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Abstract: With the increasing proportion of photovoltaic (PV) power in power systems, the problem
of its fluctuation and intermittency has become more prominent. To reduce the negative influence
of the use of PV power, we propose a short-term PV power prediction model based on the online
sequential extreme learning machine with forgetting mechanism (FOS-ELM), which can constantly
replace outdated data with new data. We use historical weather data and historical PV power data to
predict the PV power in the next period of time. The simulation result shows that this model has
the advantages of a short training time and high accuracy. This model can help the power dispatch
department schedule generation plans as well as support spatial and temporal compensation and
coordinated power control, which is important for the security and stability as well as the optimal
operation of power systems.
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1. Introduction

With the fast-growing consumption of fossil fuels and the resultant environmental deterioration,
we are much encouraged to use renewable energy such as solar energy, wind energy;, etc. [1]. According to
the statistics from the International Energy Agency [2], the global photovoltaic (PV) generation capacity
growth from 2010 to 2014 has exceeded that of the last 40 years. China has been taking the lead in the
global PV market since 2013, followed by Japan and the United States. Furthermore, a lower PV array
price has greatly reduced the costs of building PV systems. Therefore, it is predicted that, by 2050,
PV power will contribute 16% to the total energy generation capacity worldwide.

Research on PV systems may provide solutions to the many challenges faced by the environment
and the power system itself. Studies have been conducted in related areas of optimizing the energy
structure and of improving the performance of a PV system. Despite the advantages mentioned
above, a PV system is highly subject to environment pollution, and has been criticized for its unstable,
random and intermittent power output [3].

When a PV system is connected to the grid, its power fluctuation may destabilize the grid and
pose a threat to network security, which makes it even harder to formulate generation plans. As such,
an accurate prediction of PV power output is required to make better generation plans, support the
spatial and temporal compensation, and achieve coordinated power control, so that the need for
energy storage capacity and operating costs can be reduced [4]. Moreover, better prediction of PV
power also helps to enhance system security and stability, as well as optimize the operation of the
power system [5]. The prediction methods include physical methods and statistical methods. Usually,
a physical method first predicts the factors which directly influence the PV power output (such as
solar radiation and ambient temperature) and then uses the forecast result as the input of the physical
model to obtain the output power. On the other hand, a statistical method uses historical data to build
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a statistical model based on some machine learning algorithms, and predicts the PV power output
directly without building a specific physical model.

It has been proved that the physical method is superior to the statistical method, given large data
sets [6]. Some regression models are also used to figure out the relationship between the input and
output variables, such as the random forest model [7] and the support vectors regression model [8].
Researchers have built many kinds of neuron networks to predict the power production of PV systems.
For example, Li has proposed an improved gray prediction model [9]. Also, the radial basis function
(RBF) network has been applied to this area [10]. In another paper [11], they use a back propagation
(BP) neural network to solve the prediction problem.

In recent years, many hybrid methods have been proposed, which combine the advantages of
both methods. In reference [12], a hybrid approach was developed to forecast short-term solar PV
power based on the combination of the wavelet transform (WT) and radial basis function neural
network (RBFNN). Some researchers also combined the seasonal auto-regressive integrated moving
average method (SARIMA) and the support vector machines (SVM) method [13]. These models are
proved to be effective in PV prediction, although many of them, such as SVM and RBENN models,
are complicated in terms of computation and very data-intensive for the network.

All the models reviewed above ignored the time validation of the data, and assumed the data
would not be out-of-date. In actual practice, training data are time sensitive, so the training data
need to be updated in real time. Only a few published research papers have considered this fact
so far. Among them, an online 24-h prediction model was proposed, which used an RBF network
and classified the input variables based on the weather type [14]. Some researchers have described
a two-stage method where a statistical normalization of the solar power is first obtained, and then the
forecasts of the normalized solar power are calculated to predict the PV power [15].

We chose to employ the extreme learning machine (ELM) algorithm because of the
following advantages:

(1) The computation complexion of ELM is much lower than many other machine learning algorithms.
(2) The learning speed of ELM is much faster than most feed forward network learning algorithms.
(3) The generalization performance of ELM is better than many others.

(4) The amount of hidden layer nodes is small and they do not need to be tuned [16].

The aim of our work was to develop a simple and accurate online model for forecasting the power
produced by a PV power plant. In order to achieve this goal, we built the prediction model based on
the online sequential extreme learning machine with forgetting mechanism (FOS-ELM), which predicts
the PV power output for the next 15 min in a rolling manner.

The main contributions of our work are summarized below:

1.  We introduced an online learning model with a Forgetting Mechanism to the area of photovoltaic
prediction, which can update the data in real time.

2. We compared the ELM, OS-ELM and FOS-ELM prediction models in predicting PV power in
different seasons.

3.  The simulation results showed that the FOS-ELM model can not only improve the accuracy but
also reduce the training time.

2. Prediction Algorithm

2.1. Classical Extreme Learning Machine (ELM)

The architecture of the ELM is shown in Figure 1, and the algorithm is presented as follows [17].
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Figure 1. The architecture of Extreme Learning Machine.

The ELM is a single hidden-layer artificial neural network. It is assumed that the number of
random hidden neurons in the ELM model is L, and the number of different learning samples (x,y) is
N. It is also assumed that x € RN, y € RN, a; € R, b; € R, and a;, and b; are randomly generated
matrices and vectors, respectively. Then, the output function can be rewritten as:

L
fL(x”> = Zﬁic(airbi/xn) =VYn (1)
i=1

where B is the output weight vector, which connects the random hidden neurons with the output. G is
the active function, which connects the i" random hidden neuron with all of the input nodes, and can
be any infinitely differentiable function, such as the Sigmoid function as shown below:

1
b,x) = 2
Gl = e x 1)) @)
Equation (1) can be written in the form of matrices, such as:
HB=Y ®)
where
G(al,bl,xl) G(aL/erxl)
H = S :
G(al,bl, XN) G(aL,bL,XN)
T T
[32{‘31 ,32 ﬁL] Yz[yl Y2 .. ]/N}
Then, the least-square solution of (1) is:
g=H'Y=H(HHT)Y 4)

where the matrix H is the hidden layer output matrix, within which the it" element (h;) is the hidden
layer output vector for input x;. Y is the vector of the output of the training data. B is the only
parameter for the training process to determine. The upper bound of the required number of hidden
nodes is the number of distinct training samples, in other words, the number of hidden nodes should
be less than the number of training samples.

To improve the stability and generalizability of the results, we added the regularization parameter
C to (4) to transform it as [18]:

p=H'(HH + éE)Y ®)
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2.2. Online Sequential ELM (OS-ELM)

40f11

The classical ELM assumes that all the data (samples) are used for training, but in the prediction
model, the data is coming chunk-by-chunk (a block of data) or one-by-one (the latter can be seen as
a special condition of the former). Therefore, the classical ELM should be adjusted to such conditions [19].
In the PV power prediction model, historical weather and PV power data are collected from the
Supervisory Control And Data Acquisition (SCADA) system periodically. As OS-ELM updates the
training data on time, it is more suitable for the PV power prediction. The algorithm is shown as follows.

Step 1: Initialization—use a chunk of training data {(x;, ;) f\i’l as initial data.

(@) Randomly generate a; and b; where j =1,2..., L.
(b) Calculate the initial hidden layer output matrix Hy.

G(a1,b1,x1) G(aL,bL,x1)
HO e . '.' . ,

G(al,bl,xNo) G(aL,bL,xNO)

(c) Estimate the initial output weight vector:

p=HT(HH' + lE)\{

C
where
1 -1
Py = (Hp Hy + B
T
YOZ[yl yNO] P
(d) Setk=0.
Step 2: Online study.
k1
i=y N;
(a) When the (k+ 1) chunk of new data {(x;,v;)} ’ - is ready,
i=(L Nj)+
f=

(b) Calculate the partial hidden layer output matrix Hy,; based on the latest data.

G(ay, by, x ) .. G(ag,br,x )
(Z N/')-‘rl (): Nj)-i-l
j=0 =0
Hyp = : : ;
G(alrbl/ Xk+1 ) G(aL/ bL/ xk+1 )
L N; LN
j=0 j=0
T
Yip1 = y()é Nj)+1 ykle]» ;
j=0 j=0

(c) Estimate the new Py,; and B(kH) based on (7) and (8).
Pioi = Py — PH! (I+H, PHT ) 'H
k+1 = Tk k41 k+15k 41 k+1

B(k+l) — B(k) + Pk+1le+1(Yk+1 - Hk-l—lf’(k))

(d) Setk =k+1,and then go back to Step 2.

4)

@)
®)
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2.3. OS-ELM with Forgetting Mechanism (FOS-ELM)

In practice, training data are time sensitive. In other words, data are only valid within a certain
time period. In the process of the FOS-ELM, the data obtained earlier than a certain time can no
longer be used under the forgetting mechanism, since the outdated data may make the prediction less
accurate [20]. As solar radiation and temperature vary seasonally, the FOS-ELM is more appropriate
for the PV power prediction model. The algorithm of FOS-ELM is presented as follows.

Step 1: Initialization, which is the same as Step 1 in the OS-ELM.

Step 2: Online learning with the forgetting mechanism.

k1
i=Y N;
When the (k + 1) chunk of new data {(xi,y)} :; is ready,

(a) Calculate the partial hidden layer output matrix Hy, 1, which corresponds to the latest data.

G(al,b],x k ) G(aL,bL,X k )

Y N])+1 (Z N/)+l
j=0 j=0

Hiy = /
G(al,b1,xk+1 ) G(aL/ bL/xk+1 )
j=0 ! j=0 !
T
YHV:[%éMHl'” %éMHll;
= 1=

(b) Estimate the new Py 1 and B(kH) based on (9) and (10).

T
—H_,_
PkH::Pk—Pk[ k=s 1] x (I+

T
plktl) — (k) +Pk+1[ —Hi 51 ] o <
+

(c) Setk =k+1,and then go back to Step 2.

It is obvious that the difference between FOS-ELM and OS-ELM is the addition of the forgetting
mechanism, which can not only get rid of the outdated data to avoid their interference in the training
networks, but also can reveal the timeliness of the data.

3. Model Architecture

3.1. Physical Model

The output power of a PV array can be calculated by [21]:
P; = SR[1 —e(ty — 25)] (11)

where 7 is the transform efficiency; S is the size of the PV array (m?); R is the solar radiation (kW/m?);
e is the loss in efficiency of the array for every degree Celsius of cell temperature increase (always
equals to 0.005); and ¢y is the ambient temperature (°C).

As shownin (11), the output power is affected by several factors, including the transform efficiency,
PV array size, solar radiation and ambient temperature.
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3.2. Input Vector

Based on the physical model presented in Section 3.1, we identified the factors that influence the
output power. For a certain array, the efficiency and the size are fixed, as included in the historical
data. However, the solar radiation and ambient temperature change with time periodically. Therefore,
we choose time, solar radiation and ambient temperature as the input parameters. The input data is
obtained from a numerical weather predilection (NWP) model, which uses mathematical models of the
atmosphere and oceans to predict the weather on current weather conditions [22]. The input vector is:

x; = | time tem R ]T (12)
where tem is the ambient temperature, and R is the amount of solar radiation reaching the part of the
Earth’s surface near the photovoltaic cells.

3.3. Data Pre-Processing

We then normalize the different variables to adapt to the ELM in the following way:

% = Xi — Xmin (13)
Xmax — X¥min

where x; is the input or output data, while Xmax and xpmin are the maximum and minimum of the value.

As the measurement results cannot be exactly accurate, the measured power production and solar

radiation data can sometimes be less than zero due to measurement errors, which is impossible in

actual practice. In this case, we tune them and the corresponding predicted data to zero. When we

calculate the errors, we will eliminate the data set where the measured and predicted values are both
equal to zero.

3.4. Error Evaluation

The normalized Root Mean Square Error (nRMSE) and Mean Absolute Percent Error (M APE)
are used to evaluate the prediction methods, which are calculated as follows:

1

nRMSE =
Prated

1¢ 2
) (Pui = Ppi) (14)
i=1

1 n |\p.—P.
MAPE =100 x =Y [P = Byi] (15)
n:— Pmi
i=1

where 7 is the number of time periods for power generation; P, is the rated power; P); is the
predicted power in the i time period; and P,,; is the measured power in the i’ time period. In order to
avoid the nighttime data, we disregarded the data set where both the solar radiation and PV generated
power data are equal to zero.

3.5. Flowchart of the Model

The prediction process is illustrated in Figure 2.

First, we input the initial historical data for pre-processing, generate the initial hidden layer
output matrix Hp, and estimate 35 and Py. Then, we input the weather forecast data of the next period
of time and calculate the prediction value. When the historical data such as the weather and power
data arrive, we calculate the prediction error and save the data. After that, we check the time. If it is
equal to 1 h, we update the matrices H,  and P; otherwise, the above process is repeated.
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Figure 2. Flowchart of the online sequential extreme learning machine with forgetting mechanism
(FOS-ELM) prediction model.

4. Examples and Simulation

In this paper, we used the data from the solar power plant in Ashland, Oregon, with the capacity
of 5 kW, downloaded from the website of [23], to simulate the proposed FOS-ELM-based prediction
model and compare it with the OS-ELM and ELM models. The plant faces south, tilted 15 degrees.
As the paper has shown, the training time and prediction accuracy (in terms of MAPE and RMSE) of
the ELM method are better than the BP neural networks [24], so we therefore focus on the comparison
of ELM, OS-ELM and FOS-ELM.

The 5 kW solar electric arrays are located on the roof of the Ashland Court House, which is shown
in Figure 3.

Figure 3. The 5 kw solar electric arrays on the roof of the Ashland Court House.
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The details of the three models are presented as follows:

Model 1 (FOS-ELM Algorithm): The sigmoid function was chosen as the active function; the data
obtained at 48 h ahead of the current time (from 6:00 to 18:00, every 15 min) was used as the training
data to predict the power output; the training sample was updated every one hour and then the data
obtained 48 h ago was dropped.

Model 2 (OS-ELM Algorithm): The sigmoid function was chosen as the active function; the data
obtained at 48 h ahead of the current time (from 6:00 to 18:00, every 15 min) was used as the training
data to predict the power output; the training sample was updated every one hour with the earlier
data remaining.

Model 3 (ELM Algorithm): The sigmoid function was chosen as the active function; the data
obtained within the last 48 h of the last month (from 6:00 to 18:00, every 15 min) was used as the
training data to predict the power output. In other words, the model was retrained every month.

We set the number of hidden layer neurons as 120.

4.1. Accuracy Comparison in a Single Day

A comparison of the prediction results of the three models during a certain sunny day in January
in 2015 is shown in Figure 4, where 600 on the X-axis stands for 6:00.
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Figure 4. Comparison of three models on a sunny day. (a) FOS-ELM; (b) online sequential extreme
learning machine (OS-ELM); (c) extreme learning machine (ELM).

The nRMSEs of models 1, 2 and 3 are 0.023, 0.035 and 0.053, respectively; the corresponding
MAPESs are 9.707, 10.893 and 12.706. It is obvious that the accuracy of Model 1 is the best among the
three models.

A certain cloudy/rainy day in January in 2015 is also used to compare the prediction results of
the three models, as shown in Figure 5.

The nRMSEs of models 1, 2 and 3 are 0.067, 0.074 and 0.082, respectively; the corresponding
MAPESs are 13.833, 14.303 and 15.112. It is obvious that the accuracy of Model 1 is still the best among

the three models.
In addition, comparing Figures 4 and 5, we can see that the accuracy is higher when it is sunny

than when under cloudy or rainy conditions.



Appl. Sci. 2017, 7, 423

4000

9o0f 11

0w 4000 . .
measured measured neasured
3500 —#—predicted| | 3500 F —4—predicted 3500 \ — #—predicted|
LA, \ Lo bA LM
WY \ ALY
LAY # "‘ A ﬁl» I\ VALV
N0 | ﬁf\‘\ ‘ Ve 000} i | ’!‘1‘.‘ f« ‘»—1 3000 L\I m\”\ | ‘!Q i
I ' 1M L ,‘V w1‘ “:‘_,‘ t m“\
Y 2 ALy | T N
20 [+ L'y =0} ¥y 250 ite V0
g | 4 . i L *‘4 = I'g g1 1
E i | ] . "y g IL* '
{ | 3 ] z ! |
Ezm |l * ] 12 am| F‘ | +* ,‘ o 2000 \ ‘# + ]
- Al 3 f\F = \Th
[F I+ = s ;’ | Ayl le
1500 }4‘ j 1] 1500 | |7 ‘,“I 1500 I# 'f\
| i /
/; + o *7 k w» /Iy Iﬂ L ¥
1000 4 Ty A 100k | T 4 1000 4 # A
J U.» ! | “: \b ht‘\;:
A EL
500 | \ \“&i 500 | “‘l‘l."‘ 500 ’ * h.-H
| ‘V‘, | + 05 1 Tl
q J . L ! :'L» [ E—— u*/ L L Ly .,‘“ f L L Y
0 1000 1200 1400 fe0b 800 A R R R T R = A BU @ 1000 1200 1400 000 1600
time time time
(a) FOS-ELM (b) OS-ELM (c)ELM

Figure 5. Comparison of three models on a cloudy/rainy day. (a) FOS-ELM; (b) OS-ELM; (c) ELM.

4.2. Monthly Average Accuracy Comparison

To compare the accuracy of the three models in different seasons, we choose the data in Spring
(from April to June), Summer (from July to September), Autumn (from October to December) and
Winter (from January to March) for testing. The results are shown in Table 1.

Table 1. Monthly average accuracy comparison.

Season Model nRMSE MAPE/%
Spring FOS-ELM 0.0953 15.492
(Apri-June) OS-ELM 0.1041 16.730
ELM 0.1126 18.483
Summer FOS-ELM 0.0892 14.329
(July-September) OS-ELM 0.0933 15.883
ELM 0.1083 16.032
Autumn FOS-ELM 0.0974 15.289
(October—December) OS-ELM 0.1018 16.325
ELM 0.1219 17.933
Winter FOS-ELM 0.0876 15.245
(January-March) OS-ELM 0.0945 16.319
ELM 0.0983 17.703

We can see from Table 1 that, in terms of nRMSE, the prediction accuracy is higher in Winter
and Summer than in Autumn and Spring; among the three models, Model 1 has the highest accuracy
while Model 3 is the lowest. In terms of MAPE, the prediction accuracy is higher in Summer than in
Winter; again, the accuracy of Model 1 is the highest and that of Model 3 the lowest. In a nutshell,
the FOS-ELM method proves to have the best performance.

4.3. Comparison of Training Time

The three models were run in MATLAB. In Model 1, it takes 0.095 s for initialization and 0.052 s
for online study. In Model 2, it takes the same time as that of Model 1 to initialize, but only 0.049 s for
online study. It takes 0.076 s to train each time in Model 3. Therefore, it can be seen that online study
can save about 30% of retraining time. However, it takes 6% more time in Model 1 than in Model 3 for
every time online study is conducted.
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5. Conclusions

In this paper, we proposed a new short-term PV power prediction model based on the FOS-ELM
method. First of all, we gave a brief introduction to the theories of ELM, OS-ELM, FOS-ELM,
and analyzed the differences between the three models to explain why FOS-ELM is the best one
to predict PV power generation, in theory. After that, we built our prediction system that is ready to be
applied in practice. Finally, in the simulation part, we used the data provided by the University of
Oregon Solar Radiation Monitoring Laboratory to test our models. The proposed FOS-ELM model
showed shorter training time and higher accuracy than the classical ELM and OS-ELM models, in all
seasons and weather conditions.
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