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Abstract: In this paper, a H∞/Leitmann approach to the robust tracking control design is presented
for an uncertain dynamic system. This new method is developed in the following two steps. Firstly,
a tracking dynamic system with simultaneous consideration of parameter uncertainty and noise is
modeled based on a linear system and a reference model. Accordingly, a “nominal system” from
the tracking system is defined and controlled by a H∞ control to obtain the asymptotical stability
and noise resistance. Secondly, by making use of a Lyapunov function and the norm boundedness,
a new robust control with the “Leitmann approach” is designed to cope with the uncertainty. The two
controls collaborate with each other to achieve “uniform tracking boundedness” and “uniform
ultimate tracking boundedness”. The new approach is then applied to an aircraft turbofan control
design, and the numerical simulation results show the prescribed performances of the closed-loop
system and the advantage of the developed approach.

Keywords: uncertain dynamic system; turbofan; H∞/Leitmann control; uniform tracking boundedness;
uniform ultimate tracking boundedness

1. Introduction

The performance indicators of aircraft, such as thrust weight ratio, economic efficiency and
control performance, raise higher requirements for aircraft engines [1–3]. These requirements bring
the need for more adjustable variables in the engines, which means the engine control system has
multi-inputs and multi-outputs. Coupling inherently exists among these inputs and outputs. Moreover,
the nonlinear characteristics of aircraft engines is another problem to be solved in its control design.
This nonlinearity results from the engine thermodynamic characteristics and the variety of its initial
and operating conditions. One can investigate the nonlinearity by a component-level thermodynamic
model, what we called the nonlinear model. For the engine control design, most of the researchers
build a linear model, such as a state space variable model (SSVM) based on the nonlinear model, which
will cause modeling error during the linearization. The parameters in the SSVM may be disturbed
by airflow distortion or other devices. At the same time, due to the mechanical manufacture and
the assembly, there exists a difference between individual engines, which results in the parameter
disturbance of the SSVM. All of these problems—couplings, nonlinearity, modeling errors, parameter
perturbation and individual difference—present researchers with challenges on the control design for
an aircraft turbofan.

In order to conquer the mentioned problems in the aircraft engine control, researchers have
been putting great efforts into the methods of robust control. The linear quadratic regulator (LQR)
method has strong robustness and a simple structure, which was applied to the F100 aircraft engine
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and other linear systems [4,5]. In the multivariable control of the F100, the LQR method was utilized
to design the proportional part of the control. While the LQR method relies on a nominal linear
system model and needs to know all of its states, if nonlinearity, uncertainty and modeling errors,
which cause the remarkable mismatch between the dynamics of real systems and their models, exist,
the characteristics of the LQR controller will deteriorate evidently. As was mentioned in [4], if the
gain of LQR controller was not in the gain schedule, the system stability was unable to be guaranteed.
To solve the problem that the LQR method cannot be utilized with the lack of partial states, the linear
quadratic gaussian(LQG) method adopts the Kalman filter as a state observer to estimate the states
and realize the state feedback control [6,7]. However, the Kalman filter weakens the robustness.
The simulation in [6] shows that since the engine dynamics changes significantly due to the low
temperature reaction in the combustion process, the performance of the LQG controller becomes
worse. In [7], for the dynamics of homogeneous charge compression ignition (HCCI) engines remains
invariant, the robustness of the discrete-time LQG methods cannot be verified sufficiently. To enhance
the robustness of the LQG method, the loop transfer recovery (LTR) design is added to achieve the
LQG/LTR approach for a linear system [8,9]. In [9], a non-full recovering LQG/LTR approach is
applied to a turbofan engine. No uncertainty nor noise are considered in the controller design, and the
system is actually a nominal system. The performance of the LQG/LTR controller is only validated
at one operating condition, namely, H = 0 km, Ma = 0. When facing a complicatedly-varying
dynamics, such as the dynamics of turbofan engines, the LQG/LTR controller may hardly recover the
transfer function desired. The H∞ control theory attracts many researchers in robust control design,
especially in the noise elimination by setting a disturbance rejection level from noises to outputs.
The research works in this field are numerous [10–13]. The proportion integral derivative (PID)
control method is practically applied to turbofan engines; while the three parameters, proportional,
integral and differential, need to be adjusted at different operating conditions [14,15]. This brings the
drawbacks that the parameters of the controller are numerous and the parameter adjustment lacks
a theoretical support.

In this paper, we explore a new robust tracking control design from two points of view. Firstly,
the nonlinearity, coupling, modeling error, parameter disturbances and individual differences in
turbofan control systems are described as the uncertainty. The new robust control approach is
developed for an dynamic system with the uncertainty and the noise. Secondly, the tracking controller
design will be based on the new performances, uniform tracking boundedness (UTB) and uniform
ultimate tracking boundedness (UUTB). They are actually looser performances than the asymptotical
stability achieved by the above-mentioned robust controls and may be more practical for a system with
complicated dynamics, such as aircraft engines. The robust controller based on the new performances
can ensure that system responses track reference commands and the tracking errors are bounded.

For solving the uncertainty problems, little a priori knowledge of the uncertainty and few
performance indicators to constrain the effects of uncertainty were adopted in the aforementioned
methods. Taking advantage of the uncertainty characteristics, including the structure matching
conditions and the upper-bound of uncertainty, Leitmann and his collaborators defined the uniform
boundedness (UB) and uniform ultimate boundedness (UUB), the performances for an uncertain
dynamic system, and initiated the efforts of corresponding robust control designs [16–18]. Here,
we call it the Leitmann approach. This robust control design takes the upper-bound of the uncertainty
norm and the principle of the Min-Max Lyapunov function into account and assured the system
responses within a certain neighborhood of the zero state. The Leitmann approach was developed
into the centralized and decentralized robust control of the uncertain linear or nonlinear system with
the time delay, no structure matching conditions or coupling [19–21], and it was applied to robust
controls of the flexible structures, the switched systems and the robot manipulation [22–25]. Moreover,
researchers attempted the combination between the Leitmann approach and the other control theory
to enhance the controller ability and enrich the performance of the closed system. Lu utilized the
principle of the Min-Max Lyapunov function and the estimation of the uncertainty bound to obtain the
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UUB under a slide mode control [26]. The marriage between the Leitmann method and the the fuzzy
theory was explored in [27–29]. The fuzzy bound of the uncertainty and a delicate defuzzification
are considered to obtain a deterministic robust control. We notice that most of the research with the
Leitmann approach was on the problem of a state regulator design, and little attempt was made in
tracking control research, which is realistic in the real world. For instance, when a pilot pulls/pushes
the throttle lever or changes the flight altitude, the commands to a turbofan control system will change
continuously. The system measurements need to track the varying commands, and a tracking control
with high performances is necessary in this case.

Making good use of the merits of the Leitmann method and the classic robust control theory,
an H∞/Leitmann approach for a tracking control is proposed. In Section 2, we establish a linear
model with the noise and the uncertainty, as well as a reference model for a uncertain dynamic system.
The reference model helps to realize a tracking control system. The new tracking control scheme is
presented with two steps in Section 3. First, according to the investigation of the uncertain system,
we define a nominal system, which consists of the noise, but the uncertainty. An H∞ controller was
designed to reduce the influence of noises and guarantees the asymptotical stability of the nominal
system. Secondly, we design a robust control with the Leitmann method, which was combined with
the H∞ control to yield the new performances, uniform tracking boundedness (UTB) and uniform
ultimate tracking boundedness (UUTB). In Section 4, the H∞/Leitmann approach is applied to the
multi-variable tracking control design of a turbofan. The nominal system is obtained based on
its component thermodynamic model [30], and the uncertainty covers the dynamic nonlinearity,
the parameter disturbance, the modeling errors and the individual difference. The computer simulation
results show that the resulting control can guarantee the desired tracking performances with respect to
the noise and the uncertainty.

2. Problem Statement

Consider an uncertain system with uncertainty and noise described by:

ẋ(t) = (A +∆A(x(t), α(t), t))x(t) + Bu(t) + B1w(t),

y(t) = Cx(t) + Du(t) + D1w(t),

x(0) = x0.

(1)

Here, t∈R is time, x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, w(t) ∈ Rk is the noise and
y(t) ∈ Rl is the output. A ∈ Rn×n, B ∈ Rn×m, B1 ∈ Rn×k, C ∈ Rl×n, D ∈ Rl×m, D1 ∈ Rl×k are known
constant real matrices; ∆A(x(t), α(t), t)) is a matrix function representing time-varying parameter
uncertainties in the system model and proposed by the following assumption.

Assumption 1. There exist real matrices E(t) ∈ Rm×n and G ∈ Rm×k, such that:

∆A(x(t), α(t), t) = BE(x(t), α(t), t),

B1 = BG,
(2)

for all (x, w, t) ∈ Rn ×Rk ×R.

Define:
v(t) := E(x(t), α(t), t)x(t) + Gw(t). (3)

From (1), v(t) can be considered as the whole uncertain element.
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Assumption 2. Consider that the uncertain system (1) subjected to Assumption 1, for all (x, w, t) ∈ Rn ×
Rk ×R, v(t) satisfies:

‖v(t)‖ ≤ ‖E‖‖x(t)‖+ ‖G‖‖w(t)‖
≤ ‖E‖max‖x(t)‖+ ‖G‖wmax =: ρ(x, w, t),

(4)

where ‖E‖max is the maximum value of ‖E‖, wmax is the maximum value of ‖w(t)‖ and ρ(x, w, t) :
Rn × Rk × R→ R+ is a known function.

Consider a reference model described as:

ẋss(t) = Axss(t) + Buss(t)

yss(t) = Cxss(t) + Duss(t),
(5)

where xss(t) ∈ Rn, uss(t) ∈ Rm and yss(t) ∈ Rl are, respectively, the state, input and the output of the
reference model. By (1) and (3), we have a deviation system as:

˙̃x(t) = Ax̃(t) +∆A(x(t), α(t), t)x(t) + Bũ(t) + B1w(t)

ỹ(t) = Cx̃(t) + Dũ(t) + D1w(t)

x̃(0) = x0 − xss0,

(6)

where x̃(t) = x(t)− xss(t), ũ(t) = u(t)− uss(t), ỹ(t) = y(t)− yss(t) are the state, control input and
output of the uncertain system. For the robust control design, we divide the system (4) into two
parts: the nominal system (the system without the uncertainty) and the uncertain portion. Consider
System (4); we propose our robust control as:

ũ(t) = p̃(t) + q̃(t), (7)

where q̃(t) ∈ Rm is the control for the nominal system and p̃(t) ∈ Rm is the control for the uncertain
portion. We describe the nominal system as:

˙̃xn(t) = Ax̃n(t) + Bq̃(t) + B1wn(t)

ỹn(t) = Cx̃n(t) + Dq̃(t) + D1wn(t)

x̃n(0) = xn0 − xnss0,

(8)

where x̃n(t) = xn(t)− xnss(t), ỹn(t) = yn(t)− ynss(t) are the state and output of the nominal system (1).

Assumption 3. There is a continuous non-negative function V(·) : Rn × R → R+ and a continuous
strictly-increasing functions γi(·) : R+ → R+, i = 1, 2, 3, which satisfy:

γi(0) = 0 i = 1, 2, 3 (9)

lim
s→∞

γi(s) = ∞ i = 1, 2, (10)

that for all (x̃, v, t) ∈ Rn ×Rv ×R, such that:

γ1(‖s‖) ≤ V(s) ≤ γ2(‖s‖), (11)

∂V(s)
∂t

+∇T
s V(s) · As ≤ −γ3(‖s‖). (12)

Now, we propose define our tracking performances as follow.
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Definition 1. Uniform tracking boundedness: Consider a linear dynamic system:

χ̇(t) = Aχ(t) + B1ω(t), χ(0) = χ0, (13)

and a reference dynamic system:

χ̇r(t) = Aχr(t), χr(0) = χr0, (14)

where t∈R, χ(t) ∈ Rn, ω(t) ∈ Rk, A ∈ Rn×n and B1 ∈ Rn×m are known constant real matrices and
χr(t) ∈ Rn. The tracking dynamic system is defined as:

˙̃χ(t) = Aχ̃(t) + B1ω(t), χ̃(0) = χ̃0, (15)

where χ̃(t) = χ(t)− χr(t) ∈ Rn.
If ‖χ̃0‖ ≤ r and χ̃(·) : [t0, t1]→ Rn, χ̃(t0) is a solution of (15), then:

‖χ̃(t)‖ ≤ d(r),∀t ∈ [t0, t1], (16)

where:

d(r) =

{
(γ−1

1 ◦ γ2)(R), i f r ≤ R

(γ−1
1 ◦ γ2)(r), i f r > R

(17)

and:
R = γ−1

3

(ε

4

)
. (18)

Furthermore, the solution has a continuation over [t0, ∞).

Definition 2. Uniform ultimate tracking boundedness: Consider the system (15), and χ̃(·) : [t0, t1]→ Rn is
its solution. If ‖χ̃0‖ ≤ r, there exist R and d̄ > (γ−1

1 ◦ γ2)(R), such that:

‖χ̃(t)‖ ≤ d̄, ∀t ≥ t0 + T(d̄ + r), (19)

where:

T(d̄, r) =


0, i f r ≤ R

γ2(r)− γ1(R̄)
γ3(R̄)− ε

4
, i f r > R

(20)

and:
R̄ = (γ−1

2 ◦ γ1)(d̄). (21)

Remark 1. In most of the previous research, the state regulation, but the tracking control, was studied, and the
main performances are about the state, not the dynamic tracking error. Here, we present Definitions 1 and 2 as
the performances for a tracking control system.

3. Controller Design

3.1. Robust Control Design for the Nominal System

For the nominal system (6), we design a H∞ controller. Let:

q̃(t) = K1x̃n(t), (22)

where K1 is the gain of the H∞ controller.
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Define:

Ā := A + BK1,

C̄ := C + DK1.
(23)

Here, Ā ∈ Rn×n, C̄ ∈ Rl×n are constant real matrices. By (23), the system (6) can be rewritten as:

˙̃xn(t) = Āx̃n(t) + B1wn(t),

ỹn(t) = C̄x̃n(t) + D1wn(t),

x̃n(0) = xn0 − xnss0.

(24)

Theorem 1. Consider System (24); for a given scalar ρ > 0, if the matrices X = XT > 0 and W exist,
such that:  AX + BW + (AX + BW)T B1 (CX + DW)T

BT
1 −I DT

1
CX + DW D1 −ρI

 < 0 (25)

then we can solve K1, the gain of the H∞ controller of System (24) [30], as:

K1 = WX−1. (26)

Then, there is a Lyapunov function of System (24) written as:

V(x̃n, t) = x̃T
n Px̃n, (27)

where:
P = X−1. (28)

Remark 2. It is worth noticing that the determinate of the positive matrix X is greater than zero, which implies
that X is invertible.

Proof of Theorem 1. See Appendix A.

3.2. Design of H∞/Leitmann Control for the Uncertain System

Under the H∞ controller (22) and (26) of the nominal System (24), we get a basic performance of
the system (8). Then, we further investigate the design of the robust control p̃(t). By introducing (22)
and (23) into (6), we have:

˙̃x(t) = Āx̃(t) + Bp̃(t) + Bv(t), (29)

ỹ(t) = C̄x̃(t) + Dp̃(t) + D1w(t), (30)

x̃(0) = x0 − xss0. (31)

Here, K1 is determined by Theorem 1.
Define:

µ(x̃, v, t) := BT(x̃, t)∇x̃V(x̃, t)ρ(x̃, v, t). (32)

We present the robust control p̃(t) as:

p̃(t) = p̃(x̃, v, t) =


− µ(x̃, v, t)
‖µ(x̃, v, t)‖ρ(x̃, v, t), i f ‖µ(x̃, v, t)‖ > ε,

− µ(x̃, v, t)
ε

ρ(x̃, v, t), i f ‖µ(x̃, v, t)‖ ≤ ε.

(33)
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Here, ε > 0 is a given scalar.
Now, by the preparation given above, we are ready to propose our main result as Theorem 2.

Theorem 2. Consider the uncertain dynamic system (29) subject to Assumptions 1–3. Under the control (7),
(22) and (31), the solution of the resulting controlled system has the performance of uniform tracking boundedness
and uniform ultimate tracking boundedness.

Proof of Theorem 2. See Appendix B.

4. Application to Turbofan Engines

4.1. Control System of Turbofan Engines

Consider an aircraft turbofan engine shown in Figure 1, which consists of the fan, the compressor,
the combustor, the high pressure turbine( HPT), the low pressure turbine (LPT), the mixing chamber,
the afterburner and the exhaust nozzle. The numbers in Figure 1 denote the main sections of the
turbofan, which are taken as the subscript of the related signals, such as the exhaust nozzle area A8.

1
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Figure 1. Structure of a turbofan.

As an air-breath engine, the air is inhaled into the inlet of the turbofan and compressed by
the fan and the compressor. The high-pressure air flows into the combustor and gets mixed with
fuel. The mixed gas is ignited and burned in the combustor. The burned gas with high temperature
and pressure drives the HPT and LPT, which connect to the compressor and the fan through the
high-pressure rotation spool and the low-pressure rotation spool, respectively. By this mechanical
connection, the HPT and LPT transfer the power to the fan and compressor. The thrust of the turbofan
is determined by the velocities of the turbofan input air and output gas and the exhausting pressure
of nozzle. For the modern aircraft turbofan, the fuel flow rate Wf and A8 are selected to control NL
and πT , the rotational speeds of the low-pressure spool and the high-pressure spool, and to realize the
indirect control of the thrust. By employing perturbation techniques at each equilibrium condition,
a set of linear state variable models (SVM) that depict the interactions of the engine states with inputs
and outputs is established. Consequently, the turbofan can be described as (4), and:

x(t) =

[
NL
πT

]
, u(t) =

[
Wf
A8

]
, y(t) =

[
NL
πT

]
, (34)

where NL is the rotational speed of the low-pressure spool, πT is the decreasing pressure ratio of the
turbine, Wf is the main fuel flow and A8 is the exhaust nozzle area. The reference model (5) can be
specified by:

xss(t) =

[
NLss
πTss

]
, uss(t) =

[
Wf ss
A8ss

]
, y(t) =

[
NLss
πTss

]
, (35)
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where NLss, πTss, Wf ss, A8ss are corresponding parameters of the reference model. The new control
scheme of this turbofan is depicted in Figure 2. In this control scheme, the reference model receives
the commands and outputs the reference states and control forces, which combine with the engine
states and control forces to form signals of the tracking system, such as NL − NLss. The H∞/Leitmann
controller takes the tracking errors as inputs and gives the outputs, which collaborate with the outputs
of the reference model, to obtain the final control forces for the engine. It is worth noticing that the
reference model has two contributions here. First of all, it provides the reference tracking trajectory for
the states of the engine. Secondly, its control forces guarantee the baseline of controls for the engine,
which will enhance the stability of the controlled system.

Figure 2. Scheme of the turbofan tracking control.

4.2. Numerical Simulation

For the numerical simulation, generally we extract a linear model from a turbofan nonlinear
system by the small perturbation method and the fitting method at some operating condition.
This nonlinear system is modeled based on the component thermodynamic and experiment data.
In this paper, only the linear model will be discussed for the control design, and the more detailed
modeling procedure of the turbofan nonlinear system can be seen in [31]. By the above-mentioned
methods, we obtained a linear model at Height = 0 km, Ma = 0 with:

A =

[
−2.4477 −0.6760
−13.5906 −81.2450

]
, B =

[
1.3295 1.5096
16.5005 39.5006

]
,

B1 =

[
1 0
0 1

]
, C =

[
1 0
0 1

]
, D =

[
0 0
0 0

]
, D1 =

[
0 0
0 0

]
.

(36)

Let ∆A = α(t)A and:

α(t) = 0.2[1.8(−0.5 + rand(1, 1)) + 0.1sin(t)], (37)

where rand(1, 1) ∈ [0, 1] is a random number and sin(·) is a sine function. By simple calculation,
we know αmax = 0.2. Let wT(t) = [w1(t) w2(t)], and wi(t) ∈ [−10−5, 105], i = 1, 2, is a white noise
with zero expectation. The noise wi(t) and the uncertainty α(t) are shown in Figures 3 and 4.
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Figure 4. Uncertain parameter history, α(t).

For the nominal system of the turbofan, we solve the linear matrix inequations (LMIs) in (25) and
obtain the following gain matrices:

K1 =

[
−11.9628 5.1980

5.1980 −0.3805

]
. (38)

Let ε = 0.5, and p̃(t) can be written as:

p̃(t) =


−2(1.12‖x(t)‖+ 0.0074)2

µ

[
1.8346 22.7699
2.0831 54.5090

]
x̃(t), i f ‖µ‖ > 0.5,

−2(1.12‖x(t)‖+ 0.0074)2

0.02

[
1.8346 22.7699
2.0831 54.5090

]
x̃(t), i f ‖µ‖ ≤ 0.5,

(39)

where:
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µ = 2

([
2.0475 25.4121
2.3249 60.8342

]
‖x(t)‖x̃(t) +

[
0.0136 0.1687
0.0154 0.4039

]
x̃(t)

)
. (40)

Finally, by (7), (38), (39) and (40), the H∞/Leitmann control is:

ũ(t) = K1 x̃(t) + p̃(t) (41)

Choose:

γ1(‖x̃n(t)‖) = λm(P)‖x̃n(t)‖2, (42)

γ2(‖x̃n(t)‖) = λM(P)‖x̃n(t)‖2, (43)

γ3(‖x̃n(t)‖) = λm(ĀT P + PĀ)‖x̃n(t)‖2. (44)

Here, λm(·) and λM(·) are the minimum and maximum eigenvalues of a matrix. By solving the
LMIs in (25), we have λm(P) = 0.0479, λm(P) = 0.0521 and λm(ĀT P + PĀ) = 1.

At the same time, to compare the robustness between our developed approach and an applied
robust control, we designed a controller with the LQR method, which was used to obtain a
multivariable control law on an F100 engine system [4]. The LQR control is:

uLQR = K2x(t). (45)

Let Q = R = I2×2, and then, the controller gain matrix is:

K2 =

[
−0.2193 −0.0916
−0.1798 −0.2248

]
. (46)

Apply the H∞/Leitmann controller (41), H∞ controller (38) and LQR controller (42) to the system (4)
with (36) and (37). Let NLr and πTr, the commands of NL and πT, step in the magnitude of ±2%, ±3%
and ±5%, separately, and the responses of states and control inputs are shown in Figures 5–14 and in
Tables 1 and 2.

4.3. Analysis and Comparison of the Simulation Results

In this section, we intend to analyze and compare the simulation results of state responses under
the above-mentioned controllers.

Figure 5 depicts the responses of states and control inputs during the 5% step of NLr and πTr
under the H∞/Leitmann control. The responses curves indicate that NL and πT can track the references
steps in 0.6 s and 0.3 s, respectively. The tracking errors are less than 0.0015 and 0.012. For ε = 0.5,
we know R = 0.3536 by (A18). Furthermore, by (A19)–(A20) and (A37), we obtain: (1) if r < R, then
d(r) = 0.369; (2) if r ≥ R, then d(r) = 1.04r > 0.369. It is concluded that the tracking error bounds
from the simulations’ results are less than those of the designed calculation, which indicates that the
H∞/Leitmann control achieves the desired tracking performance and has the satisfied robustness in
the resistance of uncertainty and noise.

To demonstrate the ability that the control p̃(t) constrains the uncertainty, we conducted the
same simulation procedure with only the H∞ control, and the controller gain matrix was adopted
as in (38). The simulation results are shown in Figure 6. By comparison with Figure 5, the response
of NL in Figure 6 appears as a tiny wave during ±5% steps, and the situation is much worse in the
response of πT shown in Figure 5b. We also can see from Figure 5b that the maximal magnitude of πT
perturbations reaches almost ±5%, and the πT curve waves are stronger, while in Figure 6b, this value
is around ±1%.
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We adopt the LQR controller (45) to conduct the same simulation procedure as that in Figure 5.
The results are shown in Figure 7. By comparison with Figure 5a,b, respectively, we can find that, in
Figure 7a, NLr steps cause around ±1% perturbations of πTr, and in Figure 7b, πTr’s overshoots reach
around ±3%. Both of these results are greater than those in Figure 5.

Furthermore, we analyze the power spectral densities (PSDs) of NL and πT in Figures 5–7,
and Figures 8 and 9 show the analysis results. From Figure 8a, it is shown that during the NL
step, the PSD peaks of NL under the H∞/Leitmann controller (41), H∞ controller (38) and LQR
controller are 1.0× 10−6, 1.0× 10−6 and 1.7× 10−5. It shows that, with respect to uncertainty and
noise, the H∞/Leitmann controller has better robustness than the other two controllers, especially in
the period of [0, 20 dB]. Figure 8b shows, during the same NL step, the PSD of πT under the three
controllers. The PSD peaks are, respectively, 1.5× 10−7, 6.0× 10−7 and 3.5× 10−7. It demonstrates that
the H∞/Leitmann approach has a better decoupling between NL and πT. A similar situations exist
in Figure 9a,b. It can be concluded from these analysis results that no matter in the NL step or in πT
step, H∞/Leitmann controller has the best capacity for uncertainty and noise resistance and for NL
and πT decoupling.
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Figure 5. Histories of states and controls under the H∞/Leitmann control at Height = 0, Ma = 0.
(a) Responses of states and controls during NLr steps; (b) responses of states and controls during
πTr steps.
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Figure 6. Histories of states and controls under the H∞ control at Height = 0, Ma = 0. (a) Responses of
states and controls during NLr steps; (b) responses of states and controls during πTr steps.
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Figure 7. Histories of states and controls under the linear quadratic regulator (LQR) control at
Height = 0, Ma = 0. (a) Responses of states and controls during NLr steps; (b) responses of states and
controls during πTr steps.
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Figure 8. Power spectral densities (PSDs) of the state responses during the NLr steps and under the
three different controls. (a) PSDs of NL; (b) PSDs of πT .
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Figure 9. PSDs of the state responses during the πTr steps and under the different controls. (a) PSDs of NL;
(b) PSDs of πT .
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With the varying of the operation point in the flight envelope, the characteristics of the turbofan
changes nonlinearly. To validate the robustness of our controller in the flight envelop, we chose three
more conditions: Height = 0 km, Ma = 0.3; Height = 5 km, Ma = 0.5; Height = 10 km, Ma = 1.0;
applying the same H∞/Leitmann controller to these three operating points and making the same
simulation procedure as that at Height = 0, Ma = 0. Figure 10 shows the results of Height = 5 km,
Ma = 0.5. For comparison, the same simulations were performed with the H∞ controller and the LQR
controller. The corresponding results are shown in Figure 11 and 12, respectively. The statistics of
the output extremes under all four operating conditions are listed in Tables 1 and 2. The magnitude
between the maximum and the minimum is drawn in Figure 13 and 14.

Figure 10a,b indicates that, no matter during NLr steps or πTr steps, the H∞/Leitmann control
can guarantee the tracking performances and has a better restraining capability of the uncertainty
and the noise than that of the H∞ control at all three operating points. At Height = 5 km, Ma = 0.5,
the controlled system has a similar tracking performance to that at Height = 0, Ma = 0.
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Figure 10. States histories under the H∞/Leitmann control at Height = 5 km, Ma = 0.5. (a) State and
control response during NLr steps; (b) state response during πT steps.
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Figure 11. States histories under the H∞ control at Height = 5 km, Ma = 0.5. (a) State and control
response during NLr steps; (b) state response during πT steps.
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Figure 12. States histories under the LQR control at Height = 5 km, Ma = 0.5. (a) State and control
response during NLr steps; (b) state response during πT steps.

Table 1. NL extremes at different conditions. NaN—Not a Number.

Operating Condition Step
NL (Min/Max)

H∞/Leitmann H∞ LQR

Height = 0 km
Ma = 0

NL (5%) 0.0512/0.0487 0.0536/0.0478 0.0516/0.0485
NL (−5%) −0.0488/−0.0515 −0.0481/−0.0540 −0.0487/−0.0517
πT (5%) 0.0026/−0.0030 0.0180/−0.0198 0.0004/−0.0004

πT (−5%) 0.0024/−0.0031 0.0178/−0.0200 0.0004/−0.0004

Height = 0 km
Ma = 0.3

NL (5%) 0.0517/0.0485 0.0531/0.0480 0.0518/0.0483
NL (−5%) −0.0485/−0.0520 −0.0481/−0.0537 −0.0484/−0.0514
πT (5%) 0.0039/−0.0043 0.0140/−0.0168 0.0016/−0.0017

πT (−5%) 0.0037/−0.0045 0.0138/−0.0170 0.0015/−0.0018

Height = 5 km
Ma = 0.5

NL (5%) 0.0513/0.0489 0.0538/0.0482 0.0515/0.0489
NL (−5%) −0.0491/−0.0513 −0.0485/−0.0537 −0.0489/−0.0502
πT (5%) 0.0042/−0.0048 0.0270/−0.0258 0.0002/−0.0004

πT (−5%) 0.0040/−0.0050 0.0269/−0.0260 0.0002/−0.0004

Height = 10 km
Ma = 1.0

NL (5%) 0.0523/0.0479 0.0548/0.0469 −NaN/−NaN
NL (−5%) −0.0482/−0.0523 −0.0472/−0.0555 −NaN/−NaN
πT (5%) 0.0035/−0.0038 0.0125/−0.0143 −NaN/−NaN

πT (−5%) 0.0033/−0.0040 0.0123/−0.0145 −NaN/−NaN

We drew Figures 13 and 14 for further illustrating the data in Tables 1 and 2. Figures 13 and 14
show the following information: (1) By H∞/Leitmann control, under all four operating conditions, the
tracking errors of NL and πT are in the bounds 0.0023 and 0.022, respectively, which are the smallest
during the state steps in the three controllers. Moreover, during the NL step, the disturbances in πT
are less than 0.01. During the πT , the disturbances in NL are less than 0.0007. These indicate that
in the different operating conditions, the H∞/Leitmann control has a good capacity of decoupling.
(2) By the H∞ control, at all four operating conditions, the controlled system can guarantee the tracking
performance, but the maximal perturbation of NL and πT is 0.0083 and 0.0268. This shows that
the perturbation deteriorates with the variety of the operating condition. (3) By the LQR control,
at the parts of the operating condition, the controlled system has satisfactory performance, such as at
Height = 0 km, Ma = 0 and Height = 5 km, Ma = 0.5. However, the state behaviors of the controlled
system get bad at Height = 0 km, Ma = 0.3 and are even worse at Height = 10 km, Ma = 1 where the
controlled system is unstable.
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Table 2. The output πT extremes at different conditions. (NaN—Not a Number)

Operating Condition Step
πT (Min/Max)

H∞/Leitmann H∞ LQR

Height = 0 km
Ma = 0

NL (5%) 0.0021/−0.0020 0.0076/−0.0083 0.0031/−0.0032
NL (−5%) 0.0020/−0.0023 0.0073/−0.0086 0.0031/−0.0033
πT (5%) 0.0617/0.0381 0.0980/0.0311 0.0640/0.0315

πT (−5%) −0.0380/−0.0620 −0.0320/−0.1040 −0.0340/−0.0645

Height = 0 km
Ma = 0.3

NL (5%) 0.0035/−0.0033 0.0070/−0.0078 0.0125/−0.0125
NL (−5%) 0.0032/−0.0035 0.0068/−0.0080 0.0125/−0.0125
πT (5%) 0.0670/0.0350 0.0962/0.0318 0.0955/−0.0149

πT (−5%) −0.0350/−0.0680 −0.0330/−0.1020 0.0140/−0.1115

Height = 5 km
Ma = 0.5

NL (5%) 0.0019/−0.0023 0.0070/−0.0071 0.0010/−0.0010
NL (−5%) 0.0018/−0.0025 0.0069/−0.0073 0.0008/−0.0009
πT (5%) 0.0640/0.0370 0.1050/0.0290 0.0582/0.0434

πT (−5%) −0.0380/−0.0650 −0.0310/−0.1090 −0.0435/−0.0561

Height = 10 km
Ma = 1.0

NL (5%) 0.0045/−0.0048 0.0100/−0.0139 −NaN/−NaN
NL (−5%) 0.0044/−0.0050 0.0098/−0.0140 −NaN/−NaN
πT (5%) 0.0670/0.0310 0.0870/0.0290 −NaN/−NaN

πT (−5%) −0.0280/−0.0690 −0.0310/−0.1010 −NaN/−NaN
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Figure 13. Magnitudes in different conditions during NLr steps.
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Figure 14. Magnitudes in different conditions during πTr steps.

5. Conclusions

To meet a high quality of tracking requirements, as well as attenuate the uncertainty and
noise, of aircraft turbofans, a new tracking control design is developed in this paper. The tracking
control system is modeled as three parts: the nominal system, the uncertainty and the reference
model. The tracking performances, UTB and UUTB, are built. For this tracking control system, the
robust control is proposed based on H∞ control and the Leitmann approach. The significance of
the work is two-fold. Firstly, the H∞ control guarantees the baseline performances, namely the
asymptotical stability and the noise suppression of the nominal system. Secondly, in the presence
of uncertainty, the performances of UTB and UUTB are further achieved by the collaboration of the
Leitmann approach and the H∞ control. The new approach is applied to design the multi-variable
controller for an aircraft turbofan. The computer simulations validate that: (1) when the dynamics of
the controlled system varies in the flight envelope, the new approach could guarantee the robustness
of the closed-loop system and the tracking bounds of NL and πT are 0.23% and 1.9%; (2) in comparison
with the classical robust controls, H∞ and LQR, the new approach shows the best performances in
the resistance of uncertainty and noise. The H∞ control can realize stable robust control in all four
operating points of the turbofan, but the bounds of the state responses are around 200% or even
more than those of the new approach. The LQR control can only work at the parts of the operating
conditions. At these working operating conditions, the state step responses show a limited ability at
reducing the influences of uncertainty and noise. The results of this paper might encourage further
hardware-in-loop simulations and physical tests of the new designed controlled turbofan system.
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Appendix A

For the system (24), we choose the Lyapunov function candidate:

V(x̃n, t) = x̃T
n Px̃n. (A1)

Here, P = PT > 0.
For a given scalar ρ > 0, define γ :=

√
ρ. Introducing γ into the matrix inequality (25), it follows: AX + BW + (AX + BW)T B1 (CX + DW)T

BT
1 −I DT

1
(CX + DW) D1 −γ2 I

 < 0. (A2)

Multiply (A2) with diag{I, I, γ−1 I } in the right and left and yield: AX + BW + (AX + BW)T B1 γ−1(CX + DW)T

BT
1 −I γ−1DT

1
γ−1(CX + DW) γ−1D1 −I

 < 0. (A3)

By (26) and (28), (A3) can be written as: AP−1 + BK1P−1 + (AP−1 + BK1P−1)T B1 γ−1(CP−1 + DK1P−1)T

γ−1BT
1 −I γ−1DT

1
CP−1 + DK1P−1 γ−1D1 −I

 < 0. (A4)

Multiply diag{P, I, I } in the right and left of (A4), and consider (23); we have: ĀT P + PĀ PB1 γ−1C̄T

BT
1 P −I γ−1DT

1
γ−1C̄ γ−1D1 −I

 < 0. (A5)

By adopting the Schur complement, (A5) is equivalent to:[
γ−1C̄T

γ−1DT
1

] [
γ−1C̄ γ−1D1

]
+

[
ĀT P + PĀ PB1

B1
T P −I

]
< 0. (A6)

For any T > 0, consider:

JT =
∫ T

0
[γ−2ỹT

n (t)ỹn(t)− wT
n (t)wn(t)]dt

=
∫ T

0
[γ−2ỹT

n (t)ỹn(t)− wT
n (t)wn(t) +

d
dt

V(x̃n)]dt−V(x̃n(T))

=
∫ T

0
[γ−2ỹT

n (t)ỹn(t)− wT
n (t)wn(t) + 2x̃T

n (t)Y(Āx̃n(t) + B̄wn(t))]dt−V(x̃n(T))

=
∫ T

0

[
x̃n(t)
wn(t)

]T([
γ−1C̄T

γ−1DT
1

] [
γ−1C̄ γ−1D1

]
+

[
ĀT P + PĀ PB1

B1
T P −I

]) [
x̃n(t)
wn(t)

]
−V(x̃n(T)).

(A7)

By (A6), we know:

∫ T

0
[γ−2ỹT

n (t)ỹn(t)− wT
n (t)wn(t) +

d
dt

V(x̃n)]dt. (A8)



Appl. Sci. 2017, 7, 439 18 of 21

Consider the zero initial condition,

x̃T
n (T)Px̃n(T) + γ−2

∫ T

0
ỹT

n (t)ỹn(t)dt <
∫ T

0
w̃T(t)w̃(t)dt. (A9)

Let T→ ∞,
γ−2‖ỹn(t)‖2

2 < ‖wn(t)‖2
2. (A10)

By (A10), the transfer function Twn ỹn(s) of System (24) satisfies:

‖Twn ỹn(s)‖∞ =
‖ỹn(t)‖2
‖wn(t)‖2

< γ. (A11)

By (A5), it is easy to know that AT P + PA < 0. As P > 0, System (24) is asymptotically stable.
Therefore, it can be concluded that (26) is a H∞ control of System (24), and (A1) is its Lyapunov
function. Theorem 1 has been proven.

Appendix B

For the system (29), we choose the Lyapunov function candidate:

V(x̃, t) = x̃T Px̃. (A12)

Here, P was decided in (28). The derivative of V(x̃, t) along any solution of (29) is given by:

V̇ =
∂V(x̃, t)

∂t
+∇T

x̃ V(x̃, t)[Āx̃ + Bp̃(x̃, v, t) + Bv(t)]. (A13)

As a consequence of (12), (30) and (31), it follows:

V̇ ≤ −γ3(‖x̃(t)‖) +∇T
x̃ V(x̃, t)Bp̃(x̃, v, t) + ‖µ(x̃, v, t)‖. (A14)

From (30) and (31), we know if ‖µ(x̃, v, t)‖ > ε,

V̇ ≤ −γ3(‖x̃(t)‖), (A15)

and if ‖µ(x̃, v, t)‖ ≤ ε,

V̇ ≤ −γ3(‖x̃(t)‖) +
ε

4
. (A16)

Consequently, for all (x̃, v, t) ∈ Rn × Rv × R:

V̇ ≤ −γ3(‖x̃(t)‖) +
ε

4
. (A17)

Give a positive scalar r, and let:

R = γ−1
3

( ε

4

)
. (A18)

Define:
r̂ := max{r, R}. (A19)

d(r̂) := (γ−1
1 ◦ γ2)(r̂). (A20)

In view of (11) and (A20), we know:

γ1(r̂) ≤ γ2(r̂), (A21)

r̂ ≤ (γ−1
1 ◦ γ2)(r̂) = d(r). (A22)
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We now prove the uniform tracking boundedness of the system (29) by contradiction. Consider
the system (29) subject to Assumptions 1–3. If ‖x̃0‖ ≤ r, we suppose there exists a time t3, such that:

‖x̃(t3)‖ > d(r). (A23)

By (A19), (A22) and (A23), it is easy to know:

‖x̃(t0)‖ ≤ r̂ ≤ d(r) < ‖x̃(t3)‖. (A24)

This suggests that there exists a t2 ∈ [t0, t3), such that:

‖x̃(t2)‖ = r̂, (A25)

‖x̃(t)‖ ≥ r̂. ∀t ∈ [t2, t3] (A26)

By (11), (18) and (A17),

γ1(‖x̃(t3)‖) ≤ V(x̃(t3), t3)

= V(x̃(t2), t2) +
∫ t3

t2

V̇(x̃(τ), τ)dτ

≤ γ2(‖x̃(t2)‖) +
∫ t3

t2

[
− γ3(‖x̃(τ)‖) +

ε

4

]
dτ

≤ γ2(r̂) +
∫ t3

t2

[
− γ3(R) +

ε

4

]
dτ

= γ2(r̂),

(A27)

which means:
‖x̃(t3)‖ ≤ (γ−1

1 ◦ γ2)(r̂) = d(r). (A28)

This result contradicts (A23). Hence:

‖x̃(t)‖ ≤ d(r), ∀t ∈ [t0, t1], (A29)

and the system (29) is uniform tracking boundedness. We impose no constraint on the upper limitation
of time t1 in (A29), so it can extend to infinity, namely,

‖x̃(t)‖ ≤ d(r). ∀t ∈ [t0, ∞) (A30)

Next, we prove the uniform ultimate tracking boundedness of the controlled system (29). Suppose
x̃(t0)‖ ≤ r. Consider R̄ > R; by definition of R̄ := (γ−1

2 ◦ γ1)(d̄), we get:

d̄ = (γ−1
1 ◦ γ2)(R̄) =: d(R̄), (A31)

d̄ > (γ−1
1 ◦ γ2)(R). (A32)

If r ≤ R̄, then ‖x̃0‖ ≤ R̄. In view of the proof of uniform tracking boundedness, we can get:

‖x̃(t)‖ ≤ d(R̄) = d̄, ∀t ∈ [t0, ∞). (A33)

Hence:
T(d̄, r) = 0. (A34)

If r > R̄, we also take the contradiction to prove that ‖x̃(t)‖ ≤ d̄. We suppose that ∀t ∈ [t0, t1],

‖x̃(t)‖ > R̄, (A35)
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where:
t1 = t0 + T(d̄, r), (A36)

T(d̄, r) =
γ2(r)− γ1(R̄)

γ3(R̄)− ε
4

. (A37)

By (11), (18) and (A17),

γ1(‖x̃(t1)‖) ≤ V(x̃(t1), t1)

= V(x̃(t0), t0) +
∫ t1

t0

V̇(x̃(τ), τ)dτ

≤ γ2(‖x̃(t0)‖) +
∫ t1

t0

[
− γ3(‖x̃(τ)‖) +

ε

4

]
dτ

≤ γ2(r̂) + T(d̄, r)
[
− γ3(R) +

ε

4

]
= γ2(r̂) +

γ2(r)− γ1(R̄)
γ3(R̄)− ε

4

[
− γ3(R) +

ε

4

]
= γ1(R̄),

(A38)

which leads to:
‖x̃(t1)‖ ≤ R̄. (A39)

Obviously, the result (A39) contradicts (A35). Hence, there must be a t2 ∈ [t0, t1], such that:

‖x̃(t2)‖ ≤ R̄. (A40)

As a consequence of the tracking uniform boundedness,

‖x̃(t)‖ ≤ d(R̄) = d̄, ∀t ∈ [t2, t1]. (A41)

Finally,
‖x̃(t)‖ ≤ d̄, ∀t ≥ t1 + T(d̄, r). (A42)
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