the program in ST language
can be generated and applied to PLC. The important part of the conception is the method of the
automatic code generation presented in the next section.

Appl. Sci. 2017, 7, 422 7 of 18

can be generated and applied to PLC. The important part of the conception is the method of the

automatic code generation presented in the next section.

Figure 4. The conception of using FIPN to model discrete event systems (DES).

The model FIPNP is divided into two parts: a set of variables and the functions that operate on

these variables. These parts are described below in the separate subsections.

4.1. The Program Model of the FIPN—Variables

In this subsection, the variables set for the program model based on FIPN is presented. The

definition of this set is as follows.

Definition 4. The variables in the program model based on FIPN are the system

VP = {MP, MnP, KP, AP, TetP, DtetP, WP, OutP, InP},

where: },...,,{ "'21 aa

P mmmM —the set of variables that Pp stores the current marking)(pM of the place;

},...,,{ "'21 aa

P mnmnmnMn —the set of variables that Pp stores the new marking)(' pM of

the place;

},...,,{ "'21 aa

P kkkK —the set of variables that Pp stores the capacity)(pK of the place;

},...,,{ 21 b

P aaaA —the set of variables that Tt stores the state of the transition activation;

},...,,{ 21 b

P tettettetTet —the set of variables that Tt stores the degrees () [0 1]t , to which

the conditions corresponding to the transitions are satisfied;

},...,,{ 21 b

P dtetdtetdtetDtet —the set of variables that Tt stores the increments of the degrees

 to which the conditions corresponding to the transitions are satisfied;
PW —the set of variables that store the weights of arcs: Rtp ki),(the variable ki tp _

 is created with

the value),(ki tpW , while Rpt ik),(the variable ik pt _ is created with the value),(ik ptW , where

"',,2,1 aai and bk ,,2,1 ;
POut —the set of output variables that are set through appropriate changes of the marking;

PIn —the set of input variables that represent sensors related to transitions.

All variables are of real type apart from sets
PA and POut , which include Boolean variables.

According to Definition 4, each place Ppi ("',,2,1 aai) is represented by three variables

in the program model based on FIPN which are: mi, mni, and ki (the current marking, the new

marking, and the capacity of the place, respectively). While each transition Ttk (bk ,,2,1) is

represented by variables ak, tetk, dtetk that refer respectively to the state of the transition activation,

the degree to which the condition corresponding to the transition is satisfied, and the increment of

the degree tetk. The set of variables VP from Definition 4 can be considered as the program

implementation of Definition 1. Functions which operate on places and transitions from Definition 1

are replaced by appropriate variables from Definition 4.

Figure 4. The conception of using FIPN to model discrete event systems (DES).

The model FIPNP is divided into two parts: a set of variables and the functions that operate on
these variables. These parts are described below in the separate subsections.

4.1. The Program Model of the FIPN—Variables

In this subsection, the variables set for the program model based on FIPN is presented.
The definition of this set is as follows.

Definition 4. The variables in the program model based on FIPN are the system

VP = {MP, MnP, KP, AP, TetP, DtetP, WP, OutP, InP},

where: MP = {m1, m2, . . . , ma′+a′′ }—the set of variables that ∀p ∈ P stores the current marking M(p) of
the place;

MnP = {mn1, mn2, . . . , mna′+a′′ }—the set of variables that ∀p ∈ P stores the new marking M′(p) of
the place;

KP = {k1, k2, . . . , ka′+a′′ }—the set of variables that ∀p ∈ P stores the capacity K(p) of the place;
AP = {a1, a2, . . . , ab}—the set of variables that ∀t ∈ Tstores the state of the transition activation;
TetP = {tet1, tet2, . . . , tetb}—the set of variables that ∀t ∈ T stores the degreesΘ(t) = ϑ ∈ [0, 1] to

which the conditions corresponding to the transitions are satisfied;
DtetP = {dtet1, dtet2, . . . , dtetb}—the set of variables that ∀t ∈ T stores the increments of the degrees

∆ϑ to which the conditions corresponding to the transitions are satisfied;
WP—the set of variables that store the weights of arcs: ∀(pi, tk) ∈ R the variable pi_tk is created

with the value W(pi, tk), while ∀(tk, pi) ∈ R the variable tk_pi is created with the value W(tk, pi), where
i = 1, 2, . . . , a′ + a′′ and k = 1, 2, . . . , b;

OutP—the set of output variables that are set through appropriate changes of the marking;
InP—the set of input variables that represent sensors related to transitions.
All variables are of real type apart from sets AP and OutP, which include Boolean variables.

According to Definition 4, each place pi ∈ P (i = 1, 2, . . . , a′ + a′′) is represented by three variables
in the program model based on FIPN which are: mi, mni, and ki (the current marking, the new marking,
and the capacity of the place, respectively). While each transition tk ∈ T (k = 1, 2, . . . , b) is represented
by variables ak, tetk, dtetk that refer respectively to the state of the transition activation, the degree

Appl. Sci. 2017, 7, 422 8 of 18

to which the condition corresponding to the transition is satisfied, and the increment of the degree
tetk. The set of variables VP from Definition 4 can be considered as the program implementation of
Definition 1. Functions which operate on places and transitions from Definition 1 are replaced by
appropriate variables from Definition 4.

4.2. The Program Model of the FIPN—Functions

In this subsection, all functions that belong to the program model of the FIPN are presented. These
functions are created based on Definitions 2 and 3. They specify some principles of model operation
and can be divided into four groups:

• the functions that calculate the increment of the degree to which the condition corresponding to
the transition is satisfied;

• the functions that check if the transitions are granted to be fired or lose the concession;
• the functions that calculate the new marking of places;
• the functions that set output variables based on the new marking of places.

All functions are more clearly described below.

4.2.1. The Calculation of the Degree to which the Condition Corresponding to the Transition
Is Satisfied

To limit the values from sensors, the function Bound is used. This function changes each value to
the range [0, 1]. The limit of each input variable ini ∈ InP, that represents the value from the sensor
corresponding to the transition ti ∈ T is as follows:

Bound(ini) =

1.0 for ini ≥ 1.0
0 for ini ≤ 0.0
ini in other case

(9)

Based on (9), the function CalcDtet is implemented. This function calculates the increment dteti of
the degree to which the condition corresponding to the transition ti ∈ T is satisfied (in two subsequent
cycles). It is implemented in the following way:

CalcDtet(teti, ini) =

{
Bound(ini)− teti for Bound(ini) ≥ teti
0 in other case

(10)

where: teti(teti ∈ TetP) denotes the variable that stores the degree to which the condition corresponding
to the transition is satisfied.

4.2.2. The Checking of the Conditions for the Activation or the Loss of a Concession by a Transition

To check the loss of activation by each transition of ti ∈ T, the function LAIn or LAOut is applied.
These functions detect the loss of a concession by the transition using one of its input or output p′-type
places. If the transition has at least one input place of this type, the function LAIn is used pursuant
to (3):

LAIn(ai, m′in(i), teti){
if ai ∧m′in(i) = 0 {

teti := 0
return f alse
} else return true
}

(11)

where: ai(ai ∈ AP) is a variable that stores the state of the transition activation, m′in(i)(m
′
in(i) ∈ MP)

denotes the variable that stores the current marking for the transition’s input place that is p′-type.

Appl. Sci. 2017, 7, 422 9 of 18

On the other hand, if the transition ti does not have any input places of p′-type, it has at least one
output place of this type according to the definition of incidence relation (Definition 1). In this case,
the function LAOut is used and implemented pursuant to (4) in the following manner:

LAOut(ai, m′out(i), teti) {
if ai ∧m′out(i) = 1 {

teti := 0
return f alse
} else return true
}

(12)

where: m′out(i)(m
′
out(i) ∈ MP) denotes the variable that stores the current marking for the transition’s

output place that is p′-type.
Moreover, the functions (11) and (12) set the degree to which the condition corresponding to the

transition is satisfied when the transition loses the concession. The variable teti is set to zero.
To examine if the inactive transition ti can be activated through its ci (ci = card(•ti)) input places,

the function AInci is used. This function is implemented based on (1) as follows:

AInci (ai, min(1), pin(1)_ti, kin(1), min(2), pin(2)_ti, kin(2), . . . , min(ci)
, pin(ci)

_ti, kin(ci)
) ={

true for ¬ai ∧ (∀j ∈ {1, 2, . . . , ci} : min(j) ≥ pin(j)_ti/kin(j))

ai in other case
(13)

where: min(1), min(2), . . . , min(ci)
(min(j) ∈ MP) denote the variables that store the current marking for

all input places of the transition ti (•ti),
kin(1), kin(2), . . . , kin(ci)

(kin(j) ∈ KP) denote the variables that store the capacity of •ti,
pin(1)_ti, pin(2)_ti, . . . , pin(ci)

_ti (pin(j)_ti ∈ WP) denote the variables that store the weights of all
arcs from •ti to the transition ti.

To check if the transition ti can be activated through its di (di = card(ti
•)) output places, the

function ActOutdi
is used. This function is implemented based on (2) as follows:

AOutdi
(ai, mout(1), ti_pout(1), kout(1), mout(2), ti_pout(2), kout(2), . . . , mout(di)

, ti_pout(di)
, kout(di)

) ={
true for ¬ai ∧ (∀j ∈ {1, 2, . . . , di} : mout(j) ≤ 1− ti_pout(j)/kout(j))

ai in other case
(14)

where: mout(1), mout(2), . . . , mout(di)
(mout(j) ∈ MP) denote the variables that store the current marking

for all output places of the transition ti (ti
•);

kout(1), kout(2), . . . , kout(di)
(kout(j) ∈ KP) denote the variables that store the capacity of ti

•;
ti_pout(1), ti_pout(2), . . . , ti_pout(di)

(ti_pout(j) ∈WP) denote the variables that store the weights of
all arcs from the transition ti to the ti

•.
If the activation of the transition ti requires an additional logic condition, the function LC is used

to avoid conflicts between transitions in the net. This function is implemented in the following manner:

LC(ai, lci) =

{
lci for ¬ai
true in other case

(15)

where: lci denotes the logic condition assigned to the transition ti.

Appl. Sci. 2017, 7, 422 10 of 18

4.2.3. The Calculation of the New Marking

The new marking of the ci input places of each transition ti ∈ T is calculated using the function
InMci implemented based on (5):

InMnci (ai, dteti, mnin(1), pin(1)_ti, kin(1), mnin(2), pin(2)_ti, kin(2), . . . , mnin(ci)
, pin(ci)

_ti, kin(ci)
) {

if ai ∧ dteti > 0 {
mnin(j) := mnin(j) −

dteti ·pin(j)_ti
kin(j)

, ∀j ∈ {1, 2, . . . , ci}
}
}

(16)

where: mnin(1), mnin(2), . . . , mnin(ci)
(mnin(j) ∈ MnP) denote the variables that store the new marking

for all input places of the transition ti (•ti).
Whereas, the new marking of di output places of the transition ti is computed using the function

OutMndi
created based on (6):

OutMndi
(ai, teti, dteti, mnout(1), ti_pout(1), kout(1), mnout(2), ti_pout(2), kout(2), . . . , mnout(di)

, ti_pout(di)
, kout(di)

) {
if ai ∧ dteti > 0 {

teti := teti + dteti

mnout(j) := mnout(j) +
dteti ·ti_pout(j)

kout(j)
, ∀j ∈ {1, 2, . . . , di}

}
}

(17)

where: mnout(1), mnout(2), . . . , mnout(di)
(mnout(j) ∈ MnP) denote the variables that store the new

marking for all output places of the transition ti (ti
•).

Moreover, in (17) the degree to which the condition corresponding to the transition is satisfied is
updated (teti).

4.2.4. The Setting of Output Variables

At the end of each PLC cycle, the output variables from the statement of each p′-type place pi ∈ P′

are set to true or false, if the new marking of pi is updated to one. The function MChgni is used to set
the output variables as follows:

MChgni (mi, mni, outi(1), lvi(1), outi(2), lvi(2), . . . , outi(ni)
, lvi(ni)

) {
if mi 6= mni {

if mni = 1 {
outi(k) := lvi(k), ∀k ∈ {1, 2, . . . , ni}
}
mi := mni
}

}

(18)

where: outi(1), outi(2), . . . , outi(ni)
denote the output variables related to the place pi,

lvi(1), lvi(2), . . . , lvi(ni)
denote the logic values (true or false).

Moreover, the function MChgni () updates the variable of the current marking mi based on the
variable of the new marking mni. The variables of the current marking for all p′-type places that are
not linked to any output variables and for all p”-type places are updated by MChg0().

5. The Method of Automatic Program Generation Using ST Language

In this section, the method of program generation based on FIPN and the implementation of
this method for an exemplary net are presented. In the first subsection, the algorithms that create the
declaration of variables and the part of the program executed in the cycles are described. The second

Appl. Sci. 2017, 7, 422 11 of 18

presents the use of these algorithms in FIPN-SML, which allows automatic generation of the most
significant part of the program in ST language.

5.1. Algorithms of the Program Generation Based on FIPN

The method of program generation based on FIPN is divided into two algorithms. The first
creates the declaration of variables. At the beginning, an empty buffer is created. Next, for each of the
place declarations of the current marking, the new marking and the capacity along with their initial
values are added to the text buffer. Then, for each transition, declarations of the following variables
are added to the text buffer: degree to which the condition corresponding to the transition is satisfied
with an initial value of zero; the increment of this degree has an initial value of zero if the transition
is synchronised by a sensor, otherwise it has an initial value of one; the activation of the transition
has an initial value of false. Finally, the declarations of output variables related to places and input
variables related to transitions are inserted into the text buffer. However, before the addition, it is
checked to determine whether a declaration of an input or output variable has already been added
(by another transition or place) to the text buffer to avoid duplication. Output variables should be
initialized with true if the initial marking of the place is equal to one and this output variable is set
to true in the statement assigned to the place. Otherwise it should be initialized with false. The first
algorithm (Algorithm 1) is as follows:

Algorithm 1. Create the declaration of variables

1: Create empty text buffers bt1, bt2, bt3, bt4 and empty lists l1, l2.
2: for each place pi ∈ P do
3: Add the declaration of the variable mi with the initial value M0(pi) to bt2

4: Add the declaration of the variable mni with the initial value M0(pi) to bt3.
5: Add the declaration of the variable ki with the value K(pi) to bt4.
6: end for
7: Add bt2, bt3, bt4 to bt1, and then clear bt2, bt3, bt4.
8: for each transition ti ∈ T do
9: Add the declaration of the variable teti with the initial value zero to bt2.
10: if the condition ψi = Γ(ti) assigned to ti is related to a sensor variable ini then
11: Add the declaration of the variable dteti to bt3 with the initial value zero.
12: else
13: Add the declaration of the variable dteti to bt3 with the initial value one.
14: end if
15: Add the declaration of the variable ai to bt4 with the initial value false.
16: end for
17: Add bt2, bt3 and bt4 to bt1.
18: for each place pi ∈ P do
19: for each output variable outk that is set using the statement ωi = ∆(pi) do
20: if the list l1 does not contain the name of outk then
21: Add the name of outk to l1.
22: if M0(pi) > 0 and outk is set to true in the statement ωi then
23: Add the declaration of outk to bt1 with the initial value true.
24: else
25: Add the declaration of outk to bt1 with the initial value false.
26: end if
27: end if
28: end for
29: end for
30: for each transition ti ∈ T do
31: if the condition ψi = Γ(ti) assigned to ti is related to a sensor variable ini and the list l2 does not contain the name

of ini then
32: Add the name of ini to l2.
33: Add the declaration of ini to bt1 with the initial value zero.
34: end if
35: end for
36: Return the result of the algorithm: bt1.

Appl. Sci. 2017, 7, 422 12 of 18

The second algorithm generates the part of the program that is executed repeatedly during the
cycles. At first, an empty buffer is created. Next, for each transition synchronized by a sensor a line of
code is added to this buffer. This line calculates the degree to which the condition corresponding to
the transition is satisfied. Then, for each transition the next line of code is added that checks whether
the transition loses activity or is fired. If the firing of the transition is related to a logic condition, an
additional code is inserted to this line. After that, for each transition two lines are added to the text
buffer. They compute the new marking of input and output places of the transition. Finally, for each
place the line that updates the current marking (based on the new marking) of the place is inserted.
Additionally, output variables are set if the current marking of the p′-type place is changed to one. The
second algorithm (Algorithm 2) is as follows:

Algorithm 2. Generate the part of the program that is executed repeatedly in the cycles of PLC

1: Create an empty text buffer bt1 to store the result of the algorithm.
2: for each transition ti ∈ T do //compute the change of a sensor value
3: if the condition ψi = Γ(ti) assigned to ti is related to a sensor ini then

4:
Add to bt1 the line of code that calculates the change of the value from the sensor ∆ϑi based on (10):

dteti := CalcDtet(teti, ini)

5: end if
6: end for
7: Create an empty text buffer bt2 to store the single line of code.
8: for each transition ti ∈ T do //check if a transition can be fired or loses the concession
9: if ti has at least one input p'-type place p′ in(i) , such that (p′ in(i), ti) ∈ R then
10: Add to bt2 the following fragment of code based on (11): ai := LAIn(ai, m′ in(i), teti)

11: else

12:
Find the output p’-type place p′out(i) of ti, such that (ti, p′out(i)) ∈ R, and then add to bt2 the following fragment

of code based on (12): ai := LAOut(ai, m′out(i), teti)

13: end if
14: if card (•ti) > 0 then

15:
Add to bt2 the following fragment of code based on (13):

∧AInci (ai, min(1), pin(1)_ti, kin(1), min(2), pin(2)_ti, kin(2), . . . , min(ci), pin(ci)_ti, kin(ci))

16: end if
17: if card (ti

•) > 0 then

18:
Add to bt2 the following fragment of code based on (14):

∧AOutdi
(ai, mout(1), ti_pout(1), kout(1), mout(2), ti_pout(2), kout(2) . . . , mout(di), ti_pout(di), kout(di))

19: end if
20: if the condition ψi = Γ(ti) assigned to ti includes a logic condition lci then
21: Add to bt2 the following fragment of code based on (15): ∧LC(ai, lci)

22: end if
23: Add bt2 to bt1 and clear bt2.
24: end for
25: for each transition ti ∈ T do //compute the new marking of places connected to a transition
26: if card(•ti) > 0 then //input places

27:
Add to bt1 the code based on (16):

InMnci (ai, dteti, mnin(1), pin(1)_ti, kin(1), mnin(2), pin(2)_ti, kin(2), . . . , mnin(ci), pin(ci)_ti, kin(ci)

)
28: end if
29: if card(ti

•) > 0 then //output places

30:
Add to bt1 the code based on (17):

OutMndi
(ai, teti, dteti, mnout(1), ti_pout(1), kout(1), mnout(2), ti_pout(2), kout(2), mnout(di), ti_pout(di), kout(di))

31: end if
32: end for
33: for each placepi ∈ P do //update the current marking of places and set outputs variables

34:
Take each variable outi(k) and its value lvi(k) from the statement ωi = ∆(pi) and add to bt1 the line based on

(18): MChgni (mi, mni, outi(1), lvi(1), outi(2), lvi(2), . . . , outi(ni), lvi(ni))

35: end for
36: return the result of the algorithm: bt1.

Appl. Sci. 2017, 7, 422 13 of 18

5.2. An Example of Program Generation in ST Language

In this subsection, the use of algorithms from the previous subsection is presented. The graphic
diagram of FIPN is created in FIPN-SML (Figure 5). There are five places and two transitions in the
diagram. To each place of p′-type the statement can be assigned that sets the output variables linked
to the place, e.g., for the place p1 the variable O1 is set to true and the variable O2 to false. Output
variables are set when the value of the current marking is changed to one (M(p′) = 1). Each transition
can be synchronized by a sensor and activated by a logic condition. The transition t1 is synchronized
by the sensor IN1 and the activation of the transition t2 is subject to the logic condition M(p1) < 1
(to avoid conflict with the transition t1). From the moment the program is generated in FIPN-SML,
it can be copied to PLC software. The basic assumption of the method is that the special library with
the implemented functions (9)–(18) was prepared earlier and added to the PLC software. The designer
of the net must copy the generated program code and combine the physical inputs and outputs of a
controller with the program variables.

Appl. Sci. 2017, 7, 422 13 of 18

32: end for

33: for each place Ppi do //update the current marking of places and set outputs variables

34:
Take each variable)(kiout and its value)(kilv from the statement)(ii p and add to 1bt the

line based on (18):),,,,,,,,()()()2()2()1()1(iniiniiiiiiiin lvoutlvoutlvoutmnmMChg

35: end for

36: return the result of the algorithm: 1bt .

5.2. An Example of Program Generation in ST Language

In this subsection, the use of algorithms from the previous subsection is presented. The graphic

diagram of FIPN is created in FIPN-SML (Figure 5). There are five places and two transitions in the

diagram. To each place of p′-type the statement can be assigned that sets the output variables linked

to the place, e.g., for the place 1p the variable O1 is set to true and the variable O2 to false. Output

variables are set when the value of the current marking is changed to one (M(p′) = 1). Each transition

can be synchronized by a sensor and activated by a logic condition. The transition 1t is

synchronized by the sensor 1IN and the activation of the transition 2t is subject to the logic

condition 1)(1 pM (to avoid conflict with the transition 1t). From the moment the program is

generated in FIPN-SML, it can be copied to PLC software. The basic assumption of the method is

that the special library with the implemented functions (9)–(18) was prepared earlier and added to

the PLC software. The designer of the net must copy the generated program code and combine the

physical inputs and outputs of a controller with the program variables.

Figure 5. View of exemplary FIPN.

Appendix A presents the part of the program created as a declaration of variables, and Appendix B

shows the part of the program that is executed repeatedly in the cycles of PLC. Both parts are

created based on the net from Figure 5.

6. Conclusions

In this paper, the formal description of the PLC program based on FIPN and the method to

create this program are proposed. Additionally, the formal basis and conception of using FIPN, the

creation of an exemplary diagram based on FIPN in FIPN-SML and the automatic code generation

for this diagram are shown. The code generated is in the ST language and can be applied to PLC at

low cost and with little effort. The presented approach also allows for a significant reduction of the

program implementation time to control DES. The work of the control system can be better

visualized using analogue sensors in comparison to the discrete PNs. The application of FIPN

allows resources to be modelled by the structure of the net, offers software tool support, and

Figure 5. View of exemplary FIPN.

Appendix A presents the part of the program created as a declaration of variables, and Appendix B
shows the part of the program that is executed repeatedly in the cycles of PLC. Both parts are created
based on the net from Figure 5.

6. Conclusions

In this paper, the formal description of the PLC program based on FIPN and the method to create
this program are proposed. Additionally, the formal basis and conception of using FIPN, the creation
of an exemplary diagram based on FIPN in FIPN-SML and the automatic code generation for this
diagram are shown. The code generated is in the ST language and can be applied to PLC at low cost
and with little effort. The presented approach also allows for a significant reduction of the program
implementation time to control DES. The work of the control system can be better visualized using
analogue sensors in comparison to the discrete PNs. The application of FIPN allows resources to be
modelled by the structure of the net, offers software tool support, and provides automatic generation
of executable code. An additional advantage of the formal description presented in this paper is
its generality. The proposed formalism does not limit the solution only to the ST language or other
languages from IEC 61131:2013, but it provides the opportunity to use it beyond the PLC area.

However, some functionalities still need improvement. Apart from modularity, which is the
subject of an author’s article considered in another journal, the authors will: extend automatic code
generation to other languages supported by the IEC 61131-3; add to the FIPN-SML a component that

Appl. Sci. 2017, 7, 422 14 of 18

automatically investigates properties of FIPN; and extend the generated PLC program in regard to the
diagnostic module based on [52].

Author Contributions: Lesław Gniewek and Michał Markiewicz prepared the conception and the formal
description of the proposed solution; they both made the literature review; Michał Markiewicz implemented the
proposed solution in FIPN-SML.

Conflicts of Interest: The author declares there to be no conflict of interest.

Appendix A

The part of the program created as a declaration of variables which is generated based on the net
from Figure 5:
PROGRAM MAIN

VAR

(*Marking*)

m1:REAL:=1;

m2:REAL:=1;

m3:REAL:=1;

m4:REAL:=0;

m5:REAL:=0;

(*New marking*)

mn1:REAL:=1;

mn2:REAL:=1;

mn3:REAL:=1;

mn4:REAL:=0;

mn5:REAL:=0;

(*Capacity*)

k1:REAL:=1;

k2:REAL:=2;

k3:REAL:=1;

k4:REAL:=1;

k5:REAL:=1;

(*Line weight*)

p1_t1:REAL:=1;

p2_t1:REAL:=1;

p3_t2:REAL:=1;

t2_p5:REAL:=1;

t1_p4:REAL:=1;

p2_t2:REAL:=1;

(*Active transition*)

a1:BOOL:=FALSE;

a2:BOOL:=FALSE;

(*Tet*)

tet1:REAL:=0.0;

tet2:REAL:=0.0;

(*Dtet*)

dtet1:REAL:=0.0;

dtet2:REAL:=1.0;

(*Output signal*)

O1:BOOL:=TRUE;

O2:BOOL:=FALSE;

O3:BOOL:=FALSE;

Appl. Sci. 2017, 7, 422 15 of 18

O4:BOOL:=TRUE;

(*Input signal*)

IN1:REAL;

END_VAR

Appendix B

The part of the program that is executed repeatedly in the cycles of PLC and generated based on
the net from Figure 5:
(*Checking sensors*)

dtet1:=CalcDtet (tet1, IN1);

(*Checking active transition*)

a1:=LAIn (a1, m1, tet1) AND AIn2 (a1, m1, p1_t1, k1, m2, p2_t1, k2) AND AOut1 (a1, m4,

t1_p4, k4);

a2:=LAIn (a2, m3, tet2) AND AIn2 (a2, m3, p3_t2, k3, m2, p2_t2, k2) AND AOut1 (a2, m5,

t2_p5, k5) AND LC(a2, (m1<1));

(*New marking*)

InMn2 (a1, dtet1, mn1, p1_t1, k1, mn2, p2_t1, k2);

OutMn1 (a1, tet1, dtet1, mn4, t1_p4, k4);

InMn2 (a2, dtet2, mn3, p3_t2, k3, mn2, p2_t2, k2);

OutMn1 (a2, tet2, dtet2, mn5, t2_p5, k5);

(*On Marking Changed*)

MChg2 (m1, mn1, O1, TRUE, O2, FALSE);

MChg0 (m2, mn2);

MChg1 (m3, mn3, O4, TRUE);

MChg2 (m4, mn4, O1, FALSE, O2, TRUE);

MChg2 (m5, mn5, O4, FALSE, O3, TRUE);

References

1. Inan, K.; Varaiya, P. Finitely recursive process models for discrete event systems. IEEE Trans. Autom. Control
1988, 33, 626–639. [CrossRef]

2. Ramadge, P.J.G.; Wonham, W.M. The control of discrete event systems. Proc. IEEE 1989, 77, 81–98. [CrossRef]
3. Ichikawa, A.; Hiraishi, K. Analysis and control of discrete event systems represented by Petri nets. In Discrete

Event Systems: Models and Applications; Springer: Heidelberg, Germany, 1988; pp. 115–134.
4. Zhou, M.; Dicesare, F. Petri Net Synthesis for Discrete Event Control of Manufacturing Systems; Springer:

New York, NY, USA, 2012.
5. Cassandras, C.G.; Lafortune, S. Introduction to Discrete Event Systems; Springer: New York, NY, USA, 2009.
6. David, R.; Alla, H. Discrete, Continuous, and Hybrid Petri Nets; Springer: New York, NY, USA, 2010.
7. Thong, W.J.; Ameedeen, M.A. A survey of Petri net tools. In Advanced Computer and Communication

Engineering Technology; Springer: Cham, Switzerland, 2015; pp. 537–551.
8. Barkaoui, K.; Chaoui, A.; Zouari, B. Supervisory control of discrete event systems based on structure theory

of Petri nets. In Proceedings of the Computational Cybernetics and Simulation 1997 IEEE International
Conference on Systems, Man, and Cybernetics, Orlando, FL, USA, 12–15 October 1997; pp. 3750–3755.

9. Demongodin, I.; Koussoulas, N.T. Representing continuous systems in a discrete-event world. IEEE Trans.
Autom. Control 1998, 43, 573–579. [CrossRef]

10. Moody, J.O.; Antsaklis, P.J. Petri net supervisors for DES with uncontrollable and unobservable transitions.
IEEE Trans. Autom. Control 2000, 45, 462–476. [CrossRef]

11. Benveniste, A.; Fabre, E.; Haar, S.; Jard, C. Diagnosis of asynchronous discrete-event systems: A net unfolding
approach. IEEE Trans. Autom. Control 2003, 48, 714–727. [CrossRef]

12. Genc, S.; Lafortune, S. Distributed diagnosis of discrete-event systems using Petri nets. In SpringerLink;
Springer: Berlin/Heidelberg, Germany, 2003; pp. 316–336.

http://dx.doi.org/10.1109/9.1271
http://dx.doi.org/10.1109/5.21072
http://dx.doi.org/10.1109/9.665073
http://dx.doi.org/10.1109/9.847725
http://dx.doi.org/10.1109/TAC.2003.811249

Appl. Sci. 2017, 7, 422 16 of 18

13. Ramirez-Trevino, A.; Ruiz-Beltran, E.; Rivera-Rangel, I.; Lopez-Mellado, E. Online fault diagnosis of discrete
event systems. A Petri net-based approach. IEEE Trans. Autom. Sci. Eng. 2007, 4, 31–39. [CrossRef]

14. Cabasino, M.P.; Giua, A.; Seatzu, C. Fault detection for discrete event systems using Petri nets with
unobservable transitions. Automatica 2010, 46, 1531–1539. [CrossRef]

15. Grobelna, I.; Adamski, M. Model checking of control interpreted Petri nets. In Proceedings of the 18th
International Conference Mixed Design of Integrated Circuits and Systems–MIXDES 2011, Gliwice, Poland,
16–18 June 2011; pp. 621–626.

16. Lobov, A. Formal Validation of Discrete Automation Systems Applying Structural Reasoning and General Unary
Hypothesis Automaton Methods; Tampere University of Technology: Tampere, Finland, 2008.

17. Wu, N. Necessary and sufficient conditions for deadlock-free operation in flexible manufacturing systems
using a colored Petri net model. IEEE Trans. Syst. Man Cybern. C 1999, 29, 192–204.

18. Huang, Y.S.; Jeng, M.; Xie, X.; Chung, D.H. Siphon-based deadlock prevention policy for flexible
manufacturing systems. IEEE Trans. Syst. Man Cybern. A 2006, 36, 1248–1256. [CrossRef]

19. Huang, Y.-S. Design of deadlock prevention supervisors using Petri nets. Int. J. Adv. Manuf. Technol. 2007, 35,
349–362. [CrossRef]

20. Li, Z.W.; Hu, H.S.; Wang, A.R. Design of Liveness-Enforcing Supervisors for Flexible Manufacturing Systems
Using Petri Nets. IEEE Trans. Syst. Man Cybern. C 2007, 37, 517–526. [CrossRef]

21. Li, Z.; Zhou, M.; Wu, N. A Survey and comparison of Petri net-based deadlock prevention policies for
flexible manufacturing systems. IEEE Trans. Syst. Man Cybern. C 2008, 38, 173–188.

22. Wu, N.; Zhou, M.; Li, Z. Resource-Oriented Petri Net for Deadlock Avoidance in Flexible Assembly Systems.
IEEE Trans. Syst. Man Cybern. A 2008, 38, 56–69.

23. Huang, Y.S.; Weng, Y.S.; Zhou, M. Design of traffic safety control systems for emergency vehicle preemption
using timed Petri nets. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2113–2120. [CrossRef]

24. Holloway, L.E.; Krogh, B.H.; Giua, A. A survey of Petri net methods for controlled discrete event systems.
Discret. Event Dyn. Syst. 1997, 7, 151–190. [CrossRef]

25. Giua, A.; DiCesare, F.; Silva, M. Generalized mutual exclusion contraints on nets with uncontrollable
transitions. In Proceedings of the 1992 IEEE International Conference on Systems, Man and Cybernetics,
Chicago, IL, USA, 18–21 October 1992; pp. 974–979.

26. Ma, Z.; Li, Z.; Giua, A. Design of optimal Petri net controllers for disjunctive generalized mutual exclusion
constraints. IEEE Trans. Autom. Control 2015, 60, 1774–1785. [CrossRef]

27. Frey, G.; Litz, L. Formal methods in PLC programming. In Proceedings of the 2000 IEEE International
Conference on Systems, Man, and Cybernetics, Nashville, TN, USA, 8–11 October 2000; pp. 2431–2436.

28. David, R.; Alla, H. Petri Nets and Grafcet: Tools for Modelling Discrete Event Systems; Prentice Hall: Upper
Saddle River, NJ, USA, 1992.

29. International Standard IEC 60848:2013 “GRAFCET Specification Language for Sequential Function Charts”;
The International Electrotechnical Commission: Geneva, Switzerland, 2013.

30. International Standard IEC 61131-3:2013 “Programmable Controllers—Part 3: Programming Languages”;
The International Electrotechnical Commission: Geneva, Switzerland, 2013.

31. David, R. Grafcet: A powerful tool for specification of logic controllers. IEEE Trans. Control Syst. Technol.
1995, 3, 253–268. [CrossRef]

32. Fujino, K.; Imafuku, K.; Yuh, Y.; Hirokazu, N. Design and verification of the SFC program for sequential
control. Comput. Chem. Eng. 2000, 24, 303–308. [CrossRef]

33. Li, L.; Tang, N.; Mu, X.; Shi, F. Implementation of traffic lights control based on Petri nets. In Proceedings
of the 2003 IEEE International Conference on Intelligent Transportation Systems, Washington, DC, USA,
12–15 October 2003; Volume 2, pp. 1087–1090.

34. Uzam, M.; Jones, A.H. Discrete event control system design using automation Petri nets and their ladder
diagram implementation. Int. J. Adv. Manuf. Technol. 1998, 14, 716–728. [CrossRef]

35. Frey, G. Automatic implementation of Petri net based control algorithms on PLC. In Proceedings of the
2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), Chicago, IL, USA, 28–30 June 2000;
Volume 4, pp. 2819–2823.

36. Minas, M.; Frey, G. Visual PLC-programming using signal interpreted Petri nets. In Proceedings of the 2002
American Control Conference (IEEE Cat. No.CH37301), Anchorage, AK, USA, 8–10 May 2002; Volume 6,
pp. 5019–5024.

http://dx.doi.org/10.1109/TASE.2006.872120
http://dx.doi.org/10.1016/j.automatica.2010.06.013
http://dx.doi.org/10.1109/TSMCA.2006.878953
http://dx.doi.org/10.1007/s00170-006-0708-y
http://dx.doi.org/10.1109/TSMCC.2007.897333
http://dx.doi.org/10.1109/TITS.2015.2395419
http://dx.doi.org/10.1023/A:1008271916548
http://dx.doi.org/10.1109/TAC.2015.2389313
http://dx.doi.org/10.1109/87.406973
http://dx.doi.org/10.1016/S0098-1354(00)00484-1
http://dx.doi.org/10.1007/BF01438224

Appl. Sci. 2017, 7, 422 17 of 18

37. Klein, S.; Frey, G.; Minas, M. PLC Programming with Signal Interpreted Petri Nets. In Applications and Theory
of Petri Nets 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 440–449.

38. Lee, G.B.; Zandong, H.; Lee, J.S. Automatic generation of ladder diagram with control Petri net.
J. Intell. Manuf. 2004, 15, 245–252. [CrossRef]

39. Peng, S.S.; Zhou, M.C. Ladder diagram and Petri-net-based discrete-event control design methods.
IEEE Trans. Syst. Man Cybern. C 2004, 34, 523–531. [CrossRef]

40. Bender, D.F.; Combemale, B.; Crégut, X.; Farines, J.M.; Berthomieu, B.; Vernadat, F. Ladder Metamodeling and
PLC Program Validation through Time Petri Nets. In Model Driven Architecture—Foundations and Applications;
Schieferdecker, I., Hartman, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5095, pp. 121–136.

41. Korotkin, S.; Zaidner, G.; Cohen, B.; Ellenbogen, A.; Arad, M.; Cohen, Y. A Petri Net formal design
methodology for discrete-event control of industrial automated systems. In Proceedings of the 2010 IEEE
26th Convention of Electrical and Electronics Engineers, Eilat, Israel, 19–21 October 2010; pp. 431–435.

42. Heiner, M.; Menzel, T. A Petri net semantics for the PLC language Instruction List. In Proceedings of IEE
Workshop on Discrete Event Systems (WODES’98), Cagliari, Italy, 26–28 August 1998; pp. 161–165.

43. Da Silva, L.D.; de Assis Barbosa, L.P.; Gorgônio, K.; Perkusich, A.; Lima, A.M.N. On the automatic
generation of timed automata models from function block diagrams for safety instrumented systems.
In Proceedings of the 34th Annual Conference of IEEE Industrial Electronics (IECON 2008), Orlando, FL,
USA, 10–13 November 2008; pp. 291–296.

44. Marsan, M.A.; Balbo, G.; Conte, G.; Donatelli, S.; Franceschinis, G. Modelling with Generalized Stochastic Petri
Nets; John Wiley & Sons: Chichester, UK, 1994.

45. Chiola, G.; Franceschinis, G.; Gaeta, R.; Ribaudo, M. GreatSPN 1.7: Graphical editor and analyzer for timed
and stochastic Petri nets. Perform. Eval. 1995, 24, 47–68. [CrossRef]

46. GreatSPN Home Page—Dipartimento di Informatica—Università di Torino. Available online: http://www.
di.unito.it/~greatspn/index.html (accessed on 5 March 2017).

47. Deavours, D.D.; Clark, G.; Courtney, T.; Daly, D.; Derisavi, S.; Doyle, J.M.; Sanders, W.H.; Webster, P.G.
The Mobius framework and its implementation. IEEE Trans. Softw. Eng. 2002, 28, 956–969. [CrossRef]

48. The Möbius Tool. Available online: https://www.mobius.illinois.edu/ (accessed on 5 March 2017).
49. Barbierato, E.; Dei Rossi, G.-L.; Gribaudo, M.; Iacono, M.; Marin, A. Exploiting product forms solution

techniques in multiformalism modeling. Electro. Notes Theor. Comput. Sci. 2013, 296, 61–77. [CrossRef]
50. Bucci, G.; Sassoli, L.; Vicario, E. Correctness verification and performance analysis of real-time systems using

stochastic preemptive time Petri nets. IEEE Tran. Softw. Eng. 2005, 31, 913–927. [CrossRef]
51. Gniewek, L. Sequential Control Algorithm in the Form of Fuzzy Interpreted Petri Net. IEEE Trans. Syst. Man

Cybern. Syst. 2013, 43, 451–459. [CrossRef]
52. Gniewek, L. Coverability Graph of Fuzzy Interpreted Petri Net. IEEE Trans. Syst. Man Cybern. Syst. 2014, 44,

1272–1277. [CrossRef]
53. Markiewicz, M.; Surdej, Ł.; Gniewek, L. Transformation of a fuzzy interpreted Petri net diagram into

structured text code. In Proceedings of the 2016 21st International Conference on Methods and Models in Automation
and Robotics (MMAR), 29 August–1 September 1; IEEE: Piscataway, NJ, USA, 2016; pp. 94–99.

54. Zave, P.; Schell, W. Salient features of an executable specification language and its environment. IEEE Trans.
Softw. Eng. 1986, SE-12, 312–325. [CrossRef]

55. Harel, D. Statecharts: A visual formalism for complex systems. Sci. Comput. Progr. 1987, 8, 231–274.
[CrossRef]

56. Fuchs, N.E. Specifications are (preferably) executable. Softw. Eng. J. 1992, 7, 323–334. [CrossRef]
57. Gajski, D.D.; Vahid, F.; Narayan, S. A system-design methodology: Executable-specification refinement.

In Proceedings of European Design and Test Conference, 1994. EDAC, The European Conference on Design
Automation. ETC European Test Conference. EUROASIC, The European Event in ASIC Design, Proceedings,
Paris, France, 28 February–3 March 1994; pp. 458–463.

58. Van der Aalst, W.M.P.; de Crom, P.J.N.; Goverde, R.R.H.M.J.; van Hee, K.M.; Hofman, W.J.; Reijers, H.A.;
van der Toorn, R.A. ExSpect 6.4 An Executable specification tool for hierarchical colored Petri Nets.
In SpringerLink; Springer: Berlin/Heidelberg, Germany, 2000; pp. 455–464.

59. Lämmel, R. Google’s MapReduce programming model—Revisited. Sci. Comput. Progr. 2008, 70, 1–30.
[CrossRef]

http://dx.doi.org/10.1023/B:JIMS.0000018036.84607.37
http://dx.doi.org/10.1109/TSMCC.2004.829286
http://dx.doi.org/10.1016/0166-5316(95)00008-L
http://www.di.unito.it/~greatspn/index.html
http://www.di.unito.it/~greatspn/index.html
http://dx.doi.org/10.1109/TSE.2002.1041052
https://www.mobius.illinois.edu/
http://dx.doi.org/10.1016/j.entcs.2013.07.005
http://dx.doi.org/10.1109/TSE.2005.122
http://dx.doi.org/10.1109/TSMCA.2012.2202107
http://dx.doi.org/10.1109/TSMC.2014.2298379
http://dx.doi.org/10.1109/TSE.1986.6312946
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1049/sej.1992.0033
http://dx.doi.org/10.1016/j.scico.2007.07.001

Appl. Sci. 2017, 7, 422 18 of 18

60. Akhtar Khan, N.; Ahmad, F.; Khan, S.A. Formal and Executable specification of random waypoint mobility
model using timed coloured Petri Nets for WMN. Abstr. Appl. Anal. 2014, 2014, e798927. [CrossRef]

61. Andreu, D.; Pascal, J.-C.; Valette, R. Fuzzy Petri net-based programmable logic controller. IEEE Trans. Syst.
Man Cybern. B 1997, 27, 952–961. [CrossRef] [PubMed]

62. Gniewek, L.; Kluska, J. Hardware implementation of fuzzy Petri net as a controller. IEEE Trans. Syst. Man
Cybern. B 2004, 34, 1315–1324. [CrossRef]

63. Venkateswaran, P.R.; Bhat, J. Fuzzy Petri net algorithm for flexible manufacturing systems. ACSE J. 2006,
6, 1–5.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2014/798927
http://dx.doi.org/10.1109/3477.650056
http://www.ncbi.nlm.nih.gov/pubmed/18263103
http://dx.doi.org/10.1109/TSMCB.2003.822956
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Comparison to Related Works
	The Formal Basis and the Conception of FIPN
	The Program Model of the FIPN
	The Program Model of the FIPN—Variables
	The Program Model of the FIPN—Functions
	The Calculation of the Degree to which the Condition Corresponding to the Transition Is Satisfied
	The Checking of the Conditions for the Activation or the Loss of a Concession by a Transition
	The Calculation of the New Marking
	The Setting of Output Variables

	The Method of Automatic Program Generation Using ST Language
	Algorithms of the Program Generation Based on FIPN
	An Example of Program Generation in ST Language

	Conclusions
	
	

