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Abstract: Good learning image priors from the noise-corrupted images or clean natural images are
very important in preserving the local edge and texture regions while denoising images. This paper
presents a novel image denoising algorithm based on superpixel clustering and sparse representation,
named as the superpixel clustering and sparse representation (SC-SR) algorithm. In contrast to
most existing methods, the proposed algorithm further learns image nonlocal self-similarity (NSS)
prior with mid-level visual cues via superpixel clustering by the sparse subspace clustering method.
As the superpixel edges adhered to the image edges and reflected the image structural features,
structural and edge priors were considered for a better exploration of the NSS prior. Next, each similar
superpixel region was regarded as a searching window to seek the first L most similar patches to each
local patch within it. For each similar superpixel region, a specific dictionary was learned to obtain the
initial sparse coefficient of each patch. Moreover, to promote the effectiveness of the sparse coefficient
for each patch, a weighted sparse coding model was constructed under a constraint of weighted
average sparse coefficient of the first L most similar patches. Experimental results demonstrated that
the proposed algorithm achieved very competitive denoising performance, especially in image edges
and fine structure preservation in comparison with state-of-the-art denoising algorithms.
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1. Introduction

As one of the most fundamental low-level vision problems, image denoising has been widely
studied in computer vision, serving as the foundation and precondition for image processing, such as
visual saliency detection, image segmentation, image classification, etc. In general, image denoising
aims at recovering the clean image from the noise-corrupted image while preserving, as much as
possible, the vital image features. During the past few decades, image denoising has drawn much
research attention, resulting in a variety of efficient methods. Traditional image denoising methods
include the median filter, the Gaussian filter, methods based on the total variation, wavelet threshold
methods, etc. However, most of these methods frequently ignore the details of image features that
include structure, texture, and edge features. To some extent, the ignorance of image details makes
these methods suffer from many defects, comprising of over-smoothing, side effect, artifacts, loss of
structure and texture features, ambiguousness of edges, etc.

Motivated by the defects in traditional image denoising methods, significant progress has been
made in recent years. As image denoising is typically an ill-posed problem, its solution might not be
unique. Based on good learning image priors from noise-corrupted images or clean natural images,
numerous methods have been proposed to obtain a better solution to the image denoising problem.
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In particular, nonlocal self-similarity (NSS) and sparsity are two popular image priors with great
potential that lead to state-of-the-art performance. Based on the fact that local image details may
appear multiple times across the entire image, NSS prompts a series of excellent algorithms for image
denoising. The nonlocal means (NLM) [1] algorithm computed a noise-free pixel as the weighted
average of pixels with similar neighborhoods in the fixed-size rectangle searching window, and
achieved significant enhancement in denoising performance. Inspired by the success of NLM method,
Dabov et al. [2] proposed a remarkable collaborative image denoising scheme, called block-matching
and 3D filtering (BM3D). In this scheme, nonlocal similar patches were grouped into a 3D cube and
collaborative filtering was conducted in the sparse 3D transform domain. The BM3D algorithm ranks
among the best performing methods, yet its implementation is complex. Furthermore, the BM3D
algorithm is based on classical fixed orthogonal dictionaries, thus lacking data-adaptability. Building
on the principle of sparse and redundant representations [3], another category of methods has been
developed, which can learn data-adaptive dictionaries for denoising. The K-SVD algorithm [4] has
boosted denoising performance significantly. Mairal et al. [5] proposed the learned simultaneous
sparse coding (LSSC) algorithm, which used nonlocal self-similarity (NSS) to improve sparse models
with simultaneous sparse coding. In Reference [6], Chatterjee et al. clustered image into K groups to
enhance the sparse representation via locally learned dictionaries, which took advantage of geometrical
structure feature and the NSS prior in spatial domain. Subsequently, Dong et al. [7] observed that
the difference between the representation coefficients of original and degraded images was sparse,
and added a restriction to ensure the minimization of the l1 norm for the difference. Thus, this model
achieved good results in image denoising. By assuming that the matrix of nonlocal similar patches had
a low-rank structure, the low-rank minimization based methods [8,9] also achieved very competitive
denoising results. Zhang et al. [10] later proposed a patch group (PG) based NSS prior learning scheme
to learn explicit NSS models from natural images for high performance denoising, resulting in high
peak signal to noise ratio (PSNR) measurements.

Though NSS in low-level vision cues has been widely utilized to improve image denoising
performance in most existing methods, we argue that such utilizations of NSS are not sufficiently
effective. These methods learn NSS prior via clustering local size-fixed patches extracted from an
image, which may neglect the image edge and structural features to some extent. Moreover, in most
existing methods, the NSS prior is usually exploited by searching for nonlocal similar patches to a
local patch across a size-fixed square searching window, which always leads to massive workload
and ignores the similarities between pairs of patches with large spatial distances. Since most existing
methods do not make full use of NSS prior in low-level vision cues, it is necessary to learn the prior in
mid-level vision cues for a better exploration of the NSS prior.

With the above considerations, this paper proposes to further learn NSS in mid-level vision cues
via superpixel clustering using the sparse subspace clustering method. Since the superpixel edges
adhere to the image edges and reflect the image structural features, structural and edge information
can be considered for a better exploration of the NSS prior by superpixel clustering. Furthermore, this
paper proposes an improved algorithm for image denoising by taking advantage of multiple priors
to achieve a better denoising performance, including the NSS prior in the spatial domain and sparse
transform domain, sparsity, structure, and edge prior. In the proposed algorithm, we first divided the
image into multiple superpixels by the simple linear iteration clustering (SLIC) method and grouped
superpixels to generate irregular regions by the sparse subspace clustering method with local features.
Regarding these regions as searching windows, we sought the first L most similar patches to each
local patch. Next, a data-adaptability dictionary for each region was learned to obtain the initial
sparse coefficients of local patches extracted from the images. Finally, to improve the effectiveness of
the sparse coefficient for each patch, a weighted sparse coding model was constructed by adding a
weighted average sparse coefficient of the first L most similar patches to the sparse representation
model. Once final sparse coefficients for all patches were acquired, the noise-free image was obtained.
Benefiting from two factors, the proposed algorithm achieves enhanced image denoising performance.
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First, learning the NSS in mid-level vision cues via superpixel clustering promotes a better exploitation
of the NSS prior. Furthermore, regarding similar superpixel regions as a searching window can
avoid the ignorance of similarities between pairs of patches with large spatial distances, which also
contributes to the better exploitation of the NSS prior. Second, a weighted sparse coding model was
established, which reduced the impact of noise on sparse representation and improved the accuracy of
sparse coefficient for each patch.

The rest of this paper is organized as follows. In Section 2, the basics of the proposed algorithm
are described, including the SLIC algorithm, sparse subspace clustering algorithm and sparse
representation algorithm. In Section 3, we introduce the proposed denoising model in detail. Next,
experimental results and discussion are presented in Section 4. Finally, we make our conclusions in
Section 5.

2. Basics of Superpixel Clustering and Sparse Representation (SC-SR) Algorithm

This paper implements a novel image denoising algorithm based on the NSS prior in mid-level
vision cues and weighted sparse coding. Before analyzing the proposed denoising algorithm, it is
essential to introduce three basic algorithms which play vital roles in realizing the proposed algorithm.

2.1. Simple Linear Iterative Clustering Algorithm for Segmentation

this paper, a simple linear iterative clustering (SLIC) algorithm was selected to generate compact
and nearly uniform superpixels, since it has better performance in running speed, superpixel
compactness and contour preservation in comparison with other methods [11]. SLIC generates
superpixels by clustering pixels based on their similarity in color and proximity in the image plane [12].
This method seamlessly applies to color as well as grayscale images via replacing color similarity with
gray information similarity. In this paper, experiments were conducted on grayscale images.

SLIC is essentially a local k-means clustering method. Given the total number of image pixels Np

and the desired number of superpixels Ns, cluster centers are sampled at a regular grid S =
√

Np/Ns .
To speed up the generation of superpixels, SLIC assigns each pixel pi to the nearest cluster centers
within the local region of the pixel pi rather than the whole image plane. The size of the local region is
2S× 2S that takes the pixel pi as the center.

For grayscale images, gray and space information are taken into consideration for describing
a pixel as a vector. Instead of using a simple Euclidean norm, the distance measure Ds is defined
as follows:

Ds = dg +
m
S
× dxy, (1)

where dg is the gray distance, and dxy is the plane distance normalized by the grid interval S. A variable
m is introduced to control the compactness of a superpixel. The greater the value of m, the more spatial
is emphasized and the more compact the cluster, and we empirically set m to 10 [12]. The values of dg

and dxy are obtained as follows:

dg =
√(

gi − gj
)2, (2)

dxy =
√(

xi − xj
)2

+
(
yi − yj

)2, (3)

where gi and gj are the gray values of pixel i and j; xi and xj are the x-coordinate values of pixel i and
j; and yi and yj are the y-coordinate values of pixel i and j.

Given the desired number of superpixels Ns, SLIC begins by sampling M regularly spaced cluster

centers, which are denoted by feature vectors
{

Ck = [gk, xk, yk]
T
}M

k=1
. To avoid placing a cluster center

at an edge pixel or a noisy pixel, the cluster center is moved to the lowest gradient position in a 3× 3
neighborhood. Next, each pixel in the image is associated with the nearest cluster center within the
local area of the pixel by adopting k-means clustering method.
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The segmentation results of SLIC on some benchmark test images are displayed in Figure 1.
As shown, SLIC generates compact and nearly uniform superpixels and achieves a good description of
the image edges.
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2.2. Sparse Subspace Clustering for Noisy Data

Sparse subspace clustering is an outstanding clustering method based on sparse representation,
which is able to handle missing or corrupted data. It is based on the fact that each data point in a
union of subspaces can be represented as a linear or affine combination of other points. Points are
determined to lie in the same subspace by searching for the sparsest combination, which leads to a
sparse similarity matrix [13]. Based on the similarity matrix, spectral clustering is adopted to obtain
the final clustering result.

Given a data matrix M = [m1, m2, . . . , mn], the sparse representation of each point mi ∈ Rd can be
obtained by the following optimal problem:

min||∂i||1 subject to mi = M∂i (4)

Matrix Mî ∈ Rd×(n−1) is defined as the matrix obtained from M by removing its i-th column,
where the subscript î means that there is no i. Point mi has a sparse representation with respect to the
matrix Mî. Next, the optimal problem is equal to the following problem:

min||ci||1 subject to mi = Mîci and ci
TI = 1, (5)

where I is a unit vector. Taking noise into consideration, let mi = mi + ηi. be the i-th corrupted data
point, where ||ηi||2 ≤ ε and ε are the noise variance. The optimal problem turns to:

min||ci||1 subject to ||mi −Mîci||2 ≤ ε and ci
TI = 1 (6)

Lasso optimization method [14] is used for recovering the optimal sparse solution from the above
equation. With the sparsest representation of each point, a coefficient matrix C (C = [c1 , c2, . . . , cn] )
can be obtained, which describes the connections between points. Taking the matrix C to establish a
directed graph G = (V, E), the vertices of the graph V are the n data points and the adjacency matrix is
the coefficient matrix C. Moreover, to make G balanced, a new adjacency matrix C̃ (C̃ij =

∣∣Cij
∣∣+ ∣∣Cji

∣∣) is
built. Subsequently, the Laplacian matrix L is formed by L = Da− C̃, where Da ∈ RN×N is a diagonal
matrix and meets the condition of Daii = ∑ jC̃ij. Finally, spectral clustering method is applied to cluster
the eigenvector of the Laplacian matrix to obtain the final cluster result for the whole data points.

In this paper, sparse subspace clustering is adopted to effectively cluster superpixels into regions
of similar geometric structure aiming to further learn the NSS prior in mid-level vision cues even in
the presence of noise. It is known that better learning of the NSS prior can improve the performance of
denoising algorithms based on structure clustering and sparse representation. Instead of clustering
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size-fixed patches that are inflexibly extracted from images, clustering superpixels takes image edge
and structure features into consideration, which leads to a better learning result of the NSS prior.

2.3. Sparse Representation Based Image Denoising

In general, sparse representation works in a patch-based framework, where an image is
represented by sparse coefficients of its overlapping patches. Next, the recovery of image is achieved
by averaging the sparse representation of all overlapping patches.

Given an image Y with noise, the column vector of b× b patch at the location of i, is denoted as
yi = RiY, where Ri is a binary matrix aiming to extract an overlapping patch and convert it to a column
vector. The sparse coefficient α̂i of a patch is realized by the optimal solution to the following equation:

α̂i = argmin
αi

1
2
||yi −Dαi||22 + ζ||αi||p, (7)

where p = 0, 1, D is known as dictionary, and ζ is a regularization parameter to keep a balance between
sparsity and reconstruction error. Once α̂i is found, the denoising result ỹi of the image patch yi can
be computed by ỹi = Dαi. A challenging issue in finding the sparse coefficient α̂i is to choose the
dictionary. In brief, a dictionary is a matrix, which is usually obtained by a specific transformation or
learned from a large set of clean patches or noisy patches. When the dictionary and sparse coefficients
are obtained, the denoised image Ỹ can be reconstructed by aggregating all of the sparse representation
of patches as follows [9]:

Ỹ =
(

RT
i Ri

)−1(
∑ iRT

i Dαi

)
, (8)

Nonetheless, only the local sparse representation model is employed in denoising problem, which
may not lead to a preferable enough solution. Herein, this paper combines good image priors from the
noise-corrupted image with sparse representation for a better solution to image denoising problem.
The NSS prior in the spatial domain was learned by superpixel clustering, which also generated
irregular regions consisting of similar superpixels. By regarding these regions as searching windows,
similar patches to a local patch within each region were found. The NSS prior in sparse transform
domain utilized a constraint that the weighted average of sparse coefficients for the acquired similar
patches of each local patch constrains the sparse coefficient of the local patch to an optimal solution.
The NSS priors in both the spatial domain and sparse transform domain were added into the sparse
representation model to enhance the image denoising performance of our proposed algorithm. Further
details of the proposed algorithm are explained in the next section.

3. Proposed SC-SR Algorithm

In this section, the image denoising model based on superpixel clustering and sparse
representation is presented. We first utilized the SLIC algorithm to generate M superpixels that
include similar pixels. Next, the NSS prior was further exploited by making use of the sparse subspace
clustering algorithm with local features to cluster similar superpixels into a group. In the abnormal
region of similar superpixels group, we extracted overlapping patches for training dictionary and
sought similar patches to each local patch. Finally, a weighted sparse coding was adopted for better
sparse representation. The following is a detailed introduction on the proposed algorithm.

3.1. Superpixels Clustering

the outset, SLIC is used to generate M superpixels, and a superpixel is described as a column
vector u with several features. Each image pixel within a superpixel can be represented by a
seven-dimensional feature vector f:

f = [g, IX , IY, IXX , IYY, β× x, β× y]T , (9)
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where g is the gray value of the pixel; IX, IY, IXX, IYY are the corresponding first or second order
derivatives of image intensities in both X and Y axes; and x, y are the coordinates of the pixel in an
image. The parameter β aims to make a balance among image gray, gradient, and spatial features. If we
use equal weight (β = 1) for the spatial feature, similarities between pairs of patches with large spatial
distances may be lost. Thus, we empirically chose β = 0.5 to alleviate this problem [15]. In addition,
the image spatial, gray and gradient values were normalized.

For a given superpixel, we computed the mean vector u of all pixels within it as its feature vector:

u =
1
Γ ∑ Γ

j=1fj, (10)

where Γ is the size of the superpixel and fj indicates a vector of a pixel within the superpixel.
We considered these Ns superpixels as a collection of data points drawn from a union of K

independent affine subspaces. The sparse subspace clustering method was adopted to cluster the
collection of data points into K groups. After transforming every superpixel into a column vector, the
collection of data points U = {ui}M

i=1 for clustering was obtained. For each superpixel, its covariance
matrix Mc was calculated by:

Mc =

 δ11 · · · δ17
...

. . .
...

δ71 · · · δ77

, (11)

δij =
1

Γ− 1
×
(
∑ Γ

k=1

(
fk
i − ui

)
×
(

fk
j − uj

))
, (12)

where fk
i indicates the i-th feature of the k-th pixel of the current superpixel and ui indicates the i-th

element of the feature vector of the superpixel.
For two superpixels, their similarity can be computed based on the corresponding covariance

matrices, Mc1 and Mc2:
W(Mc1, Mc2) = e−ρd(Mc1,Mc2), (13)

d(Mc1, Mc2) =
√

∑ 7
i=1ln2(λi(Mc1, Mc2)), (14)

where WM(c1, Mc2 ) is the similarity of the two superpixels; λi(Mc1, Mc2) is the generalized
eigenvalues from |λMc1 −Mc2| = 0; and ρ is a small constant (we experimentally set ρ to 0.5 in
our experiment) [15].

To better characterize the relationship between the superpixels and alleviate the sensitivity of
sparse coding to noise, a Laplacian regularization term [15] based on the similarity matrix W was
introduced into Equation (6) to ensure the similarity of sparse coefficients among similar superpixels.
Next, Equation (6) is equal to the following problem:

min||yi − Yîci||2 + µ||ci||1 + γ
2 ∑ij ||ci − cj||2Wij

= min||yi − Yîci||2 + µ||ci||1 + γtr
(

CLCT
)

subject toci
TI = 1,

(15)

where L is the Laplacian matrix defined as L = Da −W, and Da is the diagonal matrix with row sums,
Dii = ∑ jWij The parameter γ is the weighted parameter that balances the effect of the Laplacian
regularization term (γ was empirically set to 0.2 in our experiments) [15]. By solving Equation (15), a
sparse coefficients matrix C = [ĉ1, ĉ2, . . . , ˆcM] was obtained, which was not symmetric. Therefore, we
updated it by Cij = Cji =

∣∣Cij + Cji
∣∣ to make it symmetric. A directed graph G = (V, E) was built by

utilizing the sparse coefficients matrix C. The vertices of the graph V were the data set {ui}M
i=1, and

the new adjacent matrix was A = H− C, where Hii = ∑ jCij The spectral clustering algorithm was
used to segment the graph G to obtain the result of clustering superpixels.

Superpixel clustering learned NSS prior, which contributed to the preservation of structural
information of the denoised image. When the dictionary was learned, the learned NSS prior obtained
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by superpixels clustering added the structural feature and edge feature into the atoms of the dictionary.
The richer the features of the dictionary, the stronger the ability to reconstruct original image.

3.2. Learning Sub-Dictionaries for Each Cluster of Superpixels

In the similar superpixel regions, we extracted overlapping patches centering on each pixels,
where the overlapping patches were all b × b size (b is odd). As for the pixels on the boundary
of the image, we extended them by b/2 pixels in a horizontal and vertical direction by mirroring
pixels to gain the patches centering on them. As shown in Figure 2, the matrix Ma1 was extended
by two elements in a horizontal and vertical direction by mirroring extension, and the matrix Ma2

was obtained. After every patch was transformed into a column vector, K sub-datasets {Mk }K
k=1 were

formed for training sub-dictionaries.
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Since the number of patches in each cluster was limited and patches in Mk had similar patterns, it
was not necessary to learn an over-complete dictionary for each cluster [16]. Therefore, we used the
principal component analysis (PCA) method to learn the compact sub-dictionary for each cluster.

For each sub-dataset Mk, the proposed algorithm applied PCA to compute the principal
components, with the purpose of constructing the sub-dictionaries {Dk }K

k=1. Dk can be constructed by
the optimal solution for the following formulation:(

D̂k, Âk
)
= arg min

Dk ,Ak

{
||Mk −DkAk||22 + λ||Ak||1

}
, (16)

where Ak is the sparse coefficient matrix of Mk over Dk The rank of Mk is denoted by r and the
co-variance matrix of Mk is denoted by ψk We obtained the result of matrix factorization ψk = PT

kΛkPk,
where Pk = [p1, p2, . . . , pr] is the orthogonal transformation matrix and Λk is a diagonal matrix taking
r eigenvalues of ψk as its diagonal elements. If we regard Pk as the dictionary and set Ek = PT

kMk, we
obtain ||Mk − PkEk||22 = ||Mk − PkPT

kMk||22 = 0 Therefore, Equation (16) is only determined by the
sparsity regularization term Ek1, which is constant in this case. To obtain better sub-dictionaries for
sparse representation, we extracted the first τ ∈ [1, r] most important eigenvectors in Pk to form a
dictionary Dτ

k , Dτ
k = [p1, p2, . . . , pτ ], instead of regarding Pk as the dictionary. The sparse coefficient

matrix is denoted by Aτ
k It is known that Ek1 increases when τ increases, while ||Mk −Dl

kAl
k||22

decreases. The optimal solution can be obtained by solving the following problem:

τ̂ = argmin
τ

{
||Mk −Dτ

k Aτ
k ||

2
2 + λ||Aτ

k ||1
}

. (17)

Consequently, we obtained K sub-dictionaries {Dk }K
k=1 for the K sub-datasets {Mk }K

k=1.
In Equation (17), it was verified that some noise can be successfully removed during computing
the local PCA transform of each image patch. In this paper, PCA was applied to each sub-dataset
to construct the dictionary, which was able to reduce not only the computational cost consumed by
dictionary training, but also the noise introduced into the dictionary.
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3.3. Sparse Representation Model for Image Denoising

It was addressed that similar patches shared the same dictionary elements in their sparse
decomposition [5]. In other words, there was NSS in the sparse transform domain as well. The proposed
algorithm takes advantage of that fact to achieve a better sparse representation and improve the
performance of image denoising.

In the previous subsection, we learned a PCA dictionary for each cluster. Given the dictionaries,
the initial sparse coefficients α

(0)
i of all patches within each cluster are found by solving the

minimization problem of Equation (7) in the condition of p = 0 It is known that `0 pseudo norm
regularization term has usually better reconstruction performance than `1 pseudo norm regularization
term [17]. Since `0 minimization problem is NP-hard, greedy approaches are employed to achieve
an approximate solution. One of the most widely used greedy approach is the orthogonal matching
pursuit (OMP) that successively selects the best atom of dictionary minimizing the representation
error until a stopping criterion is satisfied. In our algorithm, we employed a modified version of
OMP, referred to as generalized OMP (GOMP) [18], to obtain the initial sparse coefficients α

(0)
i , which

allowed the selection of multiple atoms per iteration. Simultaneous selection of multiple atoms reduced
the number of iterations and achieved better sparse representation.

After obtaining the initial sparse coefficients α
(0)
i , we exploited the NSS prior in the sparse

transform domain to produce a better estimate of the original image. To begin, we looked for the first
L most similar patches to each patch across the region of similar superpixels. Each pixel in a patch was
denoted as a column vector that is computed by Equation (9), and the patch with the size of b× b was
described as a matrix Pi =

[
fi1

, fi2
, . . . , fib2

]
The similarity between the two patches was measured by

Equation (13) with their covariance matrixes. After obtaining the patches similar to each local patch,
we computed the weighted average of initial sparse coefficients associated with the similar patches as
χi Next, χi was exploited to constrain the sparse coefficient of the local patch to reduce the impact of
noise on sparse representation and achieve a better solution. A better sparse representation coefficient
for each patch yi can be found by:

α̂i = argmin
αi

||yi −Dαi||22 + η||αi − χi||1, (18)

χi = ∑ L
j=1wijα

(0)
j , (19)

where χi is the weighted average of sparse coefficients for the first L most similar patches to the patch
yi and η is a regularization parameter making a balance between sparsity and reconstruction error.
The weight wij of the two patches was computed as follows based on their covariance matrixes Covi
and Covj:

wij =
1

Ai
e−ρd(Covi,Covj), (20)

Ai = ∑ L
j=1e−ρd(Covi,Covj). (21)

Based on the iterative soft-thresholding (IST) method [19], the solution to Equation (18) was
computed by:

α
(t+1)
i = Sτ

(
υ
(t)
i − χi

)
+ χi, (22)

υ
(t)
i α

(t)
i −

1
c
= DT

(
Dα

(t)
i − yi

)
(23)

where Sτ is a soft-thresholding function; t denotes the iteration frequency; and c is a constant to
guarantee the strict convexity of the optimal problem and DTD < c [20]. After J iterations, we can
get preferable sparse coefficients. All patches can be estimated by ŷi = Dα

(J)
i . Since every pixel

admits multiple estimations, its value can be computed by averaging all estimations. When the sparse
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coefficients for all patches within the image were obtained, the whole original image x was obtained
by Equation (8). By using the weighted average sparse coefficients of the similar patches to restrain
the sparse decomposition process of the image patches, the accuracy of the sparse coefficients was is
improved. As a result, the reconstructed image was closer to the original image.

The proposed algorithm is completely demonstrated in Algorithm 1. It makes full use of the NSS
prior both in the spatial domain and sparse transform domains. Clustering in the spatial domain with
mid-level visual cues could better exploit image structure and edges prior in comparison with directly
clustering the size-fixed local patches, which also contributes to the preservation of image edges and
textures. As for the sparse transform domain, to achieve a better solution, the weighted average of the
sparse coefficients for the patches similar to a local patch was utilized to constrain the sparse coefficient
for the local patch. These are all devoted to the high denoising performance of the proposed algorithm.

Algorithm 1. The proposed algorithm called SC-SR

1. Input image Y with white Gaussian noise.
2. Set parameters: noise variance δ, superpixles number Ns, cluster number K, the patch size b× b,

the number L of the first most similar patches, regularity parameters β, ρ, u, γ, λ η, c, J.
3. Adopt SLIC to generate Ns superpixles.
4. Utilize sparse subspace clustering method to group superpixels into K cluster to form

sub-datasets {Mk }K
k=1.

5. Outer loop: For k = 1: K

1© Given sub-dataset Mk, train a dictionary by PCA.

2© Initialize the sparse coefficients α
(0)
i for each patch over its specific dictionary by GOMP.

3© Inner loop: For t = 1: J

Seek for the first L most similar patches in the cluster for each patch, compute the
weighted average of sparse coefficients for the acquired similarity patches and update the

sparse coefficients α
(t)
i = α̂i for the patch by Equations (18) and (19).

End
4© After J iterations, obtain the final sparse coefficients α

(J)
i and the sparse representation

ỹi = Dkα
(J)
i for all patches.

End
6. Reconstruct the image, and output the denoised image Ỹ.

4. Experimental Results

In this section, we validate the performance of the proposed algorithm by conducting extensive
experiments on 10 standard benchmark images shown in Figure 3. In our experiment, we first added
synthetic white Gaussian noise with different variances into the test images. Then the proposed
algorithm and four currently state-of-the-art denoising algorithms, including NLM, K-SVD, BM3D,
expected patch log likelihood (EPLL) [21] algorithms, were used to denoise the test images. Finally, we
compared the proposed algorithm with the fr state-of-the-art algorithms in terms of peak signal to
noise ratio (PSNR), structural similarity (SSIM) [22], figure of merit (FOM) and visual quality.
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4.1. Parameters Setting

The parameters set in our experiment were as follows: the superpixels number Ns was set to
500, the cluster number K was set to 60, the patch size b× b was set to 7× 7, noise variance δ was in
the range of [5, 15, 25, 40, 60, 80], and the number of similar patches L was set to 10. The iteration
number J was set based on the noise level, and we required more iterations for a higher noise level.
From experience, we set the iteration number J to 7, 9, 13 and 16 for δ ≤ 15, 15 < δ ≤ 30, 30 < δ ≤ 60
and δ ≥ 60, respectively. Other regularity parameters were all empirical values as well, where β was
set to 0.5, ρ was set to 0.5, µ was set to 0.01, γ was set to 0.2, λ was set to 0.03, η was set to 0.3 [15,16].

To verify the influence of image patch size b× b on peak signal to noise ratio (PSNR), structural
similarity (SSIM), figure of merit (FOM), 100 test images were selected to calculate the average PSNR,
average SSIM and average FOM with different patch size, when noise variance δ was set to 15. Figure 4
shows the changing trend of the average PSNR, average SSIM and average FOM over the image patch
size. It was evident that when the patch size was equal to 7× 7, the average PSNR, average SSIM and
average FOM achieved their maximum values. The influence of the cluster number K on PSNR, SSIM
and FOM was tested in the same way, and is shown in Figure 5. When the cluster number was equal
to 60, the average PSNR and average FOM achieved their maximum values, and the average SSIM
obtained its maximum values when the cluster number equaled to 100. To compromise, we set the
cluster number K to 60 for an optimal solution.
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Figure 4. The impact of patch size on average PSNR (peak signal to noise ratio), average SSIM
(structural similarity), and average FOM (figure of merit) of SC-SR.
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Figure 5. The impact of cluster number on average PSNR, average SSIM, and average FOM of SC-SR.

4.2. Qualitative Comparisons

Considering that human subjects are the ultimate judges of image quality, the visual quality of the
denoised images is critical when evaluating a denoising algorithm. Figure 6 shows the noise-corrupted
images of Monarch, Airplane, Lena and Baboon, whose noise variances were 25, 25, 60 and 60,
respectively. Figures 7–10 show the denoised images of Monarch, Airplane, Lena and Baboon disposed
by competing algorithms. BM3D and NLM tended to over-smooth the image, while K-SVD BM3D
and EPLL were likely to generate artifacts when noise was high. Due to the learned NSS prior by
superpixel clustering, the proposed algorithm was more robust against artifacts, and preserved the
edge and texture areas better than the other algorithms. For example, in the Monarch image, the SC-SR
preserved the edges of the veins on the butterfly’s wings much better than the other algorithms. In the
Airplane image, the SC-SR reconstructed the English alphabet on the wing of the aircraft more clearly
than the other algorithms. In the Lena image, the SC-SR recovered more textures and edges on the hat
than the other algorithms. In the Baboon image, the SC-SR preserved more fine texture of the hair of
the baboon than other competing algorithms.
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Figure 7. Comparison of denoising results of the Monarch noisy image corrupted by additive
white Gaussian noise δ = 25: (a) Original image; (b) nonlocal means (NLM): PSNR = 26.43 dB,
SSIM = 0.8336, FOM = 0.8066; (c) K-SVD: PSNR = 28.72 dB, SSIM = 0.8880, FOM = 0.8532;
(d) block-matching and 3D filtering (BM3D): PSNR = 29.38 dB, SSIM = 0.9001, FOM = 0.9024;
(e) expected patch log likelihood (EPLL): PSNR = 29.38 dB, SSIM = 0.9001, FOM = 0.9024; and
(f) SC-SR: PSNR = 29.44 dB, SSIM = 0.9045, FOM = 0.9076.
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SC-SR: PSNR = 28.05	dB, SSIM = 0.7871, FOM = 0.4753. 

Figure 8. Comparison of denoising results of the Airplane noisy image corrupted by additive white
Gaussian noise δ = 25: (a) Original image; (b) NLM: PSNR = 28.17 dB, SSIM = 0.8286, FOM = 0.6036;
(c) K-SVD: PSNR = 30.97 dB, SSIM = 0.8719, FOM = 0.7306; (d) BM3D: PSNR = 31.44 dB,
SSIM = 0.8833, FOM = 0.7419; (e) EPLL: PSNR = 31.27 dB, SSIM = 0.8794, FOM = 0.7904;
and (f) SC-SR: PSNR = 31.45 dB, SSIM = 0.8865, FOM = 0.7638.
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Figure 9. Comparison of denoising results of the Lena noisy image corrupted by additive white
Gaussian noise δ = 60: (a) Original image; (b) NLM: PSNR = 24.59 dB, SSIM = 0.6999, FOM = 0.2777;
(c) K-SVD: PSNR = 26.90 dB, SSIM = 0.7328, FOM = 0.3298; (d) BM3D: PSNR = 27.98 dB,
SSIM = 0.7636, FOM = 0.4394; (e) EPLL: PSNR = 27.60 dB, SSIM = 0.7465, FOM = 0.5013; and (f)
SC-SR: PSNR = 28.05 dB, SSIM = 0.7871, FOM = 0.4753.Appl. Sci. 2017, 7, 436  13 of 20 
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high, the PSNR results of SC-SR were obviously better than BM3D, since BM3D trended to suffer 
from artifacts in this case. According to the these points, we can come to the conclusion that SC-SR 
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information and does better in denoising images in comparison with the other algorithms. In order 
to further testify the conclusions, we made a mean processing for the data results in Table 1,  
and showed the result in Figure 11. 
  

Figure 10. Comparison of denoising results of the Baboon noisy image corrupted by additive white
Gaussian noise δ = 60: (a) Original image; (b) NLM: PSNR = 20.95 dB, SSIM = 0.3568, FOM = 0.2680;
(c) K-SVD: PSNR = 22.08 dB, SSIM = 0.4356, FOM = 0.3077; (d) BM3D: PSNR = 22.38 dB,
SSIM = 0.4685, FOM = 0.3173; (e) EPLL: PSNR = 22.48 dB, SSIM = 0.4890, FOM = 0.4114,
and (f) SC-SR: PSNR = 22.56 dB, SSIM = 0.4901, FOM = 0.4358.
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4.3. Quantitative Comparisons

To further validate the denoising capability of the proposed algorithm, we selected PSNR, SSIM
and FOM as indexes to quantitatively evaluate the performance of the SC-SR algorithm. PSNR is one
of the most widely used image objective evaluation indexes, and is able to measure the similarity
of grayscale information between the original image and the denoised image. Since PSNR is based
only on the error between the corresponding pixels, it cannot comprehensively describe structural
similarity and the degree of edge preservation. SSIM is capable of assessing structural similarity, and
FOM can be used to measure the degree of edge preservation between the original image and the
denoised image. Table 1 presents the PSNR, SSIM and FOM results for different algorithms, images,
and noise variances. As presented in Table 1, the top value is the PSNR result, the middle value is the
SSIM result, and the bottom value is the FOM result in every table cell.

Table 1. The PSNR, SSIM and FOM results for different denoising algorithms. Best results are in bold.

Images (a) δ = 5

NLM KSVD BM3D EPLL SC-SR

Baboon
34.48 35.44 35.49 35.49 35.49

0.9288 0.9536 0.9534 0.9552 0.9519
0.9123 0.9326 0.9297 0.9332 0.9351

Fingerprint
34.44 36.63 36.51 36.43 36.65

0.9807 0.9878 0.9876 0.9875 0.9887
0.9056 0.8919 0.9876 0.9038 0.9642

Airplane
37.40 39.07 39.25 39.21 39.31

0.9425 0.9584 0.9595 0.9604 0.9598
0.9278 0.9251 0.9331 0.9372 0.9388

Monarch
36.72 37.74 38.25 38.27 38.29

0.9677 0.9720 0.9756 0.9755 0.9758
0.9789 0.9738 0.9762 0.9771 0.9751

Lena
37.17 38.62 38.71 38.59 38.74

0.9239 0.9455 0.9444 0.9449 0.9450
0.9113 0.9125 0.9303 0.9281 0.9289

House
37.34 39.43 39.86 38.97 39.94

0.9164 0.9546 0.9568 0.9498 0.9584
0.9383 0.9468 0.9535 0.9395 0.9442

Peppers
36.70 37.81 38.10 37.98 38.15

0.9409 0.9550 0.9558 0.9562 0.9551
0.9361 0.9378 0.9407 0.9508 0.9506

Straw
34.40 35.49 35.43 35.36 35.52

0.9813 0.9850 0.9848 0.9846 0.9864
0.9200 0.9218 0.9198 0.9143 0252

Hill
35.53 37.00 37.13 37.03 37.18

0.9085 0.9423 0.9427 0.9437 0.9431
0.8740 0.9181 0.9266 0.9216 0.9256

Woman
36.06 37.26 37.45 37.33 37.42

0.9056 0.9336 0.9325 0.9347 0.9329
0.9104 0.9291 0.9343 0.9306 0.9331

Average
36.024 37.449 37.62 37.47 37.67
0.9396 0.95878 0.9593 0.9593 0.9597
0.9215 0.92895 0.9432 0.9336 0.9421
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Table 1. Cont.

Images (b) δ = 15

NLM KSVD BM3D EPLL SC-SR

Baboon
25.95 28.42 28.67 28.70 28.77

0.6800 0.8227 0.8327 0.8421 0.8388
0.7051 0.8234 0.8187 0.8117 0.7995

Fingerprint
27.67 30.06 30.29 29.82 30.41

0.8935 0.9462 0.9495 0.9462 0.9510
0.6968 0.7075 0.7760 0.7761 0.7946

Airplane
31.31 33.60 33.89 33.78 33.97

0.8756 0.9100 0.9162 0.9163 0.9163
0.7677 0.8095 0.8240 0.8540 0.8482

Monarch
29.73 31.45 31.97 32.06 32.10

0.8999 0.9282 0.9384 0.9379 0.9407
0.9016 0.9226 0.9281 0.9397 0.9386

Lena
31.45 33.73 34.25 33.84 34.12

0.8454 0.8860 0.8953 0.8893 0.8928
0.6457 0.7552 0.7920 0.8185 0.8093

House
32.64 34.34 34.96 34.12 35.02

0.8561 0.8778 0.8901 0.8768 0.8922
0.7430 0.8541 0.8878 0.8749 0.8769

Peppers
30.23 32.25 32.69 32.55 32.64

0.8624 0.8998 0.9064 0.9054 0.9050
0.8123 0.8260 0.8408 0.8869 0.8661

Straw
26.67 28.57 28.65 28.53 28.72

0.8661 0.9270 0.9291 0.9281 0.9350
0.6833 0.7960 0.8049 0.8060 0.7952

Hill
28.89 31.45 31.85 31.69 31.88

0.7270 0.8227 0.8394 0.8382 0.8428
0.5812 0.7682 0.7800 0.8013 0.7959

Woman
29.91 31.92 32.42 32.23 32.38

0.7860 0.8433 0.8545 0.8537 0.8543
0.6355 0.7834 0.8018 0.8363 0.8323

Average
29.45 31.58 31.96 31.73 32.00

0.8292 0.8864 0.8952 0.8934 0.8969
0.7172 0.8046 0.8254 0.8405 0.8357

Images (c) δ = 25

NLM KSVD BM3D EPLL SC-SR

Baboon
22.85 25.79 26.04 26.18 26.13

0.4955 0.7081 0.7300 0.7483 0.7300
0.4036 0.7245 0.7174 0.7245 0.7403

Fingerprint
24.32 27.30 27.72 27.14 27.79

0.7979 0.8984 0.9117 0.9050 0.9117
0.5974 0.6371 0.7034 0.6772 0.7321

Airplane
28.17 30.97 31.44 31.27 31.45

0.8286 0.8719 0.8833 0.8794 0.8865
0.6036 0.7306 0.7419 0.7904 0.7638

Monarch
26.43 28.72 29.31 29.33 29.44

0.8336 0.8880 0.9031 0.9001 0.9045
0.8066 0.8532 0.8821 0.9024 0.9076
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Table 1. Cont.

Images (c) δ = 25

NLM KSVD BM3D EPLL SC-SR

Lena
28.73 31.34 32.05 31.59 31.98

0.7964 0.8428 0.8607 0.8502 0.8615
0.4242 0.6420 0.6885 0.7259 0.7178

House
29.08 32.09 32.93 32.13 32.96

0.8114 0.8452 0.8595 0.8471 0.8604
0.5850 0.7751 0.8319 0.8077 0.8202

Peppers
26.79 29.68 30.21 30.07 30.18

0.8023 0.8564 0.8687 0.8652 0.8668
0.6232 0.7385 0.7617 0.8168 0.791

Straw
21.98 25.71 25.92 25.80 25.90

0.6225 0.8509 0.8631 0.8607 0.8739
0.6160 0.7132 0.7162 0.7001 0.7155

Hill
26.41 29.22 29.81 29.61 29.83

0.6400 0.7406 0.7748 0.7688 0.7721
0.3723 0.6441 0.6607 0.6947 0.6723

Woman
27.14 29.66 30.29 30.04 30.25

0.7245 0.7853 0.8069 0.7995 0.8053
0.4585 0.6492 0.6854 0.7579 0.6990

Average
26.19 29.05 29.57 29.32 29.59

0.7353 0.8288 0.8462 0.8424 0.8473
0.5490 0.7108 0.7389 0.7598 0.7560

Images (d) δ = 40

NLM KSVD BM3D EPLL SC-SR

Baboon
21.65 23.57 23.88 24.03 24.01

0.4072 0.5570 0.6029 0.6189 0.6057
0.2764 0.5428 0.5252 0.5865 0.5758

Fingerprint
21.31 24.71 25.29 24.72 25.45

0.6613 0.8179 0.8587 0.8433 0.8563
0.5515 0.6274 0.6179 0.5513 0.6536

Airplane
25.32 28.53 29.06 28.98 29.13

0.7797 0.8231 0.8401 0.8335 0.8515
0.4750 0.6135 0.6570 0.7161 0.6792

Monarch
23.12 26.56 26.72 27.03 26.77

0.7517 0.8344 0.8485 0.8487 0.8521
0.6844 0.8143 0.8259 0.8537 0.8128

Lena
26.53 29.06 29.86 29.43 29.92

0.7511 0.7928 0.8159 0.8005 0.8253
0.3266 0.4858 0.5677 0.6164 0.5769

House
25.96 29.59 30.64 29.74 30.71

0.7569 0.7996 0.8256 0.8020 0.8356
0.4821 0.6676 0.7350 0.7058 0.7229

Peppers
23.71 27.33 27.79 27.59 27.68

0.7328 0.8046 0.8181 0.8134 0.8223
0.4603 0.6523 0.6862 0.7412 0.6686

Straw
19.66 22.93 23.19 23.28 23.38

0.4039 0.6928 0.7435 0.7397 0.7425
0.5265 0.5529 0.5933 0.5560 0.5950
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Table 1. Cont.

Images (d) δ = 40

NLM KSVD BM3D EPLL SC-SR

Hill
24.71 27.15 27.93 27.76 28.05

0.5766 0.6562 0.7053 0.6963 0.7039
0.2446 0.4413 0.5207 0.5629 0.5388

Woman
25.01 27.61 28.31 28.08 28.38

0.6722 0.7258 0.7501 0.7383 0.7556
0.3546 0.5039 0.5578 0.6506 0.5694

Average
23.70 26.70 27.27 27.06 27.35

0.6493 0.7504 0.7809 0.7735 0.7851
0.4382 0.5902 0.6287 0.6541 0.6393

Images (e) δ = 60

NLM KSVD BM3D EPLL SC-SR

Baboon
20.95 22.08 22.38 22.48 22.56

0.3568 0.4356 0.4685 0.4890 0.4901
0.2680 0.3077 0.3173 0.4114 0.4358

Fingerprint
18.95 21.77 23.59 22.65 23.63

0.4952 0.6804 0.7974 0.7597 0.7900
0.5073 0.4908 0.5027 0.4514 0.5731

Airplane
23.27 26.01 27.01 26.95 27.13

0.7273 0.7602 0.7860 0.7767 0.8163
0.3625 0.4633 0.5389 0.6253 0.5881

Monarch
20.43 24.22 24.58 24.72 24.81

0.6503 0.7618 0.7777 0.7795 0.8006
0.5406 0.7315 0.7300 0.7614 0.7472

Lena
24.59 26.90 27.98 27.60 28.05

0.6999 0.7328 0.7636 0.7465 0.7871
0.2777 0.3298 0.4394 0.5013 0.4753

House
23.59 26.75 28.49 27.90 28.53

0.6967 0.7252 0.7768 0.7636 0.7669
0.3941 0.4638 0.6288 0.6379 0.6204

Peppers
21.15 25.02 25.51 25.67 25.45

0.6634 0.7386 0.7479 0.7621 0.7717
0.3990 0.5282 0.5401 0.6354 0.5801

Straw
18.59 20.51 21.26 20.99 21.39

0.2785 0.4726 0.5824 0.5521 0.5970
0.4419 0.4592 0.4804 0.4240 0.4837

Hill
23.54 25.61 26.35 26.20 26.29

0.5283 0.5928 0.6332 0.6262 0.6355
0.2153 0.2665 0.4002 0.4424 0.4223

Woman
23.47 25.86 26.55 26.43 26.49

0.6251 0.6701 0.6948 0.6810 0.7063
0.3299 0.3405 0.4232 0.5175 0.4604

Average
21.85 24.47 25.37 25.16 25.43

0.5722 0.6570 0.7028 0.6936 0.7162
0.3736 0.4381 0.5001 0.5408 0.5386



Appl. Sci. 2017, 7, 436 18 of 21

Table 1. Cont.

Images (f) δ = 80

NLM KSVD BM3D EPLL SC-SR

Baboon
20.68 21.40 21.64 21.68 21.71

0.3379 0.3860 0.4049 0.4186 0.4137
0.2387 0.2205 0.2224 0.2889 0.2988

Fingerprint
17.75 19.55 22.39 21.12 22.39

0.3781 0.5355 0.7478 0.6770 0.7347
0.4376 0.4397 0.4699 0.3869 0.4956

Airplane
22.05 24.18 25.54 25.61 25.63

0.6723 0.6981 0.7453 0.7292 0.7902
0.3280 0.3511 0.4741 0.5509 0.5399

Monarch
22.52 22.52 23.20 23.42 23.29

0.5569 0.7050 0.7237 0.7313 0.7553
0.4911 0.6201 0.6733 0.7203 0.6947

Lena
23.41 25.44 26.65 26.14 26.71

0.6597 0.6846 0.7225 0.6952 0.7568
0.2670 0.2793 0.3720 0.4114 0.3997

House
22.29 24.80 26.94 26.22 26.74

0.6442 0.6584 0.7379 0.7098 0.7669
0.3322 0.3521 0.5329 0.5557 0.5204

Peppers
19.78 22.97 24.12 24.19 24.06

0.6038 0.6710 0.7006 0.7103 0.7391
0.3690 0.4105 0.4783 0.5880 0.5396

Straw
18.21 19.22 19.94 19.80 20.01

0.2248 0.3306 0.4410 0.4210 0.4584
0.3582 0.3758 0.3812 0.3344 0.4187

Hill
22.84 24.66 25.28 25.19 25.23

0.4993 0.5544 0.5865 0.5784 0.5967
0.1925 0.2137 0.3179 0.3352 0.3349

Woman
22.58 24.55 25.39 25.29 25.24

0.5967 0.6279 0.6551 0.6419 0.6739
0.2998 0.2612 0.3610 0.4118 0.3976

Average
21.21 22.93 24.10 23.87 24.11

0.5174 0.5852 0.6465 0.6313 0.6686
0.3314 0.3524 0.4283 0.4584 0.4640

From Table 1, we could observe three points. Firstly, the proposed SC-SR algorithm achieved
much better PSNR, SSIM and FOM results than NLM and K-SVD in all cases. Secondly, SC-SR had
higher PSNR and SSIM values than EPLL in most cases. Moreover, EPLL acquired the best FOM results
among the five algorithms, and SC-SR was only slightly inferior to EPLL. Thirdly, SC-SR obtained
better SSIM and FOM results than BM3D in most cases. Meanwhile, when the noise variance was
low, the PSNR results of SC-SR were close to BM3D; when the noise variance was high, the PSNR
results of SC-SR were obviously better than BM3D, since BM3D trended to suffer from artifacts in this
case. According to the these points, we can come to the conclusion that SC-SR is capable of stronger
comprehensive ability in reservation of structural, edge and grayscale information and does better in
denoising images in comparison with the other algorithms. In order to further testify the conclusions,
we made a mean processing for the data results in Table 1, and showed the result in Figure 11.
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parallelization implementation, BM3D proved to be the fastest algorithm. Furthermore, NLM 
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Figure 11. Comparison of the total average PSNR, total average SSIM and total average FOM for
different denoising algorithms.

In Figure 11, we demonstrated the total averages of the PSNR, SSIM and FOM for NLM, K-SVD,
BM3D, EPLL and SC-SR. For each algorithm, the total average PSNR was calculated by the mean of
the average PSNR results with different noise variances (Table 1), and the total average SSIM and the
total average FOM were calculated in the same way. As seen in Figure 11, it was obvious that SC-SR
achieved the highest total average PSNR and total average SSIM, while EPLL attained the highest total
average FOM. SC-SR was close to EPLL and higher than BM3D for the total average FOM. BM3D had
a similar total average PSNR as SC-SR, but a lower total average SSIM and total average FOM than
SC-SR. EPLL had higher total average FOM, but lower total average PSNR and total average SSIM
than SC-SR and BM3D. In brief, among the five algorithms, BM3D possessed the best capacity for
removing noise and preserving structural information, and the second-best capacity for preserving
edge areas. In general, SC-SR could not only effectively remove the noise, but also preserve the image
edge regions and structural information in the round.

All experiments were run under the MATLAB 2014a environment on a machine with Intel(R)
Xeon(R) E5-2690 CPU of 2.60 GHz and 96.0 GB RAM. Owing to compiled C++ mex-function and
parallelization implementation, BM3D proved to be the fastest algorithm. Furthermore, NLM benefited
from compiled C++ mex-function, and turned into the second-fastest algorithm. Other algorithms
suffered from high computational cost based on their computation complexity, as well as their
implementation, which simply uses C language with MATLAB. The test revealed that EPLL was
about two times slower than K-SVD, and SC-SR suffered from slightly higher computational costs than
EPLL due to the involvement of several subtasks and iterative shrinkage operations. However, several
accelerating techniques, such as the accelerating techniques described in References [23], could be used
to accelerate the convergence of the proposed algorithm. Additionally, the compiled C++ mex-function
and parallelization implementation could be adopted to dispose of multiple subtasks to improve the
speed of the proposed algorithm. Hence, the computational costs of the proposed algorithm can be
further reduced.

5. Conclusions

In this paper, we presented a new image denoising algorithm which made full use of image priors,
including the NSS prior in the spatial domain and sparse transform domain, edges and structural
information, and sparsity. It was accomplished in two successive steps based on superpixel clustering
and sparse representation. First, we learned the NSS prior in mid-level vision by clustering superpixels.
Since superpixel clustering takes edge and structural information into account, a better exploitation of
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the NSS prior could be obtained. Meanwhile, multiple features were selected to describe a superpixel
in the clustering process, which also facilitated a good NSS prior. Second, we took advantage of the
NSS prior in the sparse transform domain by using a weighted average sparse coefficient from similar
patches to improve the effectiveness of the sparse coefficient for each patch. Experiments conducted
on a collection of standard test images demonstrated that the proposed algorithm not only effectively
removed the noise, but also provided a better restoration of both the structural information and the
edge region algorithms, and overall produced less visual artifacts than other competing algorithms.
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