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Abstract:



Good learning image priors from the noise-corrupted images or clean natural images are very important in preserving the local edge and texture regions while denoising images. This paper presents a novel image denoising algorithm based on superpixel clustering and sparse representation, named as the superpixel clustering and sparse representation (SC-SR) algorithm. In contrast to most existing methods, the proposed algorithm further learns image nonlocal self-similarity (NSS) prior with mid-level visual cues via superpixel clustering by the sparse subspace clustering method. As the superpixel edges adhered to the image edges and reflected the image structural features, structural and edge priors were considered for a better exploration of the NSS prior. Next, each similar superpixel region was regarded as a searching window to seek the first [image: there is no content] most similar patches to each local patch within it. For each similar superpixel region, a specific dictionary was learned to obtain the initial sparse coefficient of each patch. Moreover, to promote the effectiveness of the sparse coefficient for each patch, a weighted sparse coding model was constructed under a constraint of weighted average sparse coefficient of the first [image: there is no content] most similar patches. Experimental results demonstrated that the proposed algorithm achieved very competitive denoising performance, especially in image edges and fine structure preservation in comparison with state-of-the-art denoising algorithms.
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1. Introduction


As one of the most fundamental low-level vision problems, image denoising has been widely studied in computer vision, serving as the foundation and precondition for image processing, such as visual saliency detection, image segmentation, image classification, etc. In general, image denoising aims at recovering the clean image from the noise-corrupted image while preserving, as much as possible, the vital image features. During the past few decades, image denoising has drawn much research attention, resulting in a variety of efficient methods. Traditional image denoising methods include the median filter, the Gaussian filter, methods based on the total variation, wavelet threshold methods, etc. However, most of these methods frequently ignore the details of image features that include structure, texture, and edge features. To some extent, the ignorance of image details makes these methods suffer from many defects, comprising of over-smoothing, side effect, artifacts, loss of structure and texture features, ambiguousness of edges, etc.



Motivated by the defects in traditional image denoising methods, significant progress has been made in recent years. As image denoising is typically an ill-posed problem, its solution might not be unique. Based on good learning image priors from noise-corrupted images or clean natural images, numerous methods have been proposed to obtain a better solution to the image denoising problem. In particular, nonlocal self-similarity (NSS) and sparsity are two popular image priors with great potential that lead to state-of-the-art performance. Based on the fact that local image details may appear multiple times across the entire image, NSS prompts a series of excellent algorithms for image denoising. The nonlocal means (NLM) [1] algorithm computed a noise-free pixel as the weighted average of pixels with similar neighborhoods in the fixed-size rectangle searching window, and achieved significant enhancement in denoising performance. Inspired by the success of NLM method, Dabov et al. [2] proposed a remarkable collaborative image denoising scheme, called block-matching and 3D filtering (BM3D). In this scheme, nonlocal similar patches were grouped into a 3D cube and collaborative filtering was conducted in the sparse 3D transform domain. The BM3D algorithm ranks among the best performing methods, yet its implementation is complex. Furthermore, the BM3D algorithm is based on classical fixed orthogonal dictionaries, thus lacking data-adaptability. Building on the principle of sparse and redundant representations [3], another category of methods has been developed, which can learn data-adaptive dictionaries for denoising. The K-SVD algorithm [4] has boosted denoising performance significantly. Mairal et al. [5] proposed the learned simultaneous sparse coding (LSSC) algorithm, which used nonlocal self-similarity (NSS) to improve sparse models with simultaneous sparse coding. In Reference [6], Chatterjee et al. clustered image into [image: there is no content] groups to enhance the sparse representation via locally learned dictionaries, which took advantage of geometrical structure feature and the NSS prior in spatial domain. Subsequently, Dong et al. [7] observed that the difference between the representation coefficients of original and degraded images was sparse, and added a restriction to ensure the minimization of the [image: there is no content] norm for the difference. Thus, this model achieved good results in image denoising. By assuming that the matrix of nonlocal similar patches had a low-rank structure, the low-rank minimization based methods [8,9] also achieved very competitive denoising results. Zhang et al. [10] later proposed a patch group (PG) based NSS prior learning scheme to learn explicit NSS models from natural images for high performance denoising, resulting in high peak signal to noise ratio (PSNR) measurements.



Though NSS in low-level vision cues has been widely utilized to improve image denoising performance in most existing methods, we argue that such utilizations of NSS are not sufficiently effective. These methods learn NSS prior via clustering local size-fixed patches extracted from an image, which may neglect the image edge and structural features to some extent. Moreover, in most existing methods, the NSS prior is usually exploited by searching for nonlocal similar patches to a local patch across a size-fixed square searching window, which always leads to massive workload and ignores the similarities between pairs of patches with large spatial distances. Since most existing methods do not make full use of NSS prior in low-level vision cues, it is necessary to learn the prior in mid-level vision cues for a better exploration of the NSS prior.



With the above considerations, this paper proposes to further learn NSS in mid-level vision cues via superpixel clustering using the sparse subspace clustering method. Since the superpixel edges adhere to the image edges and reflect the image structural features, structural and edge information can be considered for a better exploration of the NSS prior by superpixel clustering. Furthermore, this paper proposes an improved algorithm for image denoising by taking advantage of multiple priors to achieve a better denoising performance, including the NSS prior in the spatial domain and sparse transform domain, sparsity, structure, and edge prior. In the proposed algorithm, we first divided the image into multiple superpixels by the simple linear iteration clustering (SLIC) method and grouped superpixels to generate irregular regions by the sparse subspace clustering method with local features. Regarding these regions as searching windows, we sought the first [image: there is no content] most similar patches to each local patch. Next, a data-adaptability dictionary for each region was learned to obtain the initial sparse coefficients of local patches extracted from the images. Finally, to improve the effectiveness of the sparse coefficient for each patch, a weighted sparse coding model was constructed by adding a weighted average sparse coefficient of the first [image: there is no content] most similar patches to the sparse representation model. Once final sparse coefficients for all patches were acquired, the noise-free image was obtained. Benefiting from two factors, the proposed algorithm achieves enhanced image denoising performance. First, learning the NSS in mid-level vision cues via superpixel clustering promotes a better exploitation of the NSS prior. Furthermore, regarding similar superpixel regions as a searching window can avoid the ignorance of similarities between pairs of patches with large spatial distances, which also contributes to the better exploitation of the NSS prior. Second, a weighted sparse coding model was established, which reduced the impact of noise on sparse representation and improved the accuracy of sparse coefficient for each patch.



The rest of this paper is organized as follows. In Section 2, the basics of the proposed algorithm are described, including the SLIC algorithm, sparse subspace clustering algorithm and sparse representation algorithm. In Section 3, we introduce the proposed denoising model in detail. Next, experimental results and discussion are presented in Section 4. Finally, we make our conclusions in Section 5.




2. Basics of Superpixel Clustering and Sparse Representation (SC-SR) Algorithm


This paper implements a novel image denoising algorithm based on the NSS prior in mid-level vision cues and weighted sparse coding. Before analyzing the proposed denoising algorithm, it is essential to introduce three basic algorithms which play vital roles in realizing the proposed algorithm.



2.1. Simple Linear Iterative Clustering Algorithm for Segmentation


this paper, a simple linear iterative clustering (SLIC) algorithm was selected to generate compact and nearly uniform superpixels, since it has better performance in running speed, superpixel compactness and contour preservation in comparison with other methods [11]. SLIC generates superpixels by clustering pixels based on their similarity in color and proximity in the image plane [12]. This method seamlessly applies to color as well as grayscale images via replacing color similarity with gray information similarity. In this paper, experiments were conducted on grayscale images.



SLIC is essentially a local k-means clustering method. Given the total number of image pixels [image: there is no content] and the desired number of superpixels [image: there is no content], cluster centers are sampled at a regular grid [image: there is no content]. To speed up the generation of superpixels, SLIC assigns each pixel [image: there is no content] to the nearest cluster centers within the local region of the pixel [image: there is no content] rather than the whole image plane. The size of the local region is [image: there is no content] that takes the pixel [image: there is no content] as the center.



For grayscale images, gray and space information are taken into consideration for describing a pixel as a vector. Instead of using a simple Euclidean norm, the distance measure [image: there is no content] is defined as follows:


[image: there is no content]



(1)




where [image: there is no content] is the gray distance, and [image: there is no content] is the plane distance normalized by the grid interval [image: there is no content]. A variable [image: there is no content] is introduced to control the compactness of a superpixel. The greater the value of [image: there is no content], the more spatial is emphasized and the more compact the cluster, and we empirically set [image: there is no content] to 10 [12]. The values of [image: there is no content] and [image: there is no content] are obtained as follows:


[image: there is no content]



(2)






[image: there is no content]



(3)




where [image: there is no content] and [image: there is no content] are the gray values of pixel [image: there is no content] and [image: there is no content]; [image: there is no content] and [image: there is no content] are the [image: there is no content]-coordinate values of pixel [image: there is no content] and [image: there is no content]; and [image: there is no content] and [image: there is no content] are the [image: there is no content]-coordinate values of pixel [image: there is no content] and [image: there is no content].



Given the desired number of superpixels [image: there is no content], SLIC begins by sampling [image: there is no content] regularly spaced cluster centers, which are denoted by feature vectors [image: there is no content]. To avoid placing a cluster center at an edge pixel or a noisy pixel, the cluster center is moved to the lowest gradient position in a [image: there is no content] neighborhood. Next, each pixel in the image is associated with the nearest cluster center within the local area of the pixel by adopting k-means clustering method.



The segmentation results of SLIC on some benchmark test images are displayed in Figure 1. As shown, SLIC generates compact and nearly uniform superpixels and achieves a good description of the image edges.


Figure 1. Segmentation results of simple linear iterative clustering (SLIC).
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2.2. Sparse Subspace Clustering for Noisy Data


Sparse subspace clustering is an outstanding clustering method based on sparse representation, which is able to handle missing or corrupted data. It is based on the fact that each data point in a union of subspaces can be represented as a linear or affine combination of other points. Points are determined to lie in the same subspace by searching for the sparsest combination, which leads to a sparse similarity matrix [13]. Based on the similarity matrix, spectral clustering is adopted to obtain the final clustering result.



Given a data matrix [image: there is no content], the sparse representation of each point [image: there is no content] can be obtained by the following optimal problem:


min||∂i||1subject to mi=M∂i



(4)







Matrix [image: there is no content] is defined as the matrix obtained from [image: there is no content] by removing its i-th column, where the subscript [image: there is no content] means that there is no [image: there is no content]. Point [image: there is no content] has a sparse representation with respect to the matrix [image: there is no content]. Next, the optimal problem is equal to the following problem:


min||ci||1subject to mi=Mi^ci and ciTΙ=1,



(5)




where [image: there is no content] is a unit vector. Taking noise into consideration, let [image: there is no content]. be the i-th corrupted data point, where ||ηi||2≤ε and [image: there is no content] are the noise variance. The optimal problem turns to:


min||ci||1subject to||mi¯−Mi^ci||2≤ε and ciTΙ=1



(6)







Lasso optimization method [14] is used for recovering the optimal sparse solution from the above equation. With the sparsest representation of each point, a coefficient matrix [image: there is no content] ([image: there is no content] ) can be obtained, which describes the connections between points. Taking the matrix [image: there is no content] to establish a directed graph [image: there is no content], the vertices of the graph [image: there is no content] are the [image: there is no content] data points and the adjacency matrix is the coefficient matrix [image: there is no content]. Moreover, to make [image: there is no content] balanced, a new adjacency matrix [image: there is no content] ([image: there is no content]) is built. Subsequently, the Laplacian matrix [image: there is no content] is formed by [image: there is no content], where [image: there is no content] is a diagonal matrix and meets the condition of [image: there is no content]. Finally, spectral clustering method is applied to cluster the eigenvector of the Laplacian matrix to obtain the final cluster result for the whole data points.



In this paper, sparse subspace clustering is adopted to effectively cluster superpixels into regions of similar geometric structure aiming to further learn the NSS prior in mid-level vision cues even in the presence of noise. It is known that better learning of the NSS prior can improve the performance of denoising algorithms based on structure clustering and sparse representation. Instead of clustering size-fixed patches that are inflexibly extracted from images, clustering superpixels takes image edge and structure features into consideration, which leads to a better learning result of the NSS prior.




2.3. Sparse Representation Based Image Denoising


In general, sparse representation works in a patch-based framework, where an image is represented by sparse coefficients of its overlapping patches. Next, the recovery of image is achieved by averaging the sparse representation of all overlapping patches.



Given an image [image: there is no content] with noise, the column vector of [image: there is no content] patch at the location of [image: there is no content], is denoted as [image: there is no content], where [image: there is no content] is a binary matrix aiming to extract an overlapping patch and convert it to a column vector. The sparse coefficient [image: there is no content] of a patch is realized by the optimal solution to the following equation:


αi^=argminαi12||yi−Dαi||22+ζ||αi||p,



(7)




where [image: there is no content], [image: there is no content] is known as dictionary, and [image: there is no content] is a regularization parameter to keep a balance between sparsity and reconstruction error. Once [image: there is no content] is found, the denoising result [image: there is no content] of the image patch [image: there is no content] can be computed by [image: there is no content]. A challenging issue in finding the sparse coefficient [image: there is no content] is to choose the dictionary. In brief, a dictionary is a matrix, which is usually obtained by a specific transformation or learned from a large set of clean patches or noisy patches. When the dictionary and sparse coefficients are obtained, the denoised image [image: there is no content] can be reconstructed by aggregating all of the sparse representation of patches as follows [9]:


[image: there is no content]



(8)







Nonetheless, only the local sparse representation model is employed in denoising problem, which may not lead to a preferable enough solution. Herein, this paper combines good image priors from the noise-corrupted image with sparse representation for a better solution to image denoising problem. The NSS prior in the spatial domain was learned by superpixel clustering, which also generated irregular regions consisting of similar superpixels. By regarding these regions as searching windows, similar patches to a local patch within each region were found. The NSS prior in sparse transform domain utilized a constraint that the weighted average of sparse coefficients for the acquired similar patches of each local patch constrains the sparse coefficient of the local patch to an optimal solution. The NSS priors in both the spatial domain and sparse transform domain were added into the sparse representation model to enhance the image denoising performance of our proposed algorithm. Further details of the proposed algorithm are explained in the next section.





3. Proposed SC-SR Algorithm


In this section, the image denoising model based on superpixel clustering and sparse representation is presented. We first utilized the SLIC algorithm to generate [image: there is no content] superpixels that include similar pixels. Next, the NSS prior was further exploited by making use of the sparse subspace clustering algorithm with local features to cluster similar superpixels into a group. In the abnormal region of similar superpixels group, we extracted overlapping patches for training dictionary and sought similar patches to each local patch. Finally, a weighted sparse coding was adopted for better sparse representation. The following is a detailed introduction on the proposed algorithm.



3.1. Superpixels Clustering


the outset, SLIC is used to generate [image: there is no content] superpixels, and a superpixel is described as a column vector [image: there is no content] with several features. Each image pixel within a superpixel can be represented by a seven-dimensional feature vector [image: there is no content]:


[image: there is no content]



(9)




where [image: there is no content] is the gray value of the pixel; [image: there is no content] are the corresponding first or second order derivatives of image intensities in both [image: there is no content] and [image: there is no content] axes; and [image: there is no content], [image: there is no content] are the coordinates of the pixel in an image. The parameter [image: there is no content] aims to make a balance among image gray, gradient, and spatial features. If we use equal weight ([image: there is no content]) for the spatial feature, similarities between pairs of patches with large spatial distances may be lost. Thus, we empirically chose [image: there is no content] to alleviate this problem [15]. In addition, the image spatial, gray and gradient values were normalized.



For a given superpixel, we computed the mean vector [image: there is no content] of all pixels within it as its feature vector:


[image: there is no content]



(10)




where [image: there is no content] is the size of the superpixel and [image: there is no content] indicates a vector of a pixel within the superpixel.



We considered these [image: there is no content] superpixels as a collection of data points drawn from a union of [image: there is no content] independent affine subspaces. The sparse subspace clustering method was adopted to cluster the collection of data points into [image: there is no content] groups. After transforming every superpixel into a column vector, the collection of data points [image: there is no content] for clustering was obtained. For each superpixel, its covariance matrix [image: there is no content] was calculated by:


[image: there is no content]



(11)






[image: there is no content]



(12)




where [image: there is no content] indicates the i-th feature of the k-th pixel of the current superpixel and [image: there is no content] indicates the i-th element of the feature vector of the superpixel.



For two superpixels, their similarity can be computed based on the corresponding covariance matrices, [image: there is no content] and [image: there is no content]:


[image: there is no content]



(13)






[image: there is no content]



(14)




where [image: there is no content] is the similarity of the two superpixels; [image: there is no content] is the generalized eigenvalues from [image: there is no content]; and [image: there is no content] is a small constant (we experimentally set [image: there is no content] to 0.5 in our experiment) [15].



To better characterize the relationship between the superpixels and alleviate the sensitivity of sparse coding to noise, a Laplacian regularization term [15] based on the similarity matrix [image: there is no content] was introduced into Equation (6) to ensure the similarity of sparse coefficients among similar superpixels. Next, Equation (6) is equal to the following problem:


min||yi¯−Yi^ci||2+μ||ci||1+γ2∑ij||ci−cj||2Wij= min||yi¯−Yi^ci||2+μ||ci||1+ γtr(CLCT)subject tociTΙ=1,



(15)




where [image: there is no content] is the Laplacian matrix defined as [image: there is no content], and [image: there is no content] is the diagonal matrix with row sums, [image: there is no content] The parameter [image: there is no content] is the weighted parameter that balances the effect of the Laplacian regularization term ([image: there is no content] was empirically set to 0.2 in our experiments) [15]. By solving Equation (15), a sparse coefficients matrix [image: there is no content] was obtained, which was not symmetric. Therefore, we updated it by [image: there is no content] to make it symmetric. A directed graph [image: there is no content] was built by utilizing the sparse coefficients matrix [image: there is no content]. The vertices of the graph [image: there is no content] were the data set [image: there is no content], and the new adjacent matrix was [image: there is no content], where [image: there is no content] The spectral clustering algorithm was used to segment the graph [image: there is no content] to obtain the result of clustering superpixels.



Superpixel clustering learned NSS prior, which contributed to the preservation of structural information of the denoised image. When the dictionary was learned, the learned NSS prior obtained by superpixels clustering added the structural feature and edge feature into the atoms of the dictionary. The richer the features of the dictionary, the stronger the ability to reconstruct original image.




3.2. Learning Sub-Dictionaries for Each Cluster of Superpixels


In the similar superpixel regions, we extracted overlapping patches centering on each pixels, where the overlapping patches were all [image: there is no content] size ([image: there is no content] is odd). As for the pixels on the boundary of the image, we extended them by [image: there is no content] pixels in a horizontal and vertical direction by mirroring pixels to gain the patches centering on them. As shown in Figure 2, the matrix [image: there is no content] was extended by two elements in a horizontal and vertical direction by mirroring extension, and the matrix [image: there is no content] was obtained. After every patch was transformed into a column vector, [image: there is no content] sub-datasets [image: there is no content] were formed for training sub-dictionaries.


Figure 2. Matrix mirroring extension.



[image: Applsci 07 00436 g002]






Since the number of patches in each cluster was limited and patches in [image: there is no content] had similar patterns, it was not necessary to learn an over-complete dictionary for each cluster [16]. Therefore, we used the principal component analysis (PCA) method to learn the compact sub-dictionary for each cluster.



For each sub-dataset [image: there is no content], the proposed algorithm applied PCA to compute the principal components, with the purpose of constructing the sub-dictionaries [image: there is no content]. [image: there is no content] can be constructed by the optimal solution for the following formulation:


(Dk^,Ak^)=argminDk,Ak{||Mk−DkAk||22+λ||Ak||1},



(16)




where [image: there is no content] is the sparse coefficient matrix of [image: there is no content] over [image: there is no content] The rank of [image: there is no content] is denoted by [image: there is no content] and the co-variance matrix of [image: there is no content] is denoted by [image: there is no content] We obtained the result of matrix factorization [image: there is no content], where [image: there is no content] is the orthogonal transformation matrix and [image: there is no content] is a diagonal matrix taking [image: there is no content] eigenvalues of [image: there is no content] as its diagonal elements. If we regard [image: there is no content] as the dictionary and set [image: there is no content], we obtain ||Μk−PkEk||22=||Μk−PkPkTMk||22=0 Therefore, Equation (16) is only determined by the sparsity regularization term Ek1, which is constant in this case. To obtain better sub-dictionaries for sparse representation, we extracted the first [image: there is no content] most important eigenvectors in [image: there is no content] to form a dictionary [image: there is no content], [image: there is no content], instead of regarding [image: there is no content] as the dictionary. The sparse coefficient matrix is denoted by [image: there is no content] It is known that Ek1 increases when [image: there is no content] increases, while ||Μk−DklAkl||22 decreases. The optimal solution can be obtained by solving the following problem:


τ^=argminτ{||Μk−DkτAkτ||22+λ||Akτ||1}.



(17)







Consequently, we obtained [image: there is no content] sub-dictionaries [image: there is no content] for the [image: there is no content] sub-datasets [image: there is no content] In Equation (17), it was verified that some noise can be successfully removed during computing the local PCA transform of each image patch. In this paper, PCA was applied to each sub-dataset to construct the dictionary, which was able to reduce not only the computational cost consumed by dictionary training, but also the noise introduced into the dictionary.




3.3. Sparse Representation Model for Image Denoising


It was addressed that similar patches shared the same dictionary elements in their sparse decomposition [5]. In other words, there was NSS in the sparse transform domain as well. The proposed algorithm takes advantage of that fact to achieve a better sparse representation and improve the performance of image denoising.



In the previous subsection, we learned a PCA dictionary for each cluster. Given the dictionaries, the initial sparse coefficients [image: there is no content] of all patches within each cluster are found by solving the minimization problem of Equation (7) in the condition of [image: there is no content] It is known that [image: there is no content] pseudo norm regularization term has usually better reconstruction performance than [image: there is no content] pseudo norm regularization term [17]. Since [image: there is no content] minimization problem is NP-hard, greedy approaches are employed to achieve an approximate solution. One of the most widely used greedy approach is the orthogonal matching pursuit (OMP) that successively selects the best atom of dictionary minimizing the representation error until a stopping criterion is satisfied. In our algorithm, we employed a modified version of OMP, referred to as generalized OMP (GOMP) [18], to obtain the initial sparse coefficients [image: there is no content], which allowed the selection of multiple atoms per iteration. Simultaneous selection of multiple atoms reduced the number of iterations and achieved better sparse representation.



After obtaining the initial sparse coefficients [image: there is no content], we exploited the NSS prior in the sparse transform domain to produce a better estimate of the original image. To begin, we looked for the first [image: there is no content] most similar patches to each patch across the region of similar superpixels. Each pixel in a patch was denoted as a column vector that is computed by Equation (9), and the patch with the size of [image: there is no content] was described as a matrix [image: there is no content] The similarity between the two patches was measured by Equation (13) with their covariance matrixes. After obtaining the patches similar to each local patch, we computed the weighted average of initial sparse coefficients associated with the similar patches as [image: there is no content] Next, [image: there is no content] was exploited to constrain the sparse coefficient of the local patch to reduce the impact of noise on sparse representation and achieve a better solution. A better sparse representation coefficient for each patch [image: there is no content] can be found by:


αi^=argminαi||yi−Dαi||22+η||αi−χi||1,



(18)






[image: there is no content]



(19)




where [image: there is no content] is the weighted average of sparse coefficients for the first [image: there is no content] most similar patches to the patch [image: there is no content] and [image: there is no content] is a regularization parameter making a balance between sparsity and reconstruction error. The weight [image: there is no content] of the two patches was computed as follows based on their covariance matrixes [image: there is no content] and [image: there is no content]:


[image: there is no content]



(20)






[image: there is no content]



(21)







Based on the iterative soft-thresholding (IST) method [19], the solution to Equation (18) was computed by:


[image: there is no content]



(22)






[image: there is no content]



(23)




where [image: there is no content] is a soft-thresholding function; [image: there is no content] denotes the iteration frequency; and [image: there is no content] is a constant to guarantee the strict convexity of the optimal problem and [image: there is no content] [20]. After [image: there is no content] iterations, we can get preferable sparse coefficients. All patches can be estimated by [image: there is no content]. Since every pixel admits multiple estimations, its value can be computed by averaging all estimations. When the sparse coefficients for all patches within the image were obtained, the whole original image [image: there is no content] was obtained by Equation (8). By using the weighted average sparse coefficients of the similar patches to restrain the sparse decomposition process of the image patches, the accuracy of the sparse coefficients was is improved. As a result, the reconstructed image was closer to the original image.



The proposed algorithm is completely demonstrated in Algorithm 1. It makes full use of the NSS prior both in the spatial domain and sparse transform domains. Clustering in the spatial domain with mid-level visual cues could better exploit image structure and edges prior in comparison with directly clustering the size-fixed local patches, which also contributes to the preservation of image edges and textures. As for the sparse transform domain, to achieve a better solution, the weighted average of the sparse coefficients for the patches similar to a local patch was utilized to constrain the sparse coefficient for the local patch. These are all devoted to the high denoising performance of the proposed algorithm.








	Algorithm 1. The proposed algorithm called SC-SR



	
	
Input image [image: there is no content] with white Gaussian noise.



	
Set parameters: noise variance [image: there is no content], superpixles number [image: there is no content], cluster number [image: there is no content], the patch size [image: there is no content], the number [image: there is no content] of the first most similar patches, regularity parameters [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content][image: there is no content], [image: there is no content], [image: there is no content].



	
Adopt SLIC to generate [image: there is no content] superpixles.



	
Utilize sparse subspace clustering method to group superpixels into [image: there is no content] cluster to form sub-datasets [image: there is no content].



	
Outer loop: For k = 1: [image: there is no content]

	①

	
Given sub-dataset [image: there is no content], train a dictionary by PCA.




	②

	
Initialize the sparse coefficients [image: there is no content] for each patch over its specific dictionary by GOMP.




	③

	
Inner loop: For t = 1: [image: there is no content]



Seek for the first [image: there is no content] most similar patches in the cluster for each patch, compute the weighted average of sparse coefficients for the acquired similarity patches and update the sparse coefficients [image: there is no content] = [image: there is no content] for the patch by Equations (18) and (19).



End




	④

	
After [image: there is no content] iterations, obtain the final sparse coefficients [image: there is no content] and the sparse representation [image: there is no content] for all patches.









End



	
Reconstruct the image, and output the denoised image [image: there is no content].













4. Experimental Results


In this section, we validate the performance of the proposed algorithm by conducting extensive experiments on 10 standard benchmark images shown in Figure 3. In our experiment, we first added synthetic white Gaussian noise with different variances into the test images. Then the proposed algorithm and four currently state-of-the-art denoising algorithms, including NLM, K-SVD, BM3D, expected patch log likelihood (EPLL) [21] algorithms, were used to denoise the test images. Finally, we compared the proposed algorithm with the fr state-of-the-art algorithms in terms of peak signal to noise ratio (PSNR), structural similarity (SSIM) [22], figure of merit (FOM) and visual quality.


Figure 3. The 10 standard benchmark images. (a) Baboon; (b) Fingerprint; (c) Airplane; (d) Monarch; (e) Lena; (f) House; (g) Peppers; (h) Straw; (i) Hill; (j) Woman.



[image: Applsci 07 00436 g003]






4.1. Parameters Setting


The parameters set in our experiment were as follows: the superpixels number [image: there is no content] was set to 500, the cluster number [image: there is no content] was set to 60, the patch size [image: there is no content] was set to [image: there is no content], noise variance [image: there is no content] was in the range of [image: there is no content], and the number of similar patches [image: there is no content] was set to 10. The iteration number [image: there is no content] was set based on the noise level, and we required more iterations for a higher noise level. From experience, we set the iteration number [image: there is no content] to 7, 9, 13 and 16 for [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], respectively. Other regularity parameters were all empirical values as well, where β was set to 0.5, [image: there is no content] was set to 0.5, [image: there is no content] was set to 0.01, [image: there is no content] was set to 0.2, [image: there is no content] was set to 0.03, [image: there is no content] was set to 0.3 [15,16].



To verify the influence of image patch size [image: there is no content] on peak signal to noise ratio (PSNR), structural similarity (SSIM), figure of merit (FOM), 100 test images were selected to calculate the average PSNR, average SSIM and average FOM with different patch size, when noise variance [image: there is no content] was set to 15. Figure 4 shows the changing trend of the average PSNR, average SSIM and average FOM over the image patch size. It was evident that when the patch size was equal to [image: there is no content], the average PSNR, average SSIM and average FOM achieved their maximum values. The influence of the cluster number [image: there is no content] on PSNR, SSIM and FOM was tested in the same way, and is shown in Figure 5. When the cluster number was equal to 60, the average PSNR and average FOM achieved their maximum values, and the average SSIM obtained its maximum values when the cluster number equaled to 100. To compromise, we set the cluster number [image: there is no content] to 60 for an optimal solution.


Figure 4. The impact of patch size on average PSNR (peak signal to noise ratio), average SSIM (structural similarity), and average FOM (figure of merit) of SC-SR.



[image: Applsci 07 00436 g004]





Figure 5. The impact of cluster number on average PSNR, average SSIM, and average FOM of SC-SR.



[image: Applsci 07 00436 g005]







4.2. Qualitative Comparisons


Considering that human subjects are the ultimate judges of image quality, the visual quality of the denoised images is critical when evaluating a denoising algorithm. Figure 6 shows the noise-corrupted images of Monarch, Airplane, Lena and Baboon, whose noise variances were 25, 25, 60 and 60, respectively. Figure 7, Figure 8, Figure 9 and Figure 10 show the denoised images of Monarch, Airplane, Lena and Baboon disposed by competing algorithms. BM3D and NLM tended to over-smooth the image, while K-SVD BM3D and EPLL were likely to generate artifacts when noise was high. Due to the learned NSS prior by superpixel clustering, the proposed algorithm was more robust against artifacts, and preserved the edge and texture areas better than the other algorithms. For example, in the Monarch image, the SC-SR preserved the edges of the veins on the butterfly’s wings much better than the other algorithms. In the Airplane image, the SC-SR reconstructed the English alphabet on the wing of the aircraft more clearly than the other algorithms. In the Lena image, the SC-SR recovered more textures and edges on the hat than the other algorithms. In the Baboon image, the SC-SR preserved more fine texture of the hair of the baboon than other competing algorithms.


Figure 6. The four noise-destroyed images.



[image: Applsci 07 00436 g006]





Figure 7. Comparison of denoising results of the Monarch noisy image corrupted by additive white Gaussian noise [image: there is no content]: (a) Original image; (b) nonlocal means (NLM): [image: there is no content], [image: there is no content], [image: there is no content]; (c) K-SVD: [image: there is no content], [image: there is no content], [image: there is no content]; (d) block-matching and 3D filtering (BM3D): [image: there is no content], [image: there is no content], [image: there is no content]; (e) expected patch log likelihood (EPLL): [image: there is no content], [image: there is no content], [image: there is no content]; and (f) SC-SR: [image: there is no content], [image: there is no content], [image: there is no content].



[image: Applsci 07 00436 g007]





Figure 8. Comparison of denoising results of the Airplane noisy image corrupted by additive white Gaussian noise [image: there is no content]: (a) Original image; (b) NLM: [image: there is no content], [image: there is no content], [image: there is no content]; (c) K-SVD: [image: there is no content], [image: there is no content], [image: there is no content]; (d) BM3D: [image: there is no content], [image: there is no content], [image: there is no content]; (e) EPLL: [image: there is no content], [image: there is no content], [image: there is no content]; and (f) SC-SR: [image: there is no content], [image: there is no content], [image: there is no content].
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Figure 9. Comparison of denoising results of the Lena noisy image corrupted by additive white Gaussian noise [image: there is no content]: (a) Original image; (b) NLM: [image: there is no content], [image: there is no content], [image: there is no content]; (c) K-SVD: [image: there is no content], [image: there is no content], [image: there is no content]; (d) BM3D: [image: there is no content], [image: there is no content], [image: there is no content]; (e) EPLL: [image: there is no content], [image: there is no content], [image: there is no content]; and (f) SC-SR: [image: there is no content], [image: there is no content], [image: there is no content].
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Figure 10. Comparison of denoising results of the Baboon noisy image corrupted by additive white Gaussian noise [image: there is no content]: (a) Original image; (b) NLM: [image: there is no content], [image: there is no content], [image: there is no content]; (c) K-SVD: [image: there is no content], [image: there is no content], [image: there is no content]; (d) BM3D: [image: there is no content], [image: there is no content], [image: there is no content]; (e) EPLL: [image: there is no content], [image: there is no content], [image: there is no content], and (f) SC-SR: [image: there is no content], [image: there is no content], [image: there is no content].
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4.3. Quantitative Comparisons


To further validate the denoising capability of the proposed algorithm, we selected PSNR, SSIM and FOM as indexes to quantitatively evaluate the performance of the SC-SR algorithm. PSNR is one of the most widely used image objective evaluation indexes, and is able to measure the similarity of grayscale information between the original image and the denoised image. Since PSNR is based only on the error between the corresponding pixels, it cannot comprehensively describe structural similarity and the degree of edge preservation. SSIM is capable of assessing structural similarity, and FOM can be used to measure the degree of edge preservation between the original image and the denoised image. Table 1 presents the PSNR, SSIM and FOM results for different algorithms, images, and noise variances. As presented in Table 1, the top value is the PSNR result, the middle value is the SSIM result, and the bottom value is the FOM result in every table cell.



Table 1. The PSNR, SSIM and FOM results for different denoising algorithms. Best results are in bold.







	
Images

	
(a) [image: there is no content]




	
NLM

	
KSVD

	
BM3D

	
EPLL

	
SC-SR




	
Baboon

	
34.48

	
35.44

	
35.49

	
35.49

	
35.49




	
0.9288

	
0.9536

	
0.9534

	
0.9552

	
0.9519




	
0.9123

	
0.9326

	
0.9297

	
0.9332

	
0.9351




	
Fingerprint

	
34.44

	
36.63

	
36.51

	
36.43

	
36.65




	
0.9807

	
0.9878

	
0.9876

	
0.9875

	
0.9887




	
0.9056

	
0.8919

	
0.9876

	
0.9038

	
0.9642




	
Airplane

	
37.40

	
39.07

	
39.25

	
39.21

	
39.31




	
0.9425

	
0.9584

	
0.9595

	
0.9604

	
0.9598




	
0.9278

	
0.9251

	
0.9331

	
0.9372

	
0.9388




	
Monarch

	
36.72

	
37.74

	
38.25

	
38.27

	
38.29




	
0.9677

	
0.9720

	
0.9756

	
0.9755

	
0.9758




	
0.9789

	
0.9738

	
0.9762

	
0.9771

	
0.9751




	
Lena

	
37.17

	
38.62

	
38.71

	
38.59

	
38.74




	
0.9239

	
0.9455

	
0.9444

	
0.9449

	
0.9450




	
0.9113

	
0.9125

	
0.9303

	
0.9281

	
0.9289




	
House

	
37.34

	
39.43

	
39.86

	
38.97

	
39.94




	
0.9164

	
0.9546

	
0.9568

	
0.9498

	
0.9584




	
0.9383

	
0.9468

	
0.9535

	
0.9395

	
0.9442




	
Peppers

	
36.70

	
37.81

	
38.10

	
37.98

	
38.15




	
0.9409

	
0.9550

	
0.9558

	
0.9562

	
0.9551




	
0.9361

	
0.9378

	
0.9407

	
0.9508

	
0.9506




	
Straw

	
34.40

	
35.49

	
35.43

	
35.36

	
35.52




	
0.9813

	
0.9850

	
0.9848

	
0.9846

	
0.9864




	
0.9200

	
0.9218

	
0.9198

	
0.9143

	
0252




	
Hill

	
35.53

	
37.00

	
37.13

	
37.03

	
37.18




	
0.9085

	
0.9423

	
0.9427

	
0.9437

	
0.9431




	
0.8740

	
0.9181

	
0.9266

	
0.9216

	
0.9256




	
Woman

	
36.06

	
37.26

	
37.45

	
37.33

	
37.42




	
0.9056

	
0.9336

	
0.9325

	
0.9347

	
0.9329




	
0.9104

	
0.9291

	
0.9343

	
0.9306

	
0.9331




	
Average

	
36.024

	
37.449

	
37.62

	
37.47

	
37.67




	
0.9396

	
0.95878

	
0.9593

	
0.9593

	
0.9597




	
0.9215

	
0.92895

	
0.9432

	
0.9336

	
0.9421




	
Images

	
(b) [image: there is no content]




	
NLM

	
KSVD

	
BM3D

	
EPLL

	
SC-SR




	
Baboon

	
25.95

	
28.42

	
28.67

	
28.70

	
28.77




	
0.6800

	
0.8227

	
0.8327

	
0.8421

	
0.8388




	
0.7051

	
0.8234

	
0.8187

	
0.8117

	
0.7995




	
Fingerprint

	
27.67

	
30.06

	
30.29

	
29.82

	
30.41




	
0.8935

	
0.9462

	
0.9495

	
0.9462

	
0.9510




	
0.6968

	
0.7075

	
0.7760

	
0.7761

	
0.7946




	
Airplane

	
31.31

	
33.60

	
33.89

	
33.78

	
33.97




	
0.8756

	
0.9100

	
0.9162

	
0.9163

	
0.9163




	
0.7677

	
0.8095

	
0.8240

	
0.8540

	
0.8482




	
Monarch

	
29.73

	
31.45

	
31.97

	
32.06

	
32.10




	
0.8999

	
0.9282

	
0.9384

	
0.9379

	
0.9407




	
0.9016

	
0.9226

	
0.9281

	
0.9397

	
0.9386




	
Lena

	
31.45

	
33.73

	
34.25

	
33.84

	
34.12




	
0.8454

	
0.8860

	
0.8953

	
0.8893

	
0.8928




	
0.6457

	
0.7552

	
0.7920

	
0.8185

	
0.8093




	
House

	
32.64

	
34.34

	
34.96

	
34.12

	
35.02




	
0.8561

	
0.8778

	
0.8901

	
0.8768

	
0.8922




	
0.7430

	
0.8541

	
0.8878

	
0.8749

	
0.8769




	
Peppers

	
30.23

	
32.25

	
32.69

	
32.55

	
32.64




	
0.8624

	
0.8998

	
0.9064

	
0.9054

	
0.9050




	
0.8123

	
0.8260

	
0.8408

	
0.8869

	
0.8661




	
Straw

	
26.67

	
28.57

	
28.65

	
28.53

	
28.72




	
0.8661

	
0.9270

	
0.9291

	
0.9281

	
0.9350




	
0.6833

	
0.7960

	
0.8049

	
0.8060

	
0.7952




	
Hill

	
28.89

	
31.45

	
31.85

	
31.69

	
31.88




	
0.7270

	
0.8227

	
0.8394

	
0.8382

	
0.8428




	
0.5812

	
0.7682

	
0.7800

	
0.8013

	
0.7959




	
Woman

	
29.91

	
31.92

	
32.42

	
32.23

	
32.38




	
0.7860

	
0.8433

	
0.8545

	
0.8537

	
0.8543




	
0.6355

	
0.7834

	
0.8018

	
0.8363

	
0.8323




	
Average

	
29.45

	
31.58

	
31.96

	
31.73

	
32.00




	
0.8292

	
0.8864

	
0.8952

	
0.8934

	
0.8969




	
0.7172

	
0.8046

	
0.8254

	
0.8405

	
0.8357




	
Images

	
(c) [image: there is no content]




	
NLM

	
KSVD

	
BM3D

	
EPLL

	
SC-SR




	
Baboon

	
22.85

	
25.79

	
26.04

	
26.18

	
26.13




	
0.4955

	
0.7081

	
0.7300

	
0.7483

	
0.7300




	
0.4036

	
0.7245

	
0.7174

	
0.7245

	
0.7403




	
Fingerprint

	
24.32

	
27.30

	
27.72

	
27.14

	
27.79




	
0.7979

	
0.8984

	
0.9117

	
0.9050

	
0.9117




	
0.5974

	
0.6371

	
0.7034

	
0.6772

	
0.7321




	
Airplane

	
28.17

	
30.97

	
31.44

	
31.27

	
31.45




	
0.8286

	
0.8719

	
0.8833

	
0.8794

	
0.8865




	
0.6036

	
0.7306

	
0.7419

	
0.7904

	
0.7638




	
Monarch

	
26.43

	
28.72

	
29.31

	
29.33

	
29.44




	
0.8336

	
0.8880

	
0.9031

	
0.9001

	
0.9045




	
0.8066

	
0.8532

	
0.8821

	
0.9024

	
0.9076




	
Lena

	
28.73

	
31.34

	
32.05

	
31.59

	
31.98




	
0.7964

	
0.8428

	
0.8607

	
0.8502

	
0.8615




	
0.4242

	
0.6420

	
0.6885

	
0.7259

	
0.7178




	
House

	
29.08

	
32.09

	
32.93

	
32.13

	
32.96




	
0.8114

	
0.8452

	
0.8595

	
0.8471

	
0.8604




	
0.5850

	
0.7751

	
0.8319

	
0.8077

	
0.8202




	
Peppers

	
26.79

	
29.68

	
30.21

	
30.07

	
30.18




	
0.8023

	
0.8564

	
0.8687

	
0.8652

	
0.8668




	
0.6232

	
0.7385

	
0.7617

	
0.8168

	
0.791




	
Straw

	
21.98

	
25.71

	
25.92

	
25.80

	
25.90




	
0.6225

	
0.8509

	
0.8631

	
0.8607

	
0.8739




	
0.6160

	
0.7132

	
0.7162

	
0.7001

	
0.7155




	
Hill

	
26.41

	
29.22

	
29.81

	
29.61

	
29.83




	
0.6400

	
0.7406

	
0.7748

	
0.7688

	
0.7721




	
0.3723

	
0.6441

	
0.6607

	
0.6947

	
0.6723




	
Woman

	
27.14

	
29.66

	
30.29

	
30.04

	
30.25




	
0.7245

	
0.7853

	
0.8069

	
0.7995

	
0.8053




	
0.4585

	
0.6492

	
0.6854

	
0.7579

	
0.6990




	
Average

	
26.19

	
29.05

	
29.57

	
29.32

	
29.59




	
0.7353

	
0.8288

	
0.8462

	
0.8424

	
0.8473




	
0.5490

	
0.7108

	
0.7389

	
0.7598

	
0.7560




	
Images

	
(d) [image: there is no content]




	
NLM

	
KSVD

	
BM3D

	
EPLL

	
SC-SR




	
Baboon

	
21.65

	
23.57

	
23.88

	
24.03

	
24.01




	
0.4072

	
0.5570

	
0.6029

	
0.6189

	
0.6057




	
0.2764

	
0.5428

	
0.5252

	
0.5865

	
0.5758




	
Fingerprint

	
21.31

	
24.71

	
25.29

	
24.72

	
25.45




	
0.6613

	
0.8179

	
0.8587

	
0.8433

	
0.8563




	
0.5515

	
0.6274

	
0.6179

	
0.5513

	
0.6536




	
Airplane

	
25.32

	
28.53

	
29.06

	
28.98

	
29.13




	
0.7797

	
0.8231

	
0.8401

	
0.8335

	
0.8515




	
0.4750

	
0.6135

	
0.6570

	
0.7161

	
0.6792




	
Monarch

	
23.12

	
26.56

	
26.72

	
27.03

	
26.77




	
0.7517

	
0.8344

	
0.8485

	
0.8487

	
0.8521




	
0.6844

	
0.8143

	
0.8259

	
0.8537

	
0.8128




	
Lena

	
26.53

	
29.06

	
29.86

	
29.43

	
29.92




	
0.7511

	
0.7928

	
0.8159

	
0.8005

	
0.8253




	
0.3266

	
0.4858

	
0.5677

	
0.6164

	
0.5769




	
House

	
25.96

	
29.59

	
30.64

	
29.74

	
30.71




	
0.7569

	
0.7996

	
0.8256

	
0.8020

	
0.8356




	
0.4821

	
0.6676

	
0.7350

	
0.7058

	
0.7229




	
Peppers

	
23.71

	
27.33

	
27.79

	
27.59

	
27.68




	
0.7328

	
0.8046

	
0.8181

	
0.8134

	
0.8223




	
0.4603

	
0.6523

	
0.6862

	
0.7412

	
0.6686




	
Straw

	
19.66

	
22.93

	
23.19

	
23.28

	
23.38




	
0.4039

	
0.6928

	
0.7435

	
0.7397

	
0.7425




	
0.5265

	
0.5529

	
0.5933

	
0.5560

	
0.5950




	
Hill

	
24.71

	
27.15

	
27.93

	
27.76

	
28.05




	
0.5766

	
0.6562

	
0.7053

	
0.6963

	
0.7039




	
0.2446

	
0.4413

	
0.5207

	
0.5629

	
0.5388




	
Woman

	
25.01

	
27.61

	
28.31

	
28.08

	
28.38




	
0.6722

	
0.7258

	
0.7501

	
0.7383

	
0.7556




	
0.3546

	
0.5039

	
0.5578

	
0.6506

	
0.5694




	
Average

	
23.70

	
26.70

	
27.27

	
27.06

	
27.35




	
0.6493

	
0.7504

	
0.7809

	
0.7735

	
0.7851




	
0.4382

	
0.5902

	
0.6287

	
0.6541

	
0.6393




	
Images

	
(e) [image: there is no content]




	
NLM

	
KSVD

	
BM3D

	
EPLL

	
SC-SR




	
Baboon

	
20.95

	
22.08

	
22.38

	
22.48

	
22.56




	
0.3568

	
0.4356

	
0.4685

	
0.4890

	
0.4901




	
0.2680

	
0.3077

	
0.3173

	
0.4114

	
0.4358




	
Fingerprint

	
18.95

	
21.77

	
23.59

	
22.65

	
23.63




	
0.4952

	
0.6804

	
0.7974

	
0.7597

	
0.7900




	
0.5073

	
0.4908

	
0.5027

	
0.4514

	
0.5731




	
Airplane

	
23.27

	
26.01

	
27.01

	
26.95

	
27.13




	
0.7273

	
0.7602

	
0.7860

	
0.7767

	
0.8163




	
0.3625

	
0.4633

	
0.5389

	
0.6253

	
0.5881




	
Monarch

	
20.43

	
24.22

	
24.58

	
24.72

	
24.81




	
0.6503

	
0.7618

	
0.7777

	
0.7795

	
0.8006




	
0.5406

	
0.7315

	
0.7300

	
0.7614

	
0.7472




	
Lena

	
24.59

	
26.90

	
27.98

	
27.60

	
28.05




	
0.6999

	
0.7328

	
0.7636

	
0.7465

	
0.7871




	
0.2777

	
0.3298

	
0.4394

	
0.5013

	
0.4753




	
House

	
23.59

	
26.75

	
28.49

	
27.90

	
28.53




	
0.6967

	
0.7252

	
0.7768

	
0.7636

	
0.7669




	
0.3941

	
0.4638

	
0.6288

	
0.6379

	
0.6204




	
Peppers

	
21.15

	
25.02

	
25.51

	
25.67

	
25.45




	
0.6634

	
0.7386

	
0.7479

	
0.7621

	
0.7717




	
0.3990

	
0.5282

	
0.5401

	
0.6354

	
0.5801




	
Straw

	
18.59

	
20.51

	
21.26

	
20.99

	
21.39




	
0.2785

	
0.4726

	
0.5824

	
0.5521

	
0.5970




	
0.4419

	
0.4592

	
0.4804

	
0.4240

	
0.4837




	
Hill

	
23.54

	
25.61

	
26.35

	
26.20

	
26.29




	
0.5283

	
0.5928

	
0.6332

	
0.6262

	
0.6355




	
0.2153

	
0.2665

	
0.4002

	
0.4424

	
0.4223




	
Woman

	
23.47

	
25.86

	
26.55

	
26.43

	
26.49




	
0.6251

	
0.6701

	
0.6948

	
0.6810

	
0.7063




	
0.3299

	
0.3405

	
0.4232

	
0.5175

	
0.4604




	
Average

	
21.85

	
24.47

	
25.37

	
25.16

	
25.43




	
0.5722

	
0.6570

	
0.7028

	
0.6936

	
0.7162




	
0.3736

	
0.4381

	
0.5001

	
0.5408

	
0.5386




	
Images

	
(f) [image: there is no content]




	
NLM

	
KSVD

	
BM3D

	
EPLL

	
SC-SR




	
Baboon

	
20.68

	
21.40

	
21.64

	
21.68

	
21.71




	
0.3379

	
0.3860

	
0.4049

	
0.4186

	
0.4137




	
0.2387

	
0.2205

	
0.2224

	
0.2889

	
0.2988




	
Fingerprint

	
17.75

	
19.55

	
22.39

	
21.12

	
22.39




	
0.3781

	
0.5355

	
0.7478

	
0.6770

	
0.7347




	
0.4376

	
0.4397

	
0.4699

	
0.3869

	
0.4956




	
Airplane

	
22.05

	
24.18

	
25.54

	
25.61

	
25.63




	
0.6723

	
0.6981

	
0.7453

	
0.7292

	
0.7902




	
0.3280

	
0.3511

	
0.4741

	
0.5509

	
0.5399




	
Monarch

	
22.52

	
22.52

	
23.20

	
23.42

	
23.29




	
0.5569

	
0.7050

	
0.7237

	
0.7313

	
0.7553




	
0.4911

	
0.6201

	
0.6733

	
0.7203

	
0.6947




	
Lena

	
23.41

	
25.44

	
26.65

	
26.14

	
26.71




	
0.6597

	
0.6846

	
0.7225

	
0.6952

	
0.7568




	
0.2670

	
0.2793

	
0.3720

	
0.4114

	
0.3997




	
House

	
22.29

	
24.80

	
26.94

	
26.22

	
26.74




	
0.6442

	
0.6584

	
0.7379

	
0.7098

	
0.7669




	
0.3322

	
0.3521

	
0.5329

	
0.5557

	
0.5204




	
Peppers

	
19.78

	
22.97

	
24.12

	
24.19

	
24.06




	
0.6038

	
0.6710

	
0.7006

	
0.7103

	
0.7391




	
0.3690

	
0.4105

	
0.4783

	
0.5880

	
0.5396




	
Straw

	
18.21

	
19.22

	
19.94

	
19.80

	
20.01




	
0.2248

	
0.3306

	
0.4410

	
0.4210

	
0.4584




	
0.3582

	
0.3758

	
0.3812

	
0.3344

	
0.4187




	
Hill

	
22.84

	
24.66

	
25.28

	
25.19

	
25.23




	
0.4993

	
0.5544

	
0.5865

	
0.5784

	
0.5967




	
0.1925

	
0.2137

	
0.3179

	
0.3352

	
0.3349




	
Woman

	
22.58

	
24.55

	
25.39

	
25.29

	
25.24




	
0.5967

	
0.6279

	
0.6551

	
0.6419

	
0.6739




	
0.2998

	
0.2612

	
0.3610

	
0.4118

	
0.3976




	
Average

	
21.21

	
22.93

	
24.10

	
23.87

	
24.11




	
0.5174

	
0.5852

	
0.6465

	
0.6313

	
0.6686




	
0.3314

	
0.3524

	
0.4283

	
0.4584

	
0.4640










From Table 1, we could observe three points. Firstly, the proposed SC-SR algorithm achieved much better PSNR, SSIM and FOM results than NLM and K-SVD in all cases. Secondly, SC-SR had higher PSNR and SSIM values than EPLL in most cases. Moreover, EPLL acquired the best FOM results among the five algorithms, and SC-SR was only slightly inferior to EPLL. Thirdly, SC-SR obtained better SSIM and FOM results than BM3D in most cases. Meanwhile, when the noise variance was low, the PSNR results of SC-SR were close to BM3D; when the noise variance was high, the PSNR results of SC-SR were obviously better than BM3D, since BM3D trended to suffer from artifacts in this case. According to the these points, we can come to the conclusion that SC-SR is capable of stronger comprehensive ability in reservation of structural, edge and grayscale information and does better in denoising images in comparison with the other algorithms. In order to further testify the conclusions, we made a mean processing for the data results in Table 1, and showed the result in Figure 11.


Figure 11. Comparison of the total average PSNR, total average SSIM and total average FOM for different denoising algorithms.



[image: Applsci 07 00436 g011]






In Figure 11, we demonstrated the total averages of the PSNR, SSIM and FOM for NLM, K-SVD, BM3D, EPLL and SC-SR. For each algorithm, the total average PSNR was calculated by the mean of the average PSNR results with different noise variances (Table 1), and the total average SSIM and the total average FOM were calculated in the same way. As seen in Figure 11, it was obvious that SC-SR achieved the highest total average PSNR and total average SSIM, while EPLL attained the highest total average FOM. SC-SR was close to EPLL and higher than BM3D for the total average FOM. BM3D had a similar total average PSNR as SC-SR, but a lower total average SSIM and total average FOM than SC-SR. EPLL had higher total average FOM, but lower total average PSNR and total average SSIM than SC-SR and BM3D. In brief, among the five algorithms, BM3D possessed the best capacity for removing noise and preserving structural information, and the second-best capacity for preserving edge areas. In general, SC-SR could not only effectively remove the noise, but also preserve the image edge regions and structural information in the round.



All experiments were run under the MATLAB 2014a environment on a machine with Intel(R) Xeon(R) E5-2690 CPU of 2.60 GHz and 96.0 GB RAM. Owing to compiled C++ mex-function and parallelization implementation, BM3D proved to be the fastest algorithm. Furthermore, NLM benefited from compiled C++ mex-function, and turned into the second-fastest algorithm. Other algorithms suffered from high computational cost based on their computation complexity, as well as their implementation, which simply uses C language with MATLAB. The test revealed that EPLL was about two times slower than K-SVD, and SC-SR suffered from slightly higher computational costs than EPLL due to the involvement of several subtasks and iterative shrinkage operations. However, several accelerating techniques, such as the accelerating techniques described in References [23], could be used to accelerate the convergence of the proposed algorithm. Additionally, the compiled C++ mex-function and parallelization implementation could be adopted to dispose of multiple subtasks to improve the speed of the proposed algorithm. Hence, the computational costs of the proposed algorithm can be further reduced.





5. Conclusions


In this paper, we presented a new image denoising algorithm which made full use of image priors, including the NSS prior in the spatial domain and sparse transform domain, edges and structural information, and sparsity. It was accomplished in two successive steps based on superpixel clustering and sparse representation. First, we learned the NSS prior in mid-level vision by clustering superpixels. Since superpixel clustering takes edge and structural information into account, a better exploitation of the NSS prior could be obtained. Meanwhile, multiple features were selected to describe a superpixel in the clustering process, which also facilitated a good NSS prior. Second, we took advantage of the NSS prior in the sparse transform domain by using a weighted average sparse coefficient from similar patches to improve the effectiveness of the sparse coefficient for each patch. Experiments conducted on a collection of standard test images demonstrated that the proposed algorithm not only effectively removed the noise, but also provided a better restoration of both the structural information and the edge region algorithms, and overall produced less visual artifacts than other competing algorithms.
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